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Peregrine falcons (Falco peregrinus) have undergone a steady hemisphere-wide recovery

since the ban on DDT in 1973, resulting in an ongoing increase in the level of danger

posed for migrant birds, such as Arctic-breeding sandpipers. We anticipate that in

response migrant semipalmated sandpipers (Calidris pusilla) have adjusted migratory

behavior, including a shift in stopover site usage toward locations offering greater safety

from falcon predation. We assessed semipalmated sandpiper stopover usage within the

Atlantic Canada Shorebird Survey dataset. Based on 3,030 surveys (totalling ∼32M

birds) made during southward migration, 1974–2017, at 198 stopover locations, we

assessed the spatial distribution of site usage in each year (with a “priority matching

distribution” index, PMD) in relation to the size (intertidal area) and safety (proportion of

a site’s intertidal area further than 150 m of the shoreline) of each location. The PMD

index value is >1 when usage is concentrated at dangerous locations, 1.0 when usage

matches location size, and <1 when usage is concentrated at safer locations. A large

majority of migrants were found at the safest sites in all years, however our analysis of the

PMD demonstrated that the fraction using safer sites increased over time. In 1974, 80%

of birds were found at the safest 20% of the sites, while in 2017, this had increased to

97%. A sensitivity analysis shows that the shift was made specifically toward safer (and

not just larger) sites. The shift as measured by a PMD index decline cannot be accounted

for by possible biases inherent in the data set. We conclude that the data support the

prediction that increasing predator danger has induced a shift by southbound migrant

semipalmated sandpipers to safer sites.

Keywords: semipalmated sandpipers, peregrine falcons, predator response, stopover site selection, Atlantic

Canada

1. INTRODUCTION

Predators affect prey populations not only by “direct killing” (also termed “lethal,” “consumptive,”
“density-mediated,” or “mortality” effects; Christianson and Creel, 2014), but by inducing prey
to adjust behavior, physiology, morphology and life history to mitigate the danger (Moll et al.,
2017). The adjustments are made behaviorally or by adaptive plasticity (e.g., Domenici et al., 2008),
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and through natural selection (e.g., Reznick et al., 1990). These
“non-lethal” (also termed “non-consumptive,” “trait-mediated,”
“intimidation,” or “fear”) effects on prey populations can be as
strong or even stronger than the effects of direct killing, and
together they readily propagate to have further effects on other
trophic levels (Terborgh and Estes, 2010; Ohgushi et al., 2012).

The effects of predators on prey populations are beginning
to be examined at large scales in nature. Myers and Worm
(2003) and Madin et al. (2016) consider the effects on
marine fish populations stemming from the great reductions
in the abundance of top predators, while Heithaus et al.
(2008) document many novel repercussions of changing marine
predator abundances (see also Babcock et al., 2010; Estes et al.,
2011). Still, much of what is known about these relationships
between predators and prey relates to lethal effects (i.e., mortality
inflicted directly by predators). In contrast, the non-lethal effects
(e.g., influences of predator presence on prey behavior and
morphology; see Madin et al., 2016, Box 1) are not as well-
studied, despite many advances in the past two decades from the
experimental literature (reviewed by Long and Hay, 2012).

In contrast to the ongoing reductions in marine systems,
top predators are currently increasing in abundance in some
terrestrial systems. In the case of the peregrine falcon (Falco
peregrinus), migrating, wintering, and breeding numbers all
show substantial, ongoing increases that began after the 1973
ban on DDT. The historical population in North America is
at estimated at 10,600–12,000 breeding pairs, the majority of
which (∼75%) bred north of 55◦ (including Greenland; Cade
and Burnham, 2003, p. 6) and migrated to lower temperate
and tropical latitudes. Migration counts (McCarty and Bildstein,
2005) and mid-winter counts at temperate latitudes (Ydenberg
et al., 2017) show strong ongoing increases of 3- to 7-fold
that began in the mid- or late 1970s; increases which have led
to a current population estimate of over 60,000 falcons across
North America (though this is a very rough estimate COSEWIC,
2017).

This population increase includes a large increase in
abundance of peregrines breeding at temperate latitudes along
continental flyways, partially as a result of programs releasing
captive-bred peregrines into the wild. Releases took place
throughout the continent, but the biggest programs established
breeding peregrines in the Bay of Fundy, and in Delaware
and Chesapeake Bays (and environs; Amirault et al., 2004;
Gahbauer et al., 2015; Watts et al., 2015). Especially relevant
to this paper is the introduction of peregrines into the Bay of
Fundy (summarized in Dekker et al., 2011), in which 178 captive-
bred birds were released 1982–1993 by the Canadian Wildlife
Service. The first breeding of peregrines in the region in at least
a half-century was recorded in 1989. Subsequently, active nest
sites increased to the current level of about 35, as documented
in Figure 1. Merlins (Falco columbarius) have also become more
abundant (Dekker et al., 2011), though without the aid of any
reintroduction program. Watts et al. (2015) describe a very
similar history in Delaware and Chesapeake Bays. These breeding
peregrines are especially significant, for they are present and
actively hunting (Dekker et al., 2011) throughout the sandpiper
passage period, whereas migratory peregrines do not arrive until
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FIGURE 1 | Number of breeding pairs of Peregrine falcons (Falco peregrinus)

in the Bay of Fundy region between 1980 and 2010. Dotted line shows the

extension of the quadratic fit curve after 2010. Data from COSEWIC (2017,

purple circles) and Dekker et al. (2011, yellow triangles).

late September just as semipalmated sandpiper passage is ending
(see Figure 5 in Lank et al., 2003).

As a result of these increases, southbound migration along
the Atlantic coast of North America has become much
more dangerous for sandpipers. We assert that the ongoing
recovery of falcons and other raptors constitutes an important
environmental change for many prey species that should induce
strong risk effects. Demonstrated non-lethal consequences of
the increased exposure to raptors include seabirds shifting to
safer breeding locations in response to the recovery of bald
eagles (Haliaeetus leucocephalus; Hipfner et al., 2012). The
increased abundance of white-tailed sea eagles (Haliaeetus alba)
in the Baltic Sea caused barnacle geese (Branta leucopsis) to
alter migration timing and to shorten the duration of parental
care (Jonker et al., 2010). Falcon recovery drove Pacific dunlins
(Calidris alpina pacifica) to lose their mid-winter fat reserve,
and to take up over-ocean flocking in place of roosting at
high tide (Ydenberg et al. 2010; see also Dekker et al. 2011).
Of special relevance here is the demonstration that dunlins
redistributed during the non-breeding season, shifting toward
greater aggregation at safer sites (Ydenberg et al., 2017). In this
report we focus on semipalmated sandpipers (Calidris pusilla)
migrating southward through the Bay of Fundy. We analyze a
large dataset of migratory censuses, predicting that stopover site
usage has shifted toward greater use of safer sites, analogous
to that found for non-breeding dunlins. As demonstrated by
Ydenberg et al. (2004) and Pomeroy et al. (2006), safer sites are
those at which sandpipers can feed distant from shorelines, where
cover provides falcons the opportunity for stealth hunts (Dekker
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and Ydenberg, 2004). Stealth hunts are far more successful than
open hunts, which often require peregrines to undertake lengthy
pursuits (though see Cresswell and Quinn, 2013, for a contrasting
prespective with multiple predators).

Semipalmated sandpipers display many of the attributes
expected of mortality-minimizing migrants (Hope et al., 2011;
Duijns et al., 2019), and hence we expect that safety is important
to their stopover decisions. Small shorebirds show a diverse range
of behavioral tactics in response to predation danger (e.g., Hilton
et al., 1999; Lank et al., 2003; Ydenberg et al., 2004; Pomeroy
et al., 2008; Sprague et al., 2008; Beauchamp, 2010; Fernández
and Lank, 2010; van den Hout et al., 2010, 2017; Cresswell
and Quinn, 2013; Martins et al., 2016, and references therein).
Most of a migrant’s time is spent at stopover sites (Hedenstrom
and Alerstam, 1997), foraging to acquire the fuel necessary for
extended flights (Houston, 1998; Cimprich et al., 2005). From
the Bay of Fundy, many semipalmated sandpipers make a long
(∼4,000 km or more) trans-Atlantic flight to South America,
acquiring a fuel load nearly equal to their (lean) body mass
to do so. The intensive foraging required to accumulate the
fuel load compromises vigilance level (Beauchamp, 2014), and
a large fuel load makes migrants more vulnerable to predator
attack. Characteristics of stopover sites, such as the amount
of concealment cover available to predators, or the distance
between this cover and the feeding sites used by shorebirds,
make the intrinsic danger of some sites higher than others
(Lank and Ydenberg, 2003).

There are hundreds of potential stopover sites along the
Atlantic coast, and in selecting stopovers shorebirds must
balance the risk of predation with the benefits of good foraging
conditions. In general, it appears that safety and food trade
off at stopover sites so safe sites with high food availability
are rare or non-existent. Previous studies have demonstrated
that migrating sandpipers avoid sites that do not provide some
element of food and safety (Pomeroy et al., 2008; Sprague
et al., 2008). An increase in predator abundance is expected
to shift the balances of these risks and rewards, leading to a
shift away from dangerous stopover sites and toward safer ones
(Hope, 2018).

Conditions other than the level of predation danger have
also changed over recent decades for migrant sandpipers. These
include the degradation of existing and the appearance of new
habitats (Taft and Haig, 2006; Alves et al., 2012; Iwamura et al.,
2013; Studds et al., 2017), climate change (Both and te Marvelde,
2007; Gordo, 2007; Cox, 2010; Sutherland et al., 2015;Mann et al.,
2017), and possible strong population reductions (Munro, 2017;
Rosenberg et al., 2019). These changing conditions could also
affect stopover usage by alterations in site characteristics, energy
requirements, or the degree of competition.

We use a large survey dataset of counts of southbound
semipalmated sandpipers at Bay of Fundy stopover sites to
determine if semipalmated sandpipers changed site usage
between 1974 and 2017. We developed an index to describe
the annual distribution of birds and utilized statistical methods
and simulations to diagnose whether semipalmated sandpipers
adjusted stopover site selection as predator abundance increased.

We predict a shift in bird usage toward safer sites as migrants
increasingly had to prioritize safety.

2. METHODS

2.1. Study Region
The semipalmated sandpiper is a shorebird species with a
hemisphere-spanning migration (Brown et al., 2017). The
breeding range stretches across arctic North America, and the
non-breeding range across the northern coasts of South America
(Hicklin and Gratto-Trevor, 2010). Migrants moving from the
breeding grounds pass either through the interior or to the
east coast of North America. Atlantic Canada holds the most
important staging areas (Hicklin, 1987), with numerous potential
stopover sites, especially around the Bay of Fundy (Garrett,
1972; Hicklin and Smith, 1984; Sprague et al., 2008; Quinn and
Hamilton, 2012). Migrants arrive from the central and eastern
portions of the breeding range, load large amounts of fuel, and
depart to the south-east over the Atlantic Ocean (Lank, 1983),
making a single flight of over 4,000 km directly to South America
(Lank, 1979).

2.2. Shorebird Surveys
The Atlantic Canada Shorebird Survey (ACSS) is organized by
the Canadian Wildlife Service and has been conducted annually
since 1974 to identify important stopover sites for migrating
shorebirds and to help assess population trends. Surveyors
attempt to census sites every second weekend during the
southward migration period. Count methodology is described
in detail by Morrison et al. (1994) and Gratto-Trevor et al.
(2012); see also the ACSS survey protocol and guidelines—
Environment and Climate Change Canada (2014). Protocols aim
to make procedures consistent within sites across years, but there
is substantial variability in methodology and effort among sites.

The data for the analysis reported here were accessed through
Bird Studies Canada’s Nature Counts database (Environment
and Climate Change Canada, 2018). We focused on sites where
semipalmated sandpiper were censused 1974–2017 throughout
Nova Scotia, New Brunswick, and Prince Edward Island
(Figure 2). Sites in Newfoundland (due to their position ancillary
to the main semipalmated sandpiper migration route) and those
at which semipalmated sandpipers have never been recorded
were excluded. We included surveys during the main migratory
period, defined as falling within the 10th (July 28) and 90th
(August 21) quantiles of all semipalmated sandpipers counted
between July and October. After this filtering, our analysis
incorporated 3,030 of the 20,064 surveys, and 471 of the 769
survey sites in the full dataset.

Each survey site is associated with a name describing the
geographic locality, and a latitude and longitude in decimal
degrees. To reduce possible pseudoreplication due to spatial
autocorrelation, we pooled sites that were within 375 m of each
other, reducing the 448 “sites” into 198 “locations.” The number
of years that each site was surveyed and the number of surveys
per year varied widely (Figure 3). We used the mean of all the
site-surveys in a year at a location, whatever the methodology, to
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FIGURE 2 | Map of survey locations (n = 198) from the Maritimes portion of

the Atlantic Canada Shorebird Survey. The size of each point is related to the

number of surveys conducted at that site. Sites excluded from the final

analysis are shown in red (n = 77).

represent that location in order to reduce any bias possibly arising
with variation in the number of counts per location.

2.3. Site Characteristics
We assigned measures of “size” and “safety” to each location. We
used the area of intertidal habitat in a 2,500 m radius around
each location’s geographic point as the measure of location size
(Figure 4). For many locations the measure of size is unaffected
by the radius, but on large areas, particularly those along a
large straight coastal stretch, the amount of intertidal area is
strongly dependent on the radius. We chose 2,500 m based
on our own experiences, in which we observed that foraging
sandpipers quickly reacted to disturbances occurring within a few
kilometers. Foraging sandpipers can traverse this distance in a
few minutes (Reurink et al., 2016). We examine the sensitivity
of the results to this assumption in Figure S1.

As defined by Lank and Ydenberg (2003) “danger” represents
the inherent riskiness of a location (see also Hugie and Dill,
1994). We indexed safety as the proportion of the intertidal area
at each location lying beyond 150 m of the shoreline, where
foraging is most risky (Equivalently, danger is the proportion
of a location’s intertidal area lying within 150 m; Dekker and
Ydenberg, 2004; Pomeroy, 2006; Pomeroy et al., 2008). The 150m
threshold is based on the estimated head-start distance required
for a sandpiper to accelerate from a standing start to a peregrine’s
stealth attack velocity. Using measures of peregrine stealth attack
velocity in Burns and Ydenberg (2002), we estimated the head-
start distance using the method developed by Elliott et al. (1977)

FIGURE 3 | Number of years surveyed and the number of surveys per year for

each location. The color of the point is the safety index (i.e., proportion of the

site within 150 m of cover; see Methods). The two largest sites are named.

Figure S1 shows results of sensitivity analysis around the importance of these

two sites.

to calculate the distance within which lions had to approach
wildebeests undetected in order to make a successful surprise
attack. Hedenström and Rosén (2001) apply similar logic in
models of prey escape strategies during falcon hunts (i.e., aerial
climbing). We estimate the required head-start as 150–250 m, at
minimum. Most sandpiper foraging takes place further than this
distance from shore (see Figure 1b in Pomeroy, 2006). Figure S1
reports the results of a sensitivity analysis of this assumption.

We calculated size and the safety indices from the CanVec
map layers data set produced by Natural Resources Canada
(acquired from: www.GeoGratis.gc.ca), which shows intertidal
habitat and shoreline to a scale of 1:50,000. We extracted
a polygon of intertidal as the waterbody features labeled as
“temporary” under the “Hydro” feature category within the
CanVec dataset. We also extracted the highwater line layer and
created a buffer of 150 m around that line, which was then
clipped to the intertidal layer. For each Universal Transverse
Mercator (UTM) region, we transformed each polygon layer
from original geographic projection [North American Datum
(NAD) 1983 CSRS; Spheroid: GRS 1980; WKID: 4617] to the
UTM region projection (UTM 19-22N WGS84) and clipped it
to that grid. Around each site location we created a buffer 2,500
m in radius and defined the area of intertidal habitat as the area
of the intertidal polygons that fell within that buffer (Figure 4).

2.4. Priority Matching Distribution Index
We describe the distribution of sandpipers across locations
in each year using a “Priority Matching Distribution” (PMD)
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index. The PMD index assesses how closely the measured
proportional distribution of sandpipers matches various
distribution possibilities, ranging from sandpipers aggregating
at dangerous locations, to spreading evenly over locations, to
aggregating at safer locations (Ydenberg et al., 2017).

The PMD index is calculated as follows. In each year, k sites are
surveyed and are indexed as i = 1, 2, 3, . . . , k, ordered from most
dangerous (i = 1), to safest (i = k). The annual mean number
(across all surveys) of sandpipers censused (“usage”) at location
i is denoted Ui. The area of intertidal habitat at that location is
denoted Ai. The safety index for the site, yi, is the proportion of
the site’s total intertidal area that lies more than 150 m from the
shoreline, whereas the danger index (xi = 1 − yi) for the site is
the proportion that lies within 150 m of the shoreline (Figure 4).

We calculated the proportional area (pi) and bird usage (qi)
of each location in relation to the total area surveyed and birds
counted for all locations sampled in a given year. In each year,
the cumulative proportion of the total area surveyed up to
location i is

cAi =

i∑

j = 1

pj (1)

where the cumulative proportional area of all k sites surveyed in a
year cAk = 1. Analogously, the cumulative proportion of usage

FIGURE 4 | Example showing the safe (purple) and dangerous (red) portions

of a habitat. Mary’s Point, NB is shown with its geographic location highlighted

by the point. The 2,500 m radius habitat circle is shown around this point. Only

intertidal mudflat habitat is shown.

up to location i is calculated as

cUi =

i∑

j = 1

qj (2)

FIGURE 5 | How the Priority Matching Distribution index is calculated, using

1985 in this example. The locations (red and black bars; locations with

equivalent safety are stacked) surveyed in a year are ordered along the x-axis

from lowest to highest safety index (yi ), with the cumulative proportional usage

(A: numerator of the PMD index), and intertidal area (B: denominator of the

PMD index) shown by the height of the vertical bar. The gray area in each plot

shows the area under the curve (AUC) used to calculate the PMD index.
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TABLE 1 | Simulated values of the PMD index as the usage distribution of semipalmated sandpipers over 100 simulated census locations.

Name Description of distribution lci PMD index value uci

Danger aggregation 90% of usage at the most dangerous 20% of sites 1.68 2.06 2.57

Site matching Usage equal on all locations 1.20 1.41 1.69

Intermediate aggregation Aggregation on mid-safety locations 0.93 1.29 1.78

Area matching Usage proportional to intertidal area 1.00 1.00 1.00

Safe area matching Usage proportional to safe intertidal area 0.56 0.67 0.78

Safety aggregation 90% of usage at the safest 20% of sites 0.19 0.29 1.24

A bootstrap was used to estimate 95% CI intervals.

TABLE 2 | Sites with the most influence on the Priority Matching Distribution index

across all years within the survey dataset.

Site name Safety

(yi )

Area

(km2)

Number

of years

Leverage

Mary’s Point 0.84 7.90 27 426.03

Grande Anse/Johnson’s Mills 0.88 6.95 18 232.54

Saints Rest Marsh and Beach 0.39 2.16 17 9.16

Economy 0.80 5.90 14 4.80

Daniels Flats 0.90 8.82 11 3.03

Selma 0.87 8.38 3 2.93

Little Dyke 0.87 6.71 4 2.68

Cape Sable (Hawk Flats) 0.59 3.36 28 2.61

Egmont Bay (lower Bedeque area) 0.81 4.00 1 2.54

Daniel Head 0.09 0.51 10 2.41

Bedeque Bay 0.73 5.07 7 2.37

Cooks Beach 0.38 6.03 28 1.58

Lusbys Marsh/John Lusby Saltmarsh 0.89 6.40 2 1.36

Leverage is defined here as the Cook’s distance of annual influence (sum of the squared

differences between PMD calculated with and without a site, divided by the interannual

variation in the PMD).

Calculation of the annual PMD index involves comparing the
area under the curve (“AUC”) of measured sandpiper usage
(Equation 2), with that expected if sandpipers are distributed in
relation to the intertidal area of each location (Equation 1; see
Figure 5). AUC is calculated using a trapezoidal function. The
trapezoid function for area of habitat surveyed is defined as

AUCA =

k∑

i = 2

(yi − yi−1)(cAi + cAi+1)

2
(3)

where i is a given location and i − 1 is the next most dangerous
location. For bird usage the area under the distribution is
calculated as

AUCU =

k∑

i = 2

(yi − yi−1)(cUi + cUi+1)

2
(4)

We used the trapezoid function because its estimate lies between
that generated by the “upper-step” and “lower-step” functions.
Sensitivity analyses using these step functions in place of

the trapezoidal function produce only minor differences in
the results.

The Priority Matching Distribution index is calculated as

PMD =
AUCU

AUCA
(5)

Values of the PMD index vary systematically with the distribution
of sandpipers across locations, as summarized in Table 1 and
shown in Figure S2. Note that the PMD index is calculated using
proportions of the total number of sandpipers. It’s value is not
affected by the number of sandpipers, unless the proportional
distribution across locations also changes. Conversely, a change
in the proportional distribution changes the PMD index value
even if the total number of sandpipers remains unchanged.

2.5. Analysis
Locations vary in the number of surveys, both within and
between years (Figure 3). To examine the potential influence
of individual locations we calculated the PMD index with and
without each location (“leverage,” see Table 2). Based on this, we
excluded from the analysis 10 of 44 years that did not include
surveys at one of the two most surveyed locations, namely Mary’s
Point, NB (45.72◦N, 64.65◦W) and Johnsons Mills, NS (45.81◦N,
64.5◦W). We calculated and analyzed trends in the PMD with
both locations excluded to ensure the results were not driven
entirely by these locations (see Figure S1). We also excluded the
year 1995, which had an extremely high count at a site surveyed in
no other year that had a strong influence on the annual PMD.Our
final data set included 3,030 surveys at 198 stopover locations,
made 1974–2017 (excluding 1990, 1991, 1995, 1998, 2008, 2010,
2011, 2013, 2014).

Our analysis focused on two questions: (1) how do
semipalmated sandpipers distribute across stopover locations;
and (2) has the proportional distribution of semipalmated
sandpipers changed systematically since surveys began in 1974?
We calculated the PMD index for each survey year.We examined
annual change using a linear model, centered, and rescaled by
year to provide a meaningful intercept and provide a more
accurate effect size (Gelman and Hill, 2006). We used Akaike
Information Criterion (AIC) to compare support for a linear
trend by competing a null model, a linear interannual trend
model, a model with a quadratic term, and a model with the log
of the interannual trend. We assessed the fit to the linear trend by
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FIGURE 6 | Biases and variation in site survey effort across years and dates. (A) Number of sites surveyed in a given day across years where darker blue shows more

sites surveyed on a given day of year in a year. (B) Mean safety (yi ) of sites surveyed in a given day across years where red indicates more dangerous sites surveyed

for a given day and purple shows safer sites surveyed on that day. Gray represents zero surveys in both figures.

bootstrapping the original count data to compute 95% confidence
intervals of the intercept and interannual trend estimates.

We carried out a series of sensitivity analyses. To explore the
sensitivity of the PMD index to our assumptions of location size
(2.5 km) and the danger buffer (150 m), we altered the radius
used to calculate Ai from 2.5 to 1 km and 5 km, and modified
the danger buffer from 150 to 50 m, 300 and 450 m. We also
expanded the dates of surveys to include the 60th, 90th, 95th, 98th
quantiles of dates, and with all surveys between July and October.

We recalculated the PMD in each year excluding Mary’s
Point and Johnsons Mills. To control for the site bias toward a
greater number of dangerous sites in later years (see Figure 6),
we binned sites into 0.1 categories of safety. We sampled one
site from each bin in each year, creating equal numbers of
sites in all years. We resampled 1,000 times and calculated the
slope and intercept of the calculated PMD for each draw. We
simulated the impact of sea level rise by reducing the total area
of habitat available by the rate described in Murray et al. (2019),
recalculating the safety index and redistributing total number
of birds counted in that year across the site using a Beta(1, 14)
distribution. For each simulation we calculated the PMD for each
year and recalculated the intercept and rate of change in the linear
interannual trend model.

Finally, to assess whether the trend in the PMD index was
driven by site size or site safety, we modified the calculation of
the PMD index by arranging sites from smallest to largest instead
of most dangerous to safest.

3. RESULTS

3.1. Location Characteristics
The 198 locations are arrayed over 4.6◦ of latitude and 7.2◦

of longitude (mean: 46◦N, −64◦W; Figure 2). On average, 27
locations were censused per year (range 12–44), averaging 3.2
surveys each per year (range 1.9–4.3). The total annual count
(summed over all locations) of semipalmated sandpipers varies
between 35,636 birds (1987) and 421,982 birds (1992) with a
mean of 100,486, and no trend across years (β = 0.0021 [−0.018,
0.021], using a log link).

Locations range in size from 0.002 to 11 km2, with a
mean of 3 km2. Danger indices (xi) ranged from 1.0 to 0.098
with a mean of 0.57. Most locations are small and relatively
dangerous (Figure 7). There is overall a negative (log-linear)
relation between location size and danger, so that large sites are
on average safer, though note the wide variation. For example,
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FIGURE 7 | Location danger as a function of size. The fitted line shows the

log-linear trend of danger with intertidal area. Larger sites are generally less

dangerous, but the danger index varies widely between sites of a given size.

locations 3–4 km2 in size have danger index values ranging from
0.2 to 0.8.

3.2. Sandpiper Distribution
Annual PMD index values (Figure 8) range from 0.61 to 0.11
with an overall mean of 0.30 (95% CI [0.28, 0.36]). Most
estimates of the PMD index are well below 0.50 indicating that
semipalmated sandpipers aggregate at safer locations. The overall
annual mean value of 0.30 corresponds with that expected when
90% of usage occurs at the safest 20% of locations (see Table 1).

Linear and log-linear models both estimate a decline in the
PMD index over years (Table 3), and have approximately equal
support from the data (wi = 0.37 and wi = 0.45, respectively).
The quadratic model is less well-supported (wi = 0.16), and
the null model not at all (wi = 0.019). There is little deviation
from linearity in the estimated trends for the log-linear model,
and we therefore consider only the linear model. It shows that
the PMD index falls at a standardized rate of −0.11 (95% CIs
[−0.18,−0.034]) per SD of years (13 years), equivalent to−0.004
per year, for a 0.18-point decline in the PMD index between
1974 and 2017. This decline could be created either by (i) birds
crowding into fewer sites [90% of birds at the 27% (1974) safest
sites, shifting to the 13% (2017) safest sites]; (ii) more birds
crowding into the 20% safest sites (from 80% of birds in 1974 to
97% in 2017); (iii) or some combination of the two. Despite the
extensive variability in methodology and the irregular coverage,
the regression provides a reasonable fit (r2 = 0.21) to the data.

The sensitivity analyses (Figure S1) demonstrate that
variation in the number or danger of the sites surveyed each year

does not bias the PMD index estimates, and is therefore unlikely
to explain the interannual trend. Likewise, modification of the
assumptions governing neither the selection of data nor those
underlying the PMD calculation alter the results. “Binning”
the sites does not change the mean interannual trend of the
PMD index (β = −0.07), but it does reduce the precision (95%
CI[−0.16, 0.034]). This is not surprising, as we drew only one
site per bin per year. Simulating a response to sea-level rise
(i.e., sites becoming smaller) does not replicate the observed
interannual trend in the PMD, indicating the level of observed
sea-level rise observed across the years could not alone cause the
shift between sites.

Most importantly, the “Area Sorted PMD” analysis reveals
that the temporal trend is eliminated when locations are ranked
“small to large” rather than “dangerous to safe” (interannual
trend: 0.0049; 95% CI[−0.11, 0.12]). This shows that the decline
in PMD is better explained by a shift to safer rather than to
larger locations.

4. DISCUSSION

Our results show that the tendency of southbound semipalmated
sandpipers to aggregate at the safest stopover locations has
steadily increased since 1974. Sensitivity analyses establish that
the shift appears to have been made specifically toward sites
of higher safety, rather than to larger sites. The shift cannot
be accounted for by inclusion (or exclusion) of the two sites
exerting most leverage (Mary’s Point and Johnson’s Mills; see
Table 2), by possible confounds arising from habitat reduction,
by the selection of survey dates included in the analysis, or by
altering our assumptions regarding the definitions of site size and
danger (Figure S1).

We predicted this shift based on the well-established increase
in continental falcon populations since the early 1970s. A similar
redistribution was previously documented for wintering dunlins
on North America’s Pacific coast (Ydenberg et al., 2017) and
was also attributed to the large increase in falcon presence. Of
particular note is the introduction of captive-reared peregrines
in the 1970s and ’80s to major stopover areas, such as the Bay
of Fundy (Dekker et al., 2011) and Delaware and Chesapeake
Bays and their environs (Watts et al., 2015). With home ranges
of 123–1,175 km2 and a daily range of 23 km2 around breeding
locations (Enderson and Craig, 1997; Jenkins and Benn, 1998;
Ganusevich et al., 2004), the impact of breeding peregrines musty
be widespread throughout both regions.

For most of the twentieth century, these regions were
essentially predator-free during sandpiper passage, so stopover
site choices and behavior by migrant sandpipers could have been
based primarily on food availability, with the danger posed by
falcons ignored. Lank (1983) observed individual semipalmated
sandpipers at Kent Island in the Bay of Fundy during the late
1970s so encumbered by fat that they were captured by gulls.
Paralleling observations made on western sandpipers in the Strait
of Georgia (Ydenberg et al., 2004), semipalmated sandpiper fuel
loads in the Bay of Fundy have decreased at small, dangerous
locations, such as Kent Island, but not at large, safe locations, such
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FIGURE 8 | Interannual trend in the Priority Matching Distribution index (PMD) with the 95% bootstrapped confidence intervals. Points are the PMD for each year (red

points) with the 95th inner quantiles of variation in the estimate shown in the gray points. The expected PMD index values for various distributions (danger

aggregation, site-matching, area-matching, safe-area-matching, and safety aggregation) are shown as horizontally dashed lines.

as Johnson’s Mills (Hope, 2010). The mass decline is attributed
to the reduced predator escape performance induced by large
fuel loads (Burns and Ydenberg, 2002), and is consistent with
the hypothesis that stopover site choice and behavior is strongly
influenced by the trade off between fuel loading and predation
danger (Taylor et al., 2007; Pomeroy et al., 2008).

Migrant sandpipers have previously been shown to be
sensitive to predation danger on migration. The migratory
behaviors responding to danger include flock size, vigilance, over-
ocean flocking during high tides, length of stay at dangerous
locations, location selection, habitat selection within a location,
and fuel load (Dekker, 1998; Ydenberg et al., 2004; Pomeroy,
2006; Pomeroy et al., 2008; Sprague et al., 2008). Migrant
sandpipers also change their behavior seasonally in relation to

their temporal proximity to the arrival of migrant peregrines
(Hope et al., 2011, 2014). In a previous paper (Lank et al., 2017)
we attributed the shortening wing length measured 1980–2015 in
semipalmated sandpipers and other calidridines (Anderson et al.,
2019) to selection for better predator escape performance (see
also Ydenberg and Hope, 2019).

The PMD decline (Figure 8) has progressed steadily since
1974. The decline in PMD arose as the usage shown in Figure 5A

shifted rightward, reducing the index value by 0.4% per year,
for a total decline of 18% since 1974. It might be expected that
the higher rate of increase in the number of breeding falcons in
more recent years (Figure 1) should have accelerated the PMD
decline. But the large majority of intertidal feeding area is on
safer sites (see Figure 5B), with dangerous sites contributing
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TABLE 3 | Support for models of interannual trends in the Priority Matching

Distribution.

Interannual trend log (L) △i K wi r2

Log linear 30.28 0.00 3.00 0.45

Linear 30.08 0.40 3.00 0.37 0.21

Quadratic 30.52 2.09 4.00 0.16 0.23

Null 25.94 6.29 2.00 0.02 0.00

Support for models of interannual trends in the Priority Matching Distribution. Models

other than the null model use a centered and standardized variable for Year. The log-

linear model is a linear generalized linear model with a log link function for the gaussian

distribution. All other models are linear models with the identity link function. We used

AICc values to correct for biases in the Akaike’s information criterion in models with low

sample sizes, log(L) is the log-likelihood value, △i is the difference in AICc value from that

of the top model (i.e., lowest AICc), K is the number of parameters in each model and

wi is the Akaike weight. r
2 are listed to show improvement of model fit between null and

fitted model.

AICc = −53.79; n = 35.

disproportionately little to the total. We hypothesize that the
initial small number of peregrines had a very large effect at small,
dangerous locations (e.g., Page and Whitacre, 1975), where
usage presumably began to drop in earlier years. The impact of
additional peregrines was reduced as usage shifted to larger and
safer sites.

Larger groups also have benefits in reducing the likelihood of
being selected by a predator (dilution), and increased detection
of predator attacks (many eyes Roberts, 1996; Bednekoff and
Lima, 1998; Fernández-Juricic et al., 2007; Pays et al., 2013). With
predation dilution can also come increased competition during
foraging (Stillman et al., 1997; Vahl et al., 2005; Minderman et al.,
2006).While the Bay of Fundy provides rich and widespread food
for refueling sandpipers, competitive interactions that reduce
foraging efficiency likely occur at small scales (Vahl, 2005;
Beauchamp, 2009, 2014). For most semipalmated sandpipers, the
benefits of large aggregations appear to outweigh the costs to
foraging efficiency.

Shorebird population census work indicates that many
species, among them semipalmated sandpipers, have declined
steadily since the 1970s (Bart et al., 2007; Andres et al., 2012;
Gratto-Trevor et al., 2012; Morrison et al., 2012; Smith et al.,
2012). Could the shift to safer stopover sites observed here
be driven by this population decline? The PMD index is
calculated based on proportions, so a reduction in sandpiper
numbers would not affect the PMD value unless accompanied
by a distributional change. Any distribution that includes safety
considerations (Moody et al., 1996; Grand and Dill, 1999) would
be be expected to shift toward safer sites as numbers decline
even without an increase in predator numbers, due to the
heightened danger of smaller numbers. The shift should progress
until the fitness costs (reduced feeding rate) of the safer sites
is compensated by the benefit (increased safety), which in turn
depends on the marginal rates of change in food and safety
with sandpiper density at each location (Ydenberg et al., 2017).
Further evaluation is required.

Our analysis confirms the measured shift in the PMD index
is better explained by a shift in distributions specifically toward
safer and not just toward larger sites. The mean census numbers

in the dataset used here show no temporal trend at all (see
Results), but there has been a well-documented establishment of
a large locally breeding population of peregrines. We are unable
to exclude a possible contribution from population decline to
the PMD change measured here, but all the evidence available is
consistent with a strong non-lethal influence of predation danger.

An increase in food availability, or a reduction in energy
demand would also allow greater aggregation on larger and safer
sites, and thus a shift away from smaller and more dangerous
locations. There is so far as we are aware no evidence for any
trend in food abundance in the Bay of Fundy, nor is there
any change proposed by the literature. The copepod Corophium
volutator, is a major prey item for semipalmated sandpipers in
the Bay of Fundy, and appears to vary in abundance between
locations and within each year, but variation between years does
not appear to be substantial (Barbeau et al., 2009). Other studies
have shown variation between years when looking at a wider
array of potential food sources (Quinn and Hamilton, 2012), but
it appears that semipalmated sandpipers have flexibility in their
food sources (Quinn et al., 2017), so that a decline at one location
could be compensated by increases at others.

Other mechanisms could affect sandpiper energy
requirements and thus affect distributions by reducing the
need for food. A temperature increase due to climate change
could reduce existence energy, though we note that the great
majority of the intake of semipalmated sandpipers is used as fuel
for the long trans-Atlantic flight to South America—which is not
temperature dependent. Another possible climate change effect
could operate by ecological mismatch (Jones and Cresswell,
2010). Southward migration timing is widely believed to match
food at stopovers, but if the timing of the food peak has shifted
due to climate change, the availability of food at stopovers
could be affected. The result would be lower rather than
higher food availability, which would, according to our current
understanding, shift sandpipers to higher food (more dangerous,
smaller) sites, opposite to the trend documented here.

In conclusion, semipalmated sandpipers aggregate in large
numbers at a few large and safe sites and have steadily shifted
toward safer sites between 1974 and 2017. The results appear
robust to various biases possibly inherent in the dataset, and
we suggest that the observed trend is a response to increased
predator populations, especially the (re)introduction of predators
at major stopover areas along the southbound migratory route.
This result matches the previously reported shift in the non-
breeding distribution of Pacific dunlins over the same period
(Ydenberg et al., 2017), as well as the reduced stopover duration
of southbound western sandpipers at dangerous stopover
sites (Ydenberg et al., 2004). These adjustments likely have
consequences for the schedule and routing of migration that we
suspect may in turn contribute to substantial non-lethal effects
on their populations.
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