18 research outputs found

    Water quality in the central Nebraska basins, Nebraska, 1992-95

    Get PDF
    This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Central Nebraska Basins Study Unit and to relate these findings to water-quality issues of regional and national concern. The information is primarily intended for those who are involved in waterresource management. Indeed, this report addresses many of the concerns raised by regulators, water-utility managers, industry representatives, and other scientists, engineers, public officials, and members of stakeholder groups who provided advice and input to the USGS during this NAWQA Study-Unit investigation. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live. Land use in central Nebraska appears to affect water quality significantly; streams in rangelands generally had fewer occurrences and smaller concentrations of pesticides than did streams in croplands where corn and soybeans were planted extensively. Subbasins with greater proportions of rangeland, such as the Dismal River, had negligible herbicide concentrations. The largest pesticide concentrations were in storm runoff following pesticide applications. Because some pesticide concentrations may exceed the U.S. Environmental Protection Agency’s (USEPA) drinking-water Maximum Contaminant Levels (MCLs) in storm runoff, the timing and intensity of rainfall has implications for drinking-water supplies. Pesticides in streams from storm runoff may enter alluvial aquifers as a consequence of ground-water withdrawals. Sites with degraded water chemistry commonly had degraded physical habitats as well. Streamflow regulation of the Platte River has affected water quality through habitat alterations that are deleterious to native species. The combination of degraded physical and chemical environments commonly resulted in structurally simple fish communities. CONTENTS National Water-Quality Assessment Program .. 1 Summary of major issues and findings... 2 Environmental setting and hydrologic conditions.... 4 Major issues and findings ... 6 Nitrate content in water is related to agricultural land management 6 Agricultural activities potentially affect the management of public water supplies . 8 Water quality in the Platte River alluvial aquifer may be affected by surface-water quality in areas of ground-water withdrawals .. 10 Aquatic environments potentially are altered by human activities... 12 Aquatic and migratory species are affected directly by changes in the physical characteristics of the Platte River .. 14 Water-quality conditions in anational context ... 16 Study design and data collection .. 20 Summary of compound detections and concentrations ... 22 References . 28 Glossary 3

    Water-Quality Assessment of the Central Nebraska Basins: Summary of Data for Recent Conditions Through 1990

    Get PDF
    Among the first activities undertaken in each National Water-Quality Assessment (NAWQA) investigation are the compilation, screening, and statistical summary of available data concerning recent water-quality conditions in the study unit. The water-quality conditions of interest in addressing the objectives of the NAWQA program are those that are representative of the general water quality of a given stream reach or area of an aquifer. This report (1) identifies which existing water-quality data are suitable for characterizing general conditions in a nationally consistent manner and (2) describes, to the extent possible, recent, general water-quality conditions in the Central Nebraska Basins. The study unit consists of the area drained by the Platte River between the confluence of the North Platte and South Platte Rivers near North Platte downstream to its confluence with the Missouri River south of Omaha. The report includes (1) a description of the sources and characteristics of the water-quality data that are available, (2) a description of the approach used for screening data to identify a subset of the data suitable for summary and comparisons, (3) a presentation of statistical and graphical summaries of recent, general waterquality conditions, and (4) comparisons of recent, general water-quality conditions to established national water-quality criteria, where applicable. Stream- and lake-water data are summarized for 25 selected stream-water and 11 lake-water sampling sites. Data also are summarized by major subunits of the study unit (the Sandhills, Loess Hills, Glaciated Area, and Platte Valley subunits) for streambed-sediment, fish-tissue, aquatic-ecological, and ground-water samples. The summaries focus on the central tendencies and typical variation in the data and use nonparametric statistics such as frequencies and percentile values

    Water-Quality Assessment of the Central Nebraska Basins-— Enering a New Decade

    Get PDF
    In 2001, the U.S. Geological Survey’s (USGS) National Water- Quality Assessment (NAWQA) Program began its second decade of intensive water-quality assessments (Cycle II). NAWQA scientists plan to revisit 42 major river-basin and aquifer systems (called study units) that were assessed in the first decade (Gilliom and others, 2001)

    Riparian and Associated Habitat Characteristics Related to Nutrient Concentrations and Biological Responses of Small Streams in Selected Agricultural Areas, United States, 2003–04

    Get PDF
    Physical factors, including both in-stream and riparian habitat characteristics that limit biomass or otherwise regulate aquatic biological condition, have been identified by previous studies. However, linking the ecological significance of nutrient enrichment to habitat or landscape factors that could allow for improved management of streams has proved to be a challenge in many regions, including agricultural landscapes, where many ecological stressors are strong and the variability among watersheds typically is large. Riparian and associated habitat characteristics were sampled once during 2003–04 for an intensive ecological and nutrients study of small perennial streams in five contrasting agricultural landscapes across the United States to determine how biological communities and ecosystem processes respond to varying levels of nutrient enrichment. Nutrient concentrations were determined in stream water at two different sampling times per site and biological samples were collected once per site near the time of habitat characterization. Data for 141 sampling sites were compiled, representing five study areas, located in parts of the Delmarva Peninsula (Delaware and Maryland), Georgia, Indiana, Ohio, Nebraska, and Washington. This report examines the available data for riparian and associated habitat characteristics to address questions related to studyunit contrasts, spatial scale-related differences, multivariate correlation structure, and bivariate relations between selected habitat characteristics and either stream nutrient conditions or biological responses. Riparian and associated habitat characteristics were summarized and categorized into 22 groups of habitat variables, with 11 groups representing land-use and landcover characteristics and 11 groups representing other riparian or in-stream habitat characteristics. Principal components analysis was used to identify a reduced set of habitat variables that describe most of the variability among the sampled sites. The habitat characteristics sampled within the five study units were compared statistically. Bivariate correlations between riparian habitat variables and either nutrient-chemistry or biological-response variables were examined for all sites combined, and for sites within each study area. Nutrient concentrations were correlated with the extent of riparian cropland. For nitrogen species, these correlations were more frequently at the basin scale, whereas for phosphorus, they were about equally frequent at the segment and basin scales. Basin-level extents of riparian cropland and reachlevel bank vegetative cover were correlated strongly with both total nitrogen and dissolved inorganic nitrogen (DIN) among multiple study areas, reflecting the importance of agricultural land-management and conservation practices for reducing nitrogen delivery from near-stream sources. When sites lacking segment-level wetlands were excluded, the negative correlation of riparian wetland extent with DIN among 49 sites was strong at the reach and segment levels. Riparian wetland vegetation thus may be removing dissolved nutrients from soil water and shallow groundwater passing through riparian zones. Other habitat variables that correlated strongly with nitrogen and phosphorus species included suspended sediment, light availability, and antecedent water temperature. Chlorophyll concentrations in seston were positively correlated with phosphorus concentrations for all sites combined. Benthic chlorophyll was correlated strongly with nutrient concentrations in only the Delmarva study area and only in fine-grained habitats. Current velocity or hydraulic scour could explain correlation patterns for benthic chlorophyll among Georgia sites, whereas chlorophyll in seston was correlated with antecedent water temperature among Washington and Delmarva sites. The lack of any consistent correlation pattern between habitat characteristics and organic material density (ash-free dry mass) within study areas may indicate that the density of organic matter is not generally sensitive to nutrient enrichment in small agricultural streams. For all sites, and for the Nebraska, Delmarva, and Georgia subsets of sites, the reach-mean areal coverage of aquatic macrophytes and macroalgae was strongly related to channel shading. Data reduction techniques were applied to select a subset of 29 variables, representing 20 categories of habitat characteristics, for multivariate analysis. Factor analysis was used to identify and interpret three leading modes of variation (principal factors) in two data subsets—one for the Georgia sites and one for all other sites combined. The factor analysis for Georgia sites indicated that riparian land use and land cover (LULC) (wetland extent in particular) and channel shading correspond to dominant modes of variability in the habitat data set. The variables that best characterize variation in riparian habitat for the other four study areas included midchannel measures of canopy shading, riparian cropland extent in the 15-meter buffer and 150-meter buffer, and measures of the patchiness of woodland cover in the 15-meter buffer (patch length and gap frequency). LULC metrics calculated for riparian buffers, particularly at the segment scale, were more correlated with the principal modes of variation in the overall habitat data set than was LULC extent for the total basin drained by each site. Correlations of woodland extent within 15 to 50 meters of the channel (reach- and segment-level data) with woodland extent in a series of longitudinal bands of the riparian buffer that were located at increasing distance from the channel showed decreased strength as the compared band shifted beyond the first 50 meters from the channel, becoming negligible for areas beyond 100 meters from the channel. For many of the studied agricultural streams, the riparian buffer includes a heterogeneous mix of riparian and upland land covers when the summarized buffer area extends more than about 50 to 100 meters from the streambank, depending upon basin (or stream) size. Comparisons between the extent of reach- and segment-level median values of woodland and other cover types within the riparian buffer extending 50 meters from the stream suggest that the reach length used for this study generally is not long enough to accurately represent both the overall composition and patch structure that characterizes the riparian areas along small, agricultural streams. The mean extent of forest plus woody wetland ranged from 5.4 to 76 percent of the riparian buffer area. For the Georgia sites, where riparian woody wetlands were more extensive than for any other study area, canopy closure over the channel was greatest, whereas it was least for sites in Washington and Nebraska. To the extent that riparian woodland is the most important LULC type affecting algal-nutrient relations, correlations indicated that basin characteristics might be effective surrogate predictors of riparian effects at the drainage-network scale. But the results also indicated that basin-level cropland was not an accurate surrogate for riparian cropland extent

    Water-quality assessment of the central Nebraska basins : entering a new decade

    No full text
    In 2001, the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program began its second decade of intensive water-quality assessments (Cycle II). NAWQA scientists plan to revisit 42 major river-basin and aquifer systems that were assessed in the first decade. The NAWQA Program is a primary source for long-term, nationwide information on the quality of streams, ground water, and aquatic ecosystems. The goals of NAWQA are to assess the status and trends of water quality and to understand the factors that affect it, thus addressing the questions, What is the condition of our Nation's streams and ground water? How is water quality changing over time? How do natural features and human activities affect the quality of streams and ground water? For Cycle II assessments, study units were selected that represent a wide range of important hydrologic environments; contain critical contaminant sources, including agricultural, urban, and natural sources; and include more than 60 percent of national water use for drinking and irrigation. Many of the predominantly agricultural study units and most of the large urban areas included in the first cycle of NAWQA assessments were retained for Cycle II. Central Nebraska s one of the most intensively agricultural areas being examined in Cycle II, as determined from the extent of agricultural land and intensity of estimated pesticide and fertilizer use

    Geomorphic Segmentation, Hydraulic Geometry, and Hydraulic Microhabitats of the Niobrara River, Nebraska—Methods and Initial Results

    Get PDF
    The Niobrara River of Nebraska is a geologically, ecologically, and economically significant resource. The State of Nebraska has recognized the need to better manage the surface- and ground-water resources of the Niobrara River so they are sustainable in the long term. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey is investigating the hydrogeomorphic settings and hydraulic geometry of the Niobrara River to assist in characterizing the types of broad-scale physical habitat attributes that may be of importance to the ecological resources of the river system. This report includes an inventory of surface-water and ground-water hydrology data, surface water-quality data, a longitudinal geomorphic segmentation and characterization of the main channel and its valley, and hydraulic geometry relations for the 330-mile section of the Niobrara River from Dun¬lap Diversion Dam in western Nebraska to the Missouri River confluence. Hydraulic microhabitats also were analyzed using available data from discharge measurements to demonstrate the potential application of these data and analysis methods. The main channel of the Niobrara was partitioned into three distinct fluvial geomorphic provinces: an upper province characterized by open valleys and a sinuous, equiwidth channel; a central province characterized by mixed valley and channel settings, including several entrenched canyon reaches; and a lower province where the valley is wide, yet restricted, but the river also is wide and persistently braided. Within the three fluvial geomorphic provinces, 36 geomorphic segments were identified using a customized, process-orientated classification scheme, which described the basic physical characteristics of the Niobrara River and its valley. Analysis of the longitudinal slope characteristics indicated that the Niobrara River longitudinal profile may be largely bedrock-controlled, with slope inflections co-located at changes in bedrock type at river level. Hydraulic geometry relations indicated that local (at-a-station) channel adjustments of the Niobrara River to changing discharge are accommodated mainly by changes in velocity, and streamwise adjustments are accommodated through changes in channel width. Downstream hydraulic geometry relations are in general agreement with values previously published for rivers of the Great Plains, but coefficients are likely skewed low because the locations of the streamflow-gaging stations used in this analysis are located at natural or engineered constrictions and may not be accurately representing downstream adjustment processes of the Niobrara River. A demonstration analysis of hydraulic microhabitat attributes at a single station indicated that changes in velocity-related habitat types is the primary microhabitat adjustment over a range of discharges, but the magnitude of that adjustment for any particular discharge is temporally variable

    Temporal Differences in the Hydrologic Regime of the Lower Platte River, Nebraska, 1895–2006

    Get PDF
    In cooperation with the Lower Platte South Natural Resources District for a collaborative study of the cumulative effects of water and channel management practices on stream and riparian ecology, the U.S. Geological Survey (USGS) compiled, analyzed, and summarized hydrologic information from long-term gaging stations on the lower Platte River to determine any significant temporal differences among six discrete periods during 1895-2006 and to interpret any significant changes in relation to changes in climatic conditions or other factors. A subset of 171 examined hydrologic indices (HIs) were selected for use as indices that (1) included most of the variance in the larger set of indices, (2) retained utility as indicators of the streamflow regime, and (3) provided information at spatial and temporal scale(s) that were most indicative of streamflow regime(s). The study included the most downstream station within the central Platte River segment that flowed to the confluence with the Loup River and all four active streamflow-gaging stations (2006) on the lower Platte River main stem extending from the confluence of the Loup River and Platte River to the confluence of the Platte River and Missouri River south of Omaha. The drainage areas of the five streamflow-gaging stations covered four (of eight) climate divisions in Nebraska—division 2 (north central), 3 (northeast), 5 (central), and 6 (east central)

    Hydrogeomorphic Segments and Hydraulic Microhabitats of the Niobrara River, Nebraska, with Special Emphasis on the Niobrara National Scenic River

    Get PDF
    The Niobrara River is an ecologically and economically important resource in Nebraska. The Nebraska Department of Natural Resources’ recent designation of the hydraulically connected surface- and groundwater resources of the Niobrara River Basin as “fully appropriated” has emphasized the importance of understanding linkages between the physical and ecological dynamics of the Niobrara River so it can be sustainably managed. In cooperation with the Nebraska Game and Parks Commission, the United States Geological Survey USGS) investigated the hydrogeomorphic and hydraulic attributes of the Niobrara River in northern Nebraska. This report presents the results of an analysis of hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River and its valley for the approximately 330-mile reach from Dunlap Diversion Dam to its confluence with the Missouri River. Two spatial scales were used to examine and quantify the hydrogeomorphic segments and hydraulic microhabitats of the Niobrara River: a basin scale and a reach scale. At the basin scale, digital spatial data and hydrologic data were analyzed to (1) test for differences between 36 previously determined longitudinal hydrogeomorphic segments; (2) quantitatively describe the hydrogeomorphic characteristics of the river and its valley; and (3) evaluate differences in hydraulic microhabitat over a range of flow regimes among three fluvial geomorphic provinces. The statistical analysis of hydrogeomorphic segments resulted in reclassification rates of 3 to 28 percent of the segments for the four descriptive geomorphic elements. The reassignment of classes by discriminant analysis resulted in a reduction from 36 to 25 total hydrogeomorphic segments because several adjoining segments shared the same ultimate class assignments. Virtually all of the segment mergers were in the Canyons and Restricted Bottoms (CRB) fluvial geomorphic province. The most frequent classes among hydrogeomorphic segments, and the dominant classes per unit length of river, are: a width-restricted valley confinement condition, sinuous-planview pattern, irregular channel width, and an alternate bar configuration. The Niobrara River in the study area flows through a diversity of fluvial geomorphic settings in its traverse across northern Nebraska. In the Meandering Bottoms (MB) fluvial geomorphic province, river discharge magnitudes are low, and the valley exerts little control on the channel-planview pattern. Within the CRB province, the river flows over a diversity of geologic formations, and the valley and river narrow and expand in approximate synchronicity. In the Braided Bottoms (BB) fluvial geomorphic province, the river primarily flows over Cretaceous Pierre Shale, the valley and channel are persistently wide, and the channel slope is generally uniform. The existence of vegetated islands and consequent multithread channel environments, indicated by a higher braided index, mostly coincided with reaches having gentler slopes and less unit stream power. Longitudinal hydrology curves indicate that the flow of the Niobrara River likely is dominated by groundwater as far downstream as Norden. Unit stream power values in the study area vary between 0 and almost 2 pounds per foot per second. Within the MB province, unit stream power steadily increases as the Niobrara gains discharge from groundwater inflow, and the channel slope steepens. The combination of steep slopes, a constrained channel width, and persistent flow within the CRB province results in unit stream power values that are between three and five times greater than those in less confined segments with comparable or greater discharges. With the exception of hydrogeomorphic segment 3, which is affected by Spencer Dam, unit stream power values in the BB province are generally uniform. Channel sinuosity values in the study area varied generally between 1 and 2.5, but with locally higher values measured in the MB province and at the entrenched bedrock meanders of hydrogeomorphic segment 18 in the CRB province. The differences in channel morphology and hydraulic geometries between fluvial geomorphic provinces are evident in the types, relative abundance, and response of hydraulic microhabitats to changing discharges. The four gaging stations chosen for hydraulic microhabitat analysis are distributed among three different fluvial geomorphic provinces. In the MB province, the smaller channel and lower discharges resulted in the dominance of shallow and intermediate-depth hydraulic environments with the vast majority of hydraulic microhabitat restricted to shallow categories even during upper-decile discharges. In the CRB province, intermediate depth hydraulic conditions, particularly intermediate-swift, dominate over all ranges of discharge. Hydraulic microhabitat conditions were most diverse in the BB province, with most hydraulic microhabitat categories present over the entire range of discharges analyzed. The calculated differences in hydraulic microhabitat distributions, abundance, and adjustments between streamflow-gaging stations were the result of differences in physical structure of the channel and subsequent channel hydraulic geometry. At the reach scale, field measurements made in water years 2008 and 2009 in four study reaches within the Scenic Reach were used to (1) characterize the elevation and geomorphic processes associated with fluvial landforms, (2) build hydraulic geometry relations, (3) examine flow hydraulics over a range of discharges, and (4) examine the types and responses of hydraulic microhabitats to a range of flow magnitudes. Four landform groups were identified and named in order of increasing elevation: low flood plains, intermediate flood plains, low terraces, and high terraces. The terraces were poorly characterized because the surveys did not extend across the full width of the alluvial valley bottom. The two lowest fluvial landforms are likely active in the modern hydroclimatic regime. Sediment samples obtained in the study reaches indicate that the primary bed material in the active channel ranged in size from coarse silt to coarse sand. Grain-size distributions from samples also indicate that the bed of the Niobrara River among the study reaches coarsens and has increasing grainsize variability in the downstream direction. Values of at-a-station hydraulic geometry exponents indicate that the Niobrara River in the study reaches adjusts its geometry to changing discharges primarily through increases in flow depth and velocity. Relations at one cross section indicated that, at least locally, changes in width were also an important channel adjustment mechanism. Hydraulic behavior over the range of flows measured was not consistent among all study reaches, but two general modes of hydraulic behavior were observed in the reaches with substantial coverage of the bed by fine sediment. At the Sunny Brook and Muleshoe study reaches, average boundary-shear stress remained approximately constant, and hydraulic resistance decreased, for discharges below 900 cubic feet per second (ft3/s). Above 900 ft3/s, average boundary shear stress and hydraulic resistance both increased. The Rock Barn study reach did not exhibit the same two-mode hydraulic behavior observed at the Sunny Brook and Muleshoe reaches. The coincident increase in boundary shear stress above 900 ft3/s observed at the Sunny Brook and Muleshoe study reaches represents a potential hydraulic threshold above which bedload transport rates were likely to increase markedly. No consistent bed-adjustment pattern (scour or fill) was identified in the study reaches over the range of flows or over the measurement season. Analysis of hydraulic microhabitats over the range of discharges measured at the study reaches indicates that some percentage of most habitat niche categories was available for at least one discharge condition, but the majority of hydraulic habitat available was within the intermediate-swift and deepswift habitat niche categories. Deep-swift conditions dominated nearly all study reaches under all measured discharge conditions. Slight differences in habitat distributions were observed between the study reaches with substantial coverage of the bed by fine sediment—Sunny Brook, Muleshoe, and Rock Barn—and the bedrock-dominated reach, Crooked Creek. Although the four study reaches occupy three different hydrogeomorphic segments, the types, relative abundance, and response of hydraulic microhabitat niche distributions to changing discharge conditions generally were similar among all reaches

    Documentation of Particle-size Analyzer Time Series, and Discrete Suspended-sediment and Bed-Sediment Sample Data Collection, Niobrara River Near Spencer, Nebraska, October 2014

    Get PDF
    Document abstract The Ubited States Geological Survey (USGS), in cooperation with the United States Army Corps of Engineers, monitored a sediment release by Nebraska Public Power District from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. The accumulated sediment behind Spencer Dam ordinarily is released semiannually; however, the spring 2014 release was postponed until the fall. Because of the postponement, the scheduled fall sediment release would consist of a larger volume of sediment. The larger than normal sediment release expected in fall 2014 provided an opportunity for the USGS and US Army Corps of Engineers to improve the understanding of sediment transport during reservoir sediment releases. A primary objective was to collect continuous suspended-sediment data during the first days of the sediment release to document rapid changes in sediment concentrations. For this purpose, the USGS installed a laser-diffraction particle-size analyzer at a site near the outflow of the dam to collect continuous suspended-sediment data. The laser-diffraction particle-size analyzer measured volumetric particle concentration and particle-size distribution from October 1 to 2 (pre-sediment release) and October 5 to 9 (during sediment release). Additionally, the USGS manually collected discrete suspended-sediment and bed-sediment samples before, during, and after the sediment release. Samples were collected at two sites upstream from Spencer Dam and at three bridges downstream from Spencer Dam. The resulting datasets and basic metadata associated with the datasets were published as a data release; this report provides additional documentation about the data collection methods and the quality of the data. Data abstract In the fall of 2014 (October-November) the USGS in cooperation with the US Army Corps of Engineers collected sediment samples (suspended and bed material) at several sites on the Niobrara River in Nebraska near the Spencer Dam prior to, during, and immediately after a sediment-flushing event. Suspended-sediment samples were analyzed for sediment concentration and percent finer than sand. Bed sediment samples were analyzed for particle-size distribution using standard classes by sieve analysis. In addition, a Sequoia LISST Streamside particle-size analyzer (PSA) was deployed during the first week of the flush; this unit collected suspended-sediment concentration and grain-size data. Sampled sites included the bridge on U.S. Hwy 281, county road 508 Ave bridge south of Lynch, Nebraska, and the county road bridge south of Verdel, Nebraska This part of the data release consists of discrete suspended-sediment and bed-sediment data tables, PSA data tables, and a data table of results from discrete samples collected manually at the intake to the PSA. An accompanying shapefile of sample locations may be found at https://www.sciencebase.gov/catalog/item/5a5e1596e4b06e28e9be47db

    Emergent Sandbar Dynamics in the Lower Platte River in Eastern Nebraska: Methods and Results of Pilot Study, 2011

    Get PDF
    The lower Platte River corridor provides important habitats for two State- and federally listed bird species: the interior least tern (terns; Sternula antillarum athallassos) and the piping plover (plovers; Charadrius melodus). However, many of the natural morphological and hydrological characteristics of the Platte River have been altered substantially by water development, channelization, hydropower operations, and invasive vegetation encroachment, which have decreased the abundance of high-quality nesting and foraging habitat for terns and plovers. The lower Platte River (LPR), defined as 103 miles (mi) of the Platte River between its confluence with the Loup River and its confluence with the Missouri River, has narrowed since the late-19th and early-20th centuries, yet it partially retains many geomorphologic and hydrologic characteristics important to terns and plovers. These birds nest on the sandbars in the river and along shorelines at sand- and gravel-pit lakes in the adjacent valley. The need to balance continued economic, infrastructure, and resource development with the conservation of important physical and aquatic habitat resources requires increased understanding of the physical and biological dynamics of the lower Platte River. Spatially and temporally rich datasets for emergent sandbar habitats are necessary to quantify emergent sandbar dynamics relative to hypothesized controls and stressors. In cooperation with the Lower Platte South Natural Resources District, the U.S. Geological Survey initiated a pilot study of emergent sandbar dynamics along a 22-mi segment of the LPR downstream from its confluence with Salt Creek, near Ashland, Nebraska. The purposes of the study were to: (1) develop methods to rapidly assess sandbar geometries and locations in a wide, sand-bed river, and (2) apply and validate the method to assess emergent sandbar dynamics over three seasons in 2011. An examination of the height of sandbars relative to the local stage of the formative discharge event, and how subsequent river discharges, of both high and low magnitude, alter sandbar geometries and abundance within the LPR was of particular interest. A “rapid-assessment” method was developed with the goal of characterizing the spatial distribution and habitat-relevant geometries of the complete population of sandbars along the study segment. Three primary measures were used to assess emergent sandbar dynamics in the study segment: sandbar area, sandbar height, and sandbar location. Data to derive these measures were collected during three, week-long survey periods in 2011, herein named “spring survey period,” “summer survey period,” and “fall survey period.” Emergent sandbars were grouped into one of three generalized types: (1) bank-attached, (2) island-attached, and (3) mid-channel
    corecore