80 research outputs found

    Migrant Semipalmated Sandpipers (Calidris pusilla) Have Over Four Decades Steadily Shifted Towards Safer Stopover Locations

    Get PDF
    Peregrine falcons (Falco peregrinus) have undergone a steady hemisphere-wide recovery since the ban on DDT in 1973, resulting in an ongoing increase in the level of danger posed for migrant birds, such as Arctic-breeding sandpipers. We anticipate that in response migrant semipalmated sandpipers (Calidris pusilla) have adjusted migratory behavior, including a shift in stopover site usage toward locations offering greater safety from falcon predation. We assessed semipalmated sandpiper stopover usage within the Atlantic Canada Shorebird Survey dataset. Based on 3,030 surveys (totalling ~32M birds) made during southward migration, 1974–2017, at 198 stopover locations, we assessed the spatial distribution of site usage in each year (with a “priority matching distribution” index, PMD) in relation to the size (intertidal area) and safety (proportion of a site\u27s intertidal area further than 150 m of the shoreline) of each location. The PMD index value is >1 when usage is concentrated at dangerous locations, 1.0 when usage matches location size, and <1 when usage is concentrated at safer locations. A large majority of migrants were found at the safest sites in all years, however our analysis of the PMD demonstrated that the fraction using safer sites increased over time. In 1974, 80% of birds were found at the safest 20% of the sites, while in 2017, this had increased to 97%. A sensitivity analysis shows that the shift was made specifically toward safer (and not just larger) sites. The shift as measured by a PMD index decline cannot be accounted for by possible biases inherent in the data set. We conclude that the data support the prediction that increasing predator danger has induced a shift by southbound migrant semipalmated sandpipers to safer sites

    Avian Influenza Surveillance with FTA Cards: Field Methods, Biosafety, and Transportation Issues Solved

    Get PDF
    Avian Influenza Viruses (AIVs) infect many mammals, including humans1. These AIVs are diverse in their natural hosts, harboring almost all possible viral subtypes2. Human pandemics of flu originally stem from AIVs3. Many fatal human cases during the H5N1 outbreaks in recent years were reported. Lately, a new AIV related strain swept through the human population, causing the 'swine flu epidemic'4. Although human trading and transportation activity seems to be responsible for the spread of highly pathogenic strains5, dispersal can also partly be attributed to wild birds6, 7. However, the actual reservoir of all AIV strains is wild birds

    Evolution and connectivity in the world-wide migration system of the mallard: Inferences from mitochondrial DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Main waterfowl migration systems are well understood through ringing activities. However, in mallards (<it>Anas platyrhynchos</it>) ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands. The study of evolution of genetic diversity and subsequent partitioning thereof during the last glaciation adds to ongoing discussions on the general evolution of waterfowl populations and flyway evolution. Hypothesised mallard flyways are tested explicitly by analysing mitochondrial mallard DNA from the whole northern hemisphere.</p> <p>Results</p> <p>Phylogenetic analyses confirm two mitochondrial mallard clades. Genetic differentiation within Eurasia and North-America is low, on a continental scale, but large differences occur between these two land masses (<it>F</it><sub>ST </sub>= 0.51). Half the genetic variance lies within sampling locations, and a negligible portion between currently recognised waterfowl flyways, within Eurasia and North-America. Analysis of molecular variance (AMOVA) at continent scale, incorporating sampling localities as smallest units, also shows the absence of population structure on the flyway level. Finally, demographic modelling by coalescence simulation proposes a split between Eurasia and North-America 43,000 to 74,000 years ago and strong population growth (~100fold) since then and little migration (not statistically different from zero).</p> <p>Conclusions</p> <p>Based on this first complete assessment of the mallard's world-wide population genetic structure we confirm that no more than two mtDNA clades exist. Clade A is characteristic for Eurasia, and clade B for North-America although some representatives of clade A are also found in North-America. We explain this pattern by evaluating competing hypotheses and conclude that a complex mix of historical, recent and anthropogenic factors shaped the current mallard populations. We refute population classification based on flyways proposed by ornithologists and managers, because they seem to have little biological meaning. Our results have implications for wetland management and conservation, with special regard to the release of farmed mallards for hunting, as well as for the possible transmission of Avian Influenza by mallards due to migration.</p

    Oversummering Juvenile and Adult Semipalmated Sandpipers in PerĂș Gain Enough Survival to Compensate for Foregone Breeding Opportunity

    Get PDF
    Background&nbsp; Age at maturity and the timing of first breeding are important life history traits. Most small shorebird species mature and breed as ‘yearlings’, but have lower reproductive success than adults. In some species, yearlings may defer northward migration and remain in non-breeding regions (‘oversummering’) until they reach 2 years of age. Some adults also oversummer. Oversummering would be favoured by natural selection if survival were as a result raised sufficiently to compensate for the missed breeding opportunity. Several thousand Semipalmated Sandpipers (Calidris pusilla) spend the non-breeding period at Paracas, PerĂș, including individuals with long bills (likely from eastern Arctic breeding populations ~&thinsp;8000&thinsp;km distant) and short bills (likely from western Arctic breeding populations, up to 11,000&thinsp;km distant), with short-billed birds more likely to oversummer. We tested the prediction that oversummering birds have higher survival than migrants, and that the magnitude of this higher survival for oversummering birds is enough to compensate for their lost breeding season. Methods&nbsp; We used a Multi-State Mark-Recapture model based on 5 years of encounter data (n&thinsp;=&thinsp;1963 marked birds, and 3229 resightings) obtained year-round at Paracas, PerĂș, to estimate seasonal (i.e. breeding and non-breeding) survivorship for migrant and oversummering birds. We calculated the magnitude of the oversummering survival advantage required to compensate, for both yearlings and adults, based on published measures of annual survival and reproductive success. Using bill length as a proxy for migration distance, we investigated whether migratory survival is distance-dependent. Results&nbsp; We estimate that 28% of yearlings and 19% of adults oversummer. Survival is higher for oversummering birds than for migrants, and the oversummering survival advantage is greater for adults (0.215) than for yearlings (0.140). The theoretical thresholds predicted by the size of the missed reproductive opportunity are 0.240 for adults and 0.134 for yearlings. Migratory survival decreases and the oversummering rate increases with migration distance, as assessed by culmen length. Conclusions&nbsp; Our results support the life history hypothesis that oversummering raises survival enough to compensate for the loss of a breeding opportunity. Greater migration distance lowers survival and increases the probability of oversummering

    From salmon to salmonberry: The effects of salmon-derived nutrients on the stomatal density of leaves of the nitriphilic shrub Rubus spectabilis

    Get PDF
    Nutrients derived from the carcasses of Pacific salmon have been shown to have wide-ranging effects on riparian systems. These include changes in community species composition and an increase in leaf nitrogen concentration, with the latter effect pronounced in the nitriphilic shrub Rubus spectabilis (salmonberry). Experimental work with other species has shown that leaf stomatal density increases in response to nitrogen fertilization. We predicted that the stomatal density of salmonberry leaves would vary directly with the density of spawning salmon in salmonberry leaves collected from 16 streams in the vicinity of Bella Bella, on British Columbia’s central coast. We estimated the stomatal density along each stream, and quantified stream characteristics, including the number of spawning salmon (Oncorhynchus spp.), canopy cover, stem density and soil moisture. We found that salmon have both direct and indirect effects on stomatal density, the latter mediated by canopy cover and stem density. Salmonberry stomatal density increased by 1.12 stomata per mm2 (~0.5%) for every kg of salmon per metre of stream. Over the range of salmon densities observed (1.8–49.0 kg per metre of stream), stomatal density increased by almost 45 mm− 2, or more than 20%. These data confirm that the stomatal density in salmonberry responds positively to the opportunity for greater productivity provided by salmon carcasses. The data provide insight into the physiological and morphological processes supporting nitrogen uptake, which in turn influences plant community composition. A plain language summary is available for this article.</p

    Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm.Ecol.Lett

    Get PDF
    Abstract Food webs are comprised of a network of trophic interactions and are essential to elucidating ecosystem processes and functions. However, the presence of unknown, but critical networks hampers understanding of complex and dynamic food webs in nature. Here, we empirically demonstrate a missing link, both critical and variable, by revealing that direct predator-prey relationships between shorebirds and biofilm are widespread and mediated by multiple ecological and evolutionary determinants. Food source mixing models and energy budget estimates indicate that the strength of the missing linkage is dependent on predator traits (body mass and foraging action rate) and the environment that determines food density. Morphological analyses, showing that smaller bodied species possess more developed feeding apparatus to consume biofilm, suggest that the linkage is also phylogenetically dependent and affords a compelling re-interpretation of niche differentiation. We contend that exploring missing links is a necessity for revealing true network structure and dynamics

    Long-Term Continental Changes in Wing Length, but Not Bill Length, of a Long-Distance Migratory Shorebird

    Get PDF
    We compiled a &gt;50‐year record of morphometrics for semipalmated sandpipers (Calidris pusilla), a shorebird species with a Nearctic breeding distribution and intercontinental migration to South America. Our data included &gt;57,000 individuals captured 1972–2015 at five breeding locations and three major stopover sites, plus 139 museum specimens collected in earlier decades. Wing length increased by ca. 1.5 mm (&gt;1%) prior to 1980, followed by a decrease of 3.85 mm (nearly 4%) over the subsequent 35 years. This can account for previously reported changes in metrics at a migratory stopover site from 1985 to 2006. Wing length decreased at a rate of 1,098 darwins, or 0.176 haldanes, within the ranges of other field studies of phenotypic change. Bill length, in contrast, showed no consistent change over the full period of our study. Decreased body size as a universal response of animal populations to climate warming, and several other potential mechanisms, are unable to account for the increasing and decreasing wing length pattern observed. We propose that the post‐WWII near‐extirpation of falcon populations and their post‐1973 recovery driven by the widespread use and subsequent limitation on DDT in North America selected initially for greater flight efficiency and latterly for greater agility. This predation danger hypothesis accounts for many features of the morphometric data and deserves further investigation in this and other species

    Risk allocation: Acute and chronic predator exposure have contrasting effects on song sparrow (Melospiza melodia) singing behaviour

    No full text
    Increasing the danger posed by predators may cause prey animals to alter their behaviour. For example, they may be more vigilant and so feed more slowly. Breeding male song sparrows (Melospiza melodia, (Wilson, 1810)) spend much time in conspicuous, loud song, important for territorial defense and for mate attraction. We measured their singing behaviour in relation to both chronic (active CooperĂą s hawk Accipiter cooperii (Bonaparte, 1828)) nest nearby) and acute (playback of hawk calls) predator exposure. We found that proximity to a CooperĂą s hawk nest had little or no influence. In contrast, the response to acute exposure was strong and immediate: song sparrows reduced the song rate and the proportion of time spent singing, lowered perch height and increased concealment. The decline in the amount of song during the few minutes following playback attributable to the acute exposure was 34.6%. We analyze these results in light of theories about how animals adjust risk taking in response to predation danger. Given that the numbers of their predators have risen steadily for the past few decades and affect the level of singing, we consider the implications for trend estimates of songbird populations based on surveys using auditory methods.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Ecological factors associated with the breeding and migratory phenology of high-latitude breeding western sandpipers

    No full text
    Environmental conditions influence the breeding and migratory patterns of many avian species and may have particularly dramatic effects on long-distance migrants that breed at northern latitudes. Environment, however, is only one of the ecological variables affecting avian phenology, and recent work shows that migration tactics may be strongly affected by changes in predator populations. We used long-term data from 1978 to 2000 to examine the interactions between snowmelt in western Alaska in relation to the breeding or migration phenologies of small shorebirds and their raptor predators. Although the sandpipers' time of arrival at Alaskan breeding sites corresponded with mean snowmelt, late snowmelts did delay breeding. These delays, however, did not persist to southward migration through British Columbia, likely due to the birds' ability to compensate for variance in the length of the breeding season. Raptor phenology at an early stopover site in British Columbia was strongly related to snowmelt, so that in years of early snowmelt falcons appeared earlier during the sandpipers' southbound migration. These differential effects indicate that earlier snowmelt due to climate change may alter the ecological dynamics of the predator-prey system
    • 

    corecore