University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Publications of the US Geological Survey

US Geological Survey

1993

Water-Quality Assessment of the Central Nebraska Basins: Summary of Data for Recent Conditions Through 1990

Ronald B. Zelt

P. R. Jordan

Follow this and additional works at: https://digitalcommons.unl.edu/usgspubs

Part of the Geochemistry Commons, Geology Commons, Geomorphology Commons, Hydrology Commons, and the Other Earth Sciences Commons

This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications of the US Geological Survey by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

By R.B. Zelt and P.R. Jordan

U.S. GEOLOGICAL SURVEY Open-File Report 93-422

Prepared as part of the NATIONAL WATER-QUALITY ASSESSMENT PROGRAM

> Lincoln, Nebraska 1993

U.S. DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Robert M. Hirsch, Acting Director

For additional information write to:

District Chief U.S. Geological Survey, WRD 406 Federal Building 100 Centennial Mall, North Lincoln, Nebraska 68508

Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Denver Federal Center Box 25425 Denver, Colorado 80225

Purpose	and scope	•••••
Acknowle	edgments	
Description of th	e Central Nebraska Basins	
Sources of availa	ble water-quality data	
	a Department of Environmental Quality	
	a Department of Health	
	i's Natural Resources Districts	
	y Corps of Engineers	
U.S. Dep	artment of Energy	·····
U.S. Env	ironmental Protection Agency	
	and Wildlife Service	
	ogical Survey	
Universit	y of Nebraska-Lincoln	••••••
Summary approa	ich	
Selection	of constituents and properties to be summarized	
Suitabili	y of data for inclusion in the summary	••••••••••••••••••••••••••••••
s	tream water	
L	ake water	•••••••••••••••••••••••••••••••••••••••
S	treambed sediment	
F	ish tissue	
А	quatic ecology	
G	round water	
Methods	of data summary	
D	ata preparation	
	Stream water	
	Lake water	
	Streambed sediment	
	Fish tissue	
	Aquatic ecology	
	Ground water	•••••••••••••••••••••••••••••••••••••••
S	tatistical summary	
	omparison with water-quality criteria	

CONTENTS

CONTENTS--Continued

Page

Characteristics of water-quality data	
Stream water	20
Lake water	
Streambed sediment	24
Fish tissue	24
Aquatic ecology	
Ground water	
Summary of recent water-quality conditions	29
Stream water	29
Stream water Lake water	29 29
Lake water Streambed sediment	29
Lake water Streambed sediment	29
Lake water Streambed sediment Fish tissue	29 39 39
Lake water Streambed sediment	

ILLUSTRATIONS

		-
Figures 1-	8Maps showing:	
1.	Major streams, surface-water impoundments, cities, and subunits of Central Nebraska Basins study unit	3
2.	Location of surface-water or fish-tissue sampling sites included in summary of recent water-quality conditions	13
3.	Location of streambed-sediment sampling sites included in summary of recent water-quality conditions	26
4.	Location of aquatic-ecological stream- and lake-survey sites included in summary of recent water-quality conditions	27
5.	Location of ground-water sampling sites that had onsite measurements of pH included in summary of recent water-quality conditions	30
6.	Location of ground-water sampling sites that had analyses of dissolved sulfate included in summary of recent water-quality conditions	31
7.	Location of ground-water sampling sites that had analyses of nitrite plus nitrate as nitrogen included in summary of recent water-quality conditions	32
8.	Location of ground-water sampling sites that had analyses of atrazine included in summary of recent water-quality conditions	33

ILLUSTRATIONS--Continued

Figures 9-	27Graphs showing:
9.	Distribution of pH values measured onsite in stream-water samples collected from Central Nebraska Basins in relation to water-quality criteria, 1981-9034
10.	Distribution of concentrations of dissolved sulfate in stream-water samples collected from Central Nebraska Basins in relation to water-quality criterion, 1981-90
11.	Distribution of concentrations of dissolved solids, sum of constituents, in stream- water samples collected from Central Nebraska Basins in relation to water- quality criterion, 1981-90
12.	Distribution of concentrations of dissolved nitrite plus nitrate as nitrogen in stream-water samples collected from Central Nebraska Basins in relation to water-quality criterion, 1981-90
13.	Distribution of concentrations of total selenium in stream-water samples collected from Central Nebraska Basins in relation to water-quality criteria, 1981-9038
14.	Distribution of concentrations of phosphorus in streambed-sediment samples collected from subunits of Central Nebraska Basins, 197940
15.	Distribution of concentrations of arsenic and selenium in streambed-sediment samples collected from subunits of Central Nebraska Basins, 197941
16.	Distribution of concentrations of arsenic, cadmium, copper, mercury, and selenium in tissue samples from whole, bottom-dwelling fish collected at sampling sites representing Glaciated Area and at sampling sites integrating multiple subunits of Central Nebraska Basins, 1981-90
17.	Distribution of percentage of channel substrate that is sand, 2.0-0.062 millimeters, in samples collected from first- to third-order streams within subunits of Central Nebraska Basins, 1981-90
18.	Distribution of relative abundance of most frequently occurring fish and macroinvertebrate taxa in first- to third-order streams within subunits of Central Nebraska Basins, 1981-90
19.	Distribution of taxonomic richness of fish and macroinvertebrate communities in first- to third-order streams within subunits of Central Nebraska Basins, 1981-90
20.	Distribution of taxonomic dominance of fish and macroinvertebrate communities in first- to third-order streams within subunits of Central Nebraska Basins, 1981-90
21.	Distribution of pH values measured onsite in ground-water samples collected from subunits of Central Nebraska Basins in relation to water-quality criteria, 1978-90

ILLUSTRATIONS--Continued

Figure 22.	Distribution of concentrations of dissolved sulfate in ground-water samples collected from subunits of Central Nebraska Basins in relation to water-quality criterion, 1978-90
23.	Distribution of concentrations of dissolved solids, sum of constituents, in ground- water samples collected from subunits of Central Nebraska Basins in relation to water-quality criterion, 1978-90
24.	Distribution of concentrations of nitrate as nitrogen in ground-water samples collected from Loess Hills and Platte Valley subunits of Central Nebraska Basins in relation to water-quality criterion, 1978-90
25.	Distribution of concentrations of nitrite plus nitrate as nitrogen in ground-water samples collected from subunits of Central Nebraska Basins in relation to water- quality criterion, 1978-90
26.	Distribution of concentrations of dissolved iron in ground-water samples collected from subunits of Central Nebraska Basins in relation to water-quality criterion, 1978-90
27.	Distribution of concentrations of dissolved manganese in ground-water samples collected from subunits of Central Nebraska Basins in relation to water-quality criterion, 1978-90

TABLES

Table 1.	Summary of sources and quantities of water-quality data compiled for the summary of recent water-quality conditions within Central Nebraska Basins	5
2.	Fish-tissue sampling sites and subunit assignments included in the summary of recent water-quality conditions within Central Nebraska Basins	16
3.	Summary of sources and quantities of water-quality data included in the summary of recent water-quality conditions within Central Nebraska Basins	20
4.	Stream-water sampling sites included in the summary of recent water-quality conditions within Central Nebraska Basins	21
5.	Ratio of streamflow at times of sampling to streamflow for all days during 1981-90 for analyses of selected chemical properties and constituents	22
6.	Lake-water sampling sites included in the summary of recent water-quality conditions within Central Nebraska Basins	25
7.	Statistical summary of data on water-quality constituents and properties in stream-water samples collected from selected sites within Central Nebraska Basins, 1981-90	63

TABLES--Continued

Table 8.	Statistical summary of data on water-quality constituents and properties in lake- water samples collected from selected sites within Central Nebraska Basins, 1981-90
9 .	Statistical summary of data on water-quality constituents in streambed-sediment samples collected from subunits of Central Nebraska Basins, 1979
10.	Statistical summary of data on water-quality constituents in fish-tissue samples collected from selected sites within Central Nebraska Basins, 1981-90120
11.	Statistical summary of habitat data from aquatic-ecological surveys within Central Nebraska Basins, 1981-90144
12.	Summary of most frequently occurring fish and macroinvertebrate taxa identified during aquatic-ecological surveys within Central Nebraska Basins, 1981-90145
13.	Statistical summary of relative abundance of selected fish and macroinvertebrate taxa identified during aquatic-ecological surveys within Central Nebraska Basins, 1981-90
14.	Statistical summary of taxonomic richness and dominance of sampled communities from aquatic-ecological surveys within Central Nebraska Basins, 1981-90157
15.	Statistical summary of data on water-quality constituents and properties in ground-water samples collected from selected sites within Central Nebraska Basins, 1978-90
16.	Synthetic organic compounds detected in ground water for which all computed percentile concentrations were less than an unknown reporting level, Central Nebraska Basins, 1978-90

CONVERSION FACTORS AND ABBREVIATIONS

Multiply	By	To obtain
millimeter (mm)	0.03937	inch
centimeter (cm)	0.3937	inch
meter (m)	3.281	foot
kilometer (km)	0.6214	mile
square hectometer (hm ²)	2.471	acre
square kilometer (km ²)	0.3861	square mile
degree Celsius (°C)	(¹)	degree Fahrenheit (°F)

¹Temperature can be converted to degrees Fahrenheit ($^{\circ}F$) or degrees Celsius ($^{\circ}C$) by the equations:

•

 ${}^{\circ}F = 9/5 ({}^{\circ}C) + 32,$ ${}^{\circ}C = 5/9 ({}^{\circ}F - 32).$

viii WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

By R.B. Zelt and P.R. Jordan

ABSTRACT

Among the first activities undertaken in each National Water-Quality Assessment (NAWQA) investigation are the compilation, screening, and statistical summary of available data concerning recent water-quality conditions in the study unit. The water-guality conditions of interest in addressing the objectives of the NAWQA program are those that are representative of the general water quality of a given stream reach or area of an aquifer. This report (1) identifies which existing water-quality data are suitable for characterizing general conditions in a nationally consistent manner and (2) describes, to the extent possible, recent, general water-quality conditions in the Central Nebraska Basins. The study unit consists of the area drained by the Platte River between the confluence of the North Platte and South Platte Rivers near North Platte downstream to its confluence with the Missouri River south of Omaha.

The report includes (1) a description of the sources and characteristics of the water-quality data that are available, (2) a description of the approach used for screening data to identify a subset of the data suitable for summary and comparisons, (3) a presentation of statistical and graphical summaries of recent, general waterquality conditions, and (4) comparisons of recent, general water-guality conditions to established national water-quality criteria, where applicable. Stream- and lake-water data are summarized for 25 selected stream-water and 11 lake-water sampling sites. Data also are summarized by major subunits of the study unit (the Sandhills, Loess Hills, Glaciated Area, and Platte Valley subunits) for streambed-sediment, fish-tissue, aquatic-ecological, and ground-water samples. The summaries focus on the central tendencies and typical variation in the data and use nonparametric statistics such as frequencies and percentile values.

INTRODUCTION

Beginning in 1991, the U.S. Congress appropriated funds for the U.S. Geological Survey (USGS) to begin implementation of a full-scale National Water-Quality Assessment (NAWQA) Program. The long-term goals of the program are to (1) provide a nationally consistent description of current water-quality conditions for a large part of the Nation's water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify, describe, and explain, to the extent possible, the major natural and human factors that affect measured water-quality conditions and trends (Leahy and others, 1990). In meeting these goals, the program provides information useful to policy makers and managers concerned with the Nation's water resources.

National assessments of water quality will be based primarily on investigations of both ground- and surface-water quality conducted in 60 study units nationwide. Collectively, the study units incorporate 60 to 70 percent of the Nation's water use as measured by total withdrawal and population served by public-water supplies. The Central Nebraska Basins area was among the first 20 NAWQA study units selected for study as part of the full-scale program.

Purpose and Scope

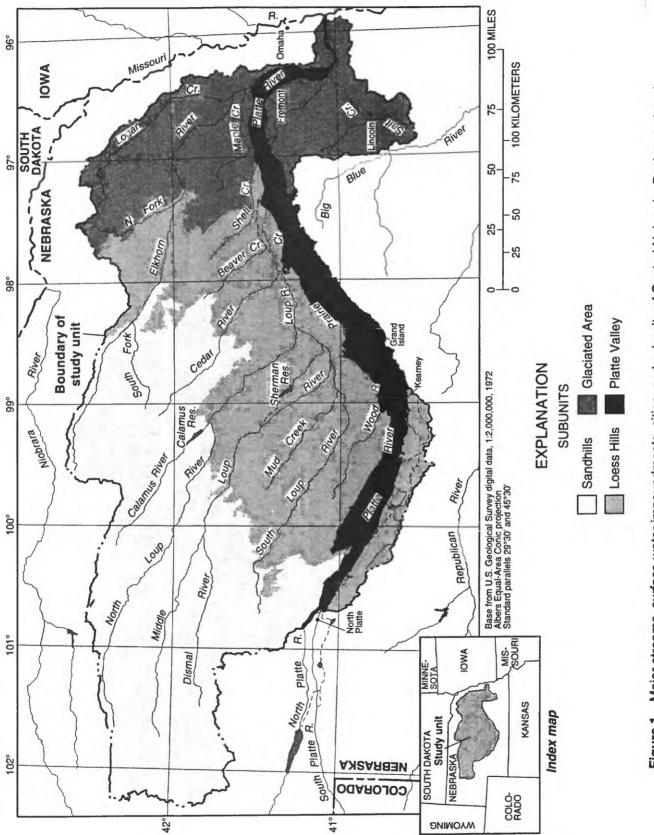
This report describes the first activities undertaken in each study-unit investigation, which are a compilation, screening, and statistical summary of available data concerning recent water-quality conditions in the study unit. In this report, water quality is defined to include physical, chemical, and biological characteristics of the freshwater environment. Water quality is described by measurements of constituents and properties in whole or filtered water, in bottom materials, and in tissues of aquatic organisms, and by measurements of aquatic-ecological characteristics. Waterquality data are collected by various organizations for different purposes (for example, sampling of wastewater effluent to determine permit compliance). The water-quality conditions of interest in addressing the objectives of the NAWQA program are those that are representative of the general water quality of a

given stream reach or area of an aquifer, and are sometimes termed "ambient" water-quality conditions (Hren and others, 1987). In this report, such conditions are referred to as general conditions. Samples that are more representative of special conditions, such as treated drinking water, effluent discharge, or seepage from a landfill, may not be useful for defining general water-quality conditions.

Recent water-quality conditions are of interest because they serve (1) to guide the collection of additional data for a more complete definition of the spatial and temporal variability of water-quality conditions and (2) as a point of reference to document water quality prior to the NAWQA study for comparison with data collected during the study. The time period for which recent water-quality conditions are summarized should be of suitable length to include an adequate quantity of data to allow meaningful results, yet brief enough that the results are representative of a period that may be described as recent. The time period selected for summarizing recent conditions for the Central Nebraska Basins was 1981-90, with the following exceptions: streambed-sediment data were summarized for 1979-90, and groundwater data were summarized for 1978-90.

The purposes of this report are (1) to identify which of the existing water-quality data are suitable for characterizing general conditions in a nationally consistent manner and (2) to describe, to the extent possible, recent, general water-quality conditions in the Central Nebraska Basins. This summary of recent conditions is intended (1) to help establish priorities for additional data-collection activities that are needed to achieve the long-term goals of the program in this study unit, and, (2) in conjunction with additional analysis and interpretation, to identify implications for regional and national water-quality issues. The scope of the report includes (1) a description of the sources and characteristics of water-quality data that are available, (2) a description of the approach used for screening available data to identify a subset of the data suitable for summary and comparisons, (3) a presentation of statistical and graphical summaries of recent water-quality conditions, and (4) results of comparisons of recent water-quality conditions to established national water-quality criteria

where applicable. The summaries focus on the central tendencies and typical variation in the data and use nonparametric statistics such as frequencies and percentile values.


Acknowledgments

The authors wish to thank the various Federal and State agencies, private organizations, and members of the Central Nebraska Basins Liaison Committee for their cooperation in providing information and data that were used in preparing this report. Specifically, the assistance of the Nebraska Department of Environmental Quality, the Nebraska Department of Health, the Nebraska Game and Parks Commission, the Nebraska Natural Resources Commission, the several Natural Resources Districts, the Platte River Whooping Crane Maintenance Trust, the U.S. Army Corps of Engineers, Region VII of the U.S. Environmental Protection Agency, the U.S. Fish and Wildlife Service, and the University of Nebraska is gratefully acknowledged.

DESCRIPTION OF THE CENTRAL NEBRASKA BASINS

The Central Nebraska Basins study unit consists of the area drained by the Platte River between the confluence of the North Platte and South Platte Rivers near North Platte downstream to its confluence with the Missouri River south of Omaha. The study unit is about 78,000 km^2 in area and coincides with the areas defined by the U.S. Water Resources Council as hydrologic subregions 1020, 1021, and 1022 (Seaber and others, 1986). As shown in figure 1, the study unit includes the Loup and Elkhorn River Basins as well as basins of smaller tributaries to the Platte River. The Central Nebraska Basins have been described in detail by T.L. Huntzinger and M.J. Ellis (U.S. Geological Survey, written commun., 1993). The study unit is primarily agricultural, with livestock, feed grains, and soybeans being the principal products of that land-use activity.

On the basis of differences in environmental settings, Huntzinger and Ellis divided the study unit into four major subunits (fig. 1): (1) the Sandhills, (2) the Loess Hills, (3) the Glaciated Area, and (4) the Platte Valley. Differentiated primarily by their physiographic, hydrogeologic,

and land-cover characteristics, the environmental settings that typify the four subunits are an aggregation of the major natural and anthropogenic factors thought to affect water quality in the study unit. The overall water-quality assessment of the study unit is designed to evaluate differences in water-quality conditions among the subunits in relation to differences in environmental setting.

The Sandhills subunit is characterized by vegetated sand dunes ranging in topographic relief from a few meters to more than 100 m (Bleed and Flowerday, 1990). Range grasses are the primary land cover on the dunes. Between the dunes the water table often is near the surface, and wetlands frequently occur in these interdune valleys. The Loess Hills subunit is an area of loess-mantled, dissected plains. The principal land use is for crop production, although significant areas of rangeland occur, particularly in the western part of the subunit where local relief and dissection are most pronounced. The Glaciated Area subunit is characterized by dissected glacial till of relatively steep topography. Land use is chiefly crop production, with small pastures interspersed. In the Platte Valley subunit, the nearly level alluvium is used primarily for crop production, but many small- to medium-size cities are also located there. In addition, there are riparian wetland areas that serve as habitat threatened important for and endangered bird species.

The percentage of each subunit in each of several categories of land use and land cover was computed from 1:250,000-scale maps of the U.S. Geological Survey (1979a, 1979b, 1979c, 1979d, 1979e, 1979f, 1979g, 1981, 1982a, 1982b, 1982c, 1984a, 1984b) using a geographicinformation-system (GIS) map-overlay analysis (Environmental Systems Research Institute, 1992) of digital maps of the subunit boundaries and the land-use and land-cover boundaries. The cropland-and-pasture land-use category accounted for 95 percent of the Glaciated Area, 82 percent of the Platte Valley, 68 percent of the Loess Hills, and 19 percent of the Sandhills subunit. In contrast, the proportion of area in the rangeland category was 80 percent in the Sandhills, 31 percent in the Loess Hills, 5 percent in the Platte Valley, and 1 percent in the Glaciated Area. The proportion of area in

urban and built-up land ranged from 3 percent in the Platte Valley to less than 0.1 percent of the Sandhills subunit. The Platte Valley subunit also had about 6 percent of its area mapped as wetlands.

SOURCES OF AVAILABLE WATER-QUALITY DATA

A large amount of water-quality data has been collected in the study unit by a variety of organizations for diverse purposes. Organizations that have made water-quality data available to the public include the Lincoln-Lancaster County Health Department, the Nebraska Department of Environmental Quality (NDEQ), the Nebraska Department of Health (NDOH), the Nebraska Game and Parks Commission, Nebraska's several Natural Resources Districts (NRDs), the Platte River Whooping Crane Maintenance Trust, the U.S. Army Corps of Engineers (USACOE), the U.S. Department of Energy (USDOE), the U.S. Environmental Protection Agency (USEPA), the U.S. Fish and Wildlife Service (USFWS), the USGS, and the University of Nebraska-Lincoln (UNL). Most of the general water-quality data from the study unit has been collected by the USGS, the NDEQ, and the various NRDs.

To achieve the purposes of this report it was sufficient to define available data as those records made available to the public in machinereadable formats. One exception to the requirement for machine-readable format was made and is described below in the section on UNL activities. The sources and quantities of waterquality data compiled are listed in table 1. Available water-quality data that were not retrieved include (1) results from NDOH routine sampling of public-water distribution systems, which are typically representative of multiple sources of water withdrawals rather than a single well location (Nebraska Depart- ment of Health, 1985); and (2) aquatic biological community data collected by the Platte River Whooping Crane Maintenance Trust because none of those data were collected during 1981-90 (B.S. Goldowitz, Platte River Whooping Crane Maintenance Trust, oral commun., 1992).

Brief descriptions of the agency programs responsible for collecting the data summarized in this report are presented in the following

Table 1. Summary of sources and quantities of water-quality data compiled for the summary of recentwater-quality conditions within Central Nebraska Basins

[STORET, U.S. Environmental Protection Agency's Storage and Retrieval System; USGS, U.S. Geological Survey; USFWS, U.S. Fish and Wildlife Service, Grand Island, Nebr.; NWIS, USGS National Water Information System; UNL, University of Nebraska-Lincoln; NNRC, Nebraska Natural Resources Commission]

Source agency or organization	Number of sites	Number of samples	Data storage location
Surface-Water-Quality	<u>Data</u>		
Nebraska Department of Environmental Quality Nebraska Game and Parks Commission U.S. Department of Energy U.S. Army Corps of Engineers U.S. Environmental Protection Agency U.S. Fish and Wildlife Service U.S. Fish and Wildlife Service U.S. Geological Survey U.S. Geological Survey	555 578 1,369 59 197 1 2 231 8	$12,046 \\ 599 \\ 1,369 \\ 3,653 \\ 2,412 \\ 14 \\ 6 \\ 15,132 \\ 32 \\$	STORET STORET USGS STORET STORET USFWS NWIS USGS
Ground-Water-Quality	<u>Data</u>		
Lincoln-Lancaster County Health Department Nebraska Department of Environmental Quality Nebraska Department of Environmental Quality Nebraska Department of Health Nebraska Natural Resources Districts Nebraska Natural Resources Districts U.S. Department of Energy U.S. Environmental Protection Agency U.S. Geological Survey U.S. Geological Survey University of Nebraska, Conservation and Survey Division University of Nebraska, Conservation and Survey Division	$\begin{array}{r} 61\\ 292\\ 304\\ 2,120\\ 2,120\\ 3,214\\ 1,344\\ 13\\ 1,464\\ 423\\ 447\\ 240\\ \end{array}$	$\begin{array}{r} 62\\ 306\\ 311\\ 2,125\\ 2,728\\ 3,300\\ 1,344\\ 26\\ 4,387\\ 427\\ 460\\ 600\\ \end{array}$	UNL STORET UNL UNL NNRC UNL USGS STORET NWIS UNL UNL USGS

sections. Not all of the retrieved data were included in the summary for reasons explained in the "Summary Approach" section, and therefore, not all of the agencies and programs represented in table 1 are referred to in the following sections.

Nebraska Department of Environmental Quality

The primary programs of the NDEQ that collected general surface-water-quality data are the Ambient Water-Quality Monitoring Network, the Biological Stream Classification study, the Ambient Biological Network, and the Clean Lakes Survey. The NDEQ also collected general ground-water-quality data in parts of the study unit for its Special Protection Area program. Although its official name prior to 1992 was the Nebraska Department of Environmental Control, the NDEQ is referred to by its current name throughout this report, except in reference to publications bearing their former name.

The Ambient Water-Quality Monitoring Network (AWQMN) project plan (Nebraska Department of Environmental Quality, written commun., 1990) states that the primary objective is to monitor long-term trends in the water quality of major rivers and streams, and that secondary objectives include defining

water-quality conditions for purposes of comparison to standards and evaluation of the effectiveness of State water-quality programs. Monthly sampling at fixed sites typically located near the mouth of a major drainage unit is the principal field activity of the program. From 1980 to 1986, sampling and analysis at about one-half of the network sites were conducted by the NDEQ and at the other half of the sites by the USGS. From October 1986 to 1989, all of the analyses were performed by the NDEQ laboratory, while the USGS maintained its involvement in sample collection. In 1990, the NDEQ conducted all sampling and analysis for the network. Throughout 1981-90, grab sampling was the sample-collection method used by the NDEQ, whereas the USGS used the methods it has established for data collection for its own programs (described below).

The NDEQ conducted the Biological Stream Classification study (Nebraska Department of Environmental Control, 1991a) to (1) develop an approach to classification of perennial stream reaches on the basis of existing or attainable uses and (2) develop biological assessment techniques to measure aquatic-life health based on regionally expected fauna. Samples of water and aquatic faunal communi- ties were collected during base-flow conditions from 1984 through 1988. In addition, sites in the Sandhills subunit were sampled in the spring, summer, and fall of 1989 to assess seasonal variability in the macroinvertebrate and fish communities. The NDEQ collected all samples and performed all analyses. except that assistance in identification of fish species was provided for some specimens by faculty of the University of Nebraska-Lincoln. the University of Nebraska-Omaha, and the University of Kansas (Lawrence). Only onsite physical properties were determined for the water samples collected.

Another aquatic-ecology study was sponsored by the NDEQ during 1985-86 to test habitat evaluation procedures for correlating habitat suitability with fish populations (Zaroban, 1987). The study was conducted at 17 sites in the Elkhorn River Basin.

In 1990, the NDEQ began the Ambient Biological Network project (Nebraska Department of Environmental Control, 1990b) to assess aquatic life by sampling macroinvertebrate and fish populations and surveying habitat conditions at two groups of sites: (1) fixed-reference sites to be sampled annually for long-term monitoring and (2) rotational sites to be sampled once during each 6-year cycle of the project. Fixed-reference sites were located to provide one or two sites per major drainage basin, whereas rotational sites were distributed among the basins in proportion to the total stream-network length in each basin.

The Clean Lakes Survey, begun in 1989, was intended to characterize and classifv 64 Nebraska lakes and to develop an initial set of limnological data for an ambient lake-waterquality monitoring network (P.A. Brakhage, Department of Environmental Nebraska Quality, written commun., 1990). The lakes studied were selected to represent a variety of environmental settings. The study approach seasonal monitoring of benthic included macroinvertebrate communities, with samples collected at two locations in each lake during spring and fall surveys.

Data collection for the Special Protection Area (SPA) program began in 1988 to study reported ground-water contamination from agricultural chemicals (Nebraska Department of Environmental Control, 1990a). Of the three areas studied in 1988 for possible SPA designation, only the area near Fremont is within the NAWQA study unit. The northwestern part of an area south of Kearney, studied in 1989, also is located in the NAWQA study unit. Water samples were collected by the NDEQ and the NRDs from domestic and irrigation wells and were analyzed for specific conductance, pH, major ions, and nitrate, but only selected samples were analyzed also for bicarbonate, coliform bacteria, and pesticides (Verstraeten, 1989; Link, 1990). Only samples collected from domestic wells were analyzed for bicarbonate and coliform bacteria. Only samples from irrigation wells selected on the following basis were analyzed for pesticides: (1) If an onsite test indicated that large concentrations of nitrate were present, then (2) an onsite test for triazine herbicides was performed, and wells having test results that indicated the presence of triazine sampled for herbicides were pesticides (Verstraeten, 1989; Link, 1990). Laboratory analysis of samples collected for the two SPA studies were performed by the NDEQ, the

NDOH, and the USDOE's Ames Laboratory at Ames, Iowa (Verstraeten, 1989; Link, 1990).

The NDEQ provided documentation of its laboratory methodology and quality-assurance and quality-control programs (Nebraska Department of Environmental Quality, written commun., 1992). The NDEQ laboratory participates in the USEPA Performance Evaluation Program and, during the period when it analyzed samples collected by the USGS, participated in the USGS Standard Reference Water Sample Program. The NDEQ routinely stores their water-quality data in the USEPA's national data bases.

In July and September 1992, the NDEQ ecological survey data were retrieved from the USEPA Storage and Retrieval (STORET) system. The retrieval was confined to (1) sites having hydrologic unit codes that indicated they were located in the study unit, (2) surveys conducted during 1981-90, and (3) fish or macroinvertebrate community surveys only.

Nebraska Department of Health

A statewide study of the quality of rural drinking water was conducted by the NDOH during 1985-89 (R.F. Spalding, UNL, written commun., 1991), in cooperation with the U.S. Centers for Disease Control in Atlanta, Ga. Random sets of rural domestic wells were selected and sampled in each of 15 separate, but arbitrarily defined, sampling strata. Samples were collected and analyzed by the NDOH for pesticides, nitrate, coliform bacteria, and gross alpha radioactivity (C.A. Jacobs and others, Nebraska Department of Health, written commun., 1988). In September 1992, the atrazine and nitrate data collected for the rural domestic-well survey were retrieved from the UNL Water Center where an assessment of those data was being conducted.

Nebraska's Natural Resources Districts

Nebraska's 23 NRDs are autonomous local agencies with regulatory responsibilities for resources that include ground water. Supporting information was requested from each NRD that was the source of retrieved data that satisfied the screening criteria for ground-water data (described below).

The summary of data in this report includes ground-water samples collected by the Lower Elkhorn, Upper Elkhorn, Lewis and Clark, Lower Platte South, and Twin Platte NRDs that were analyzed by the NDOH (Paul Mann, Upper Elkhorn NRD, oral commun., 1992; Kent Miller, Twin Platte NRD, oral commun., 1992; Tom Moser, Lewis and Clark NRD, oral commun., 1992; Dan Schulz, Lower Platte South NRD, oral commun., 1992; Rick Wozniak, Lower Elkhorn NRD, written commun., 1992). Ground-water samples collected by the Central Platte NRD were analyzed for inorganic constituents by the Grand Island-Hall County Health Department; pesticide analyses were performed either at the UNL or the Ames Laboratory of the USDOE (Ron Bishop, Central Platte NRD, oral commun., 1992). Groundwater samples collected by the Tri-Basin NRD were analyzed for nitrate by Ward Laboratories, Kearney, Nebr.; the NDOH provided the analytical services for pesticide determinations (Richard Anderbery, Tri-Basin NRD, oral commun., 1992). The NRDs generally collected ground-water samples at different sites each year, except that follow-up samples often were used to verify measurements of large concentrations of regulated constituents such as nitrate.

Many of the NRDs routinely store their water-quality data in a data system maintained by the Nebraska Natural Resources Commission (NNRC). Retrievals of ground-waterquality data from the NNRC were made in June 1991 and in August 1992 for this study. The 1991 retrieval included data from the following 11 NRDs that are at least partially within the study unit: Upper Elkhorn, Lower Elkhorn, Lewis and Clark, Upper Loup, Lower Loup, Papio-Missouri River, Central Platte, Lower Platte North, Lower Platte South, Twin Platte, and Tri-Basin NRDs. The 1992 retrieval was made on the basis of county codes associated with each site and included data for all 60 of the Nebraska counties that are at least partially within the study unit. The 1992 retrieval also differed from the earlier one by including only data from samples analyzed by the NDOH, most of which had not been included in the 1991 retrieval. Additional NRD ground-water data were included in a September 1992 retrieval from the UNL (described below).

U.S. Army Corps of Engineers

The USACOE has sampled and analyzed water from 11 lakes in the Salt Creek Basin upstream from Lincoln. The lakes are floodcontrol reservoirs constructed by the USACOE and are used also for recreation (Kevin Grode, USACOE, Omaha, oral commun., 1993). The dams were completed during 1962-67, and the areas draining to the lakes range from 14 to 230 km² (K.S. Willcuts, USACOE, Omaha, written commun., 1993) (see table 6 for selected data pertaining to the lakes). The lakes were sampled by the USACOE at one or more sites within each lake. Each sample analyzed was a composite collected at standard intervals of depth at each site. The samples were analyzed by the USACOE's Missouri River Division Laboratory, which participates in the USEPA Performance Evaluation Program (Prem Arora, USACOE, Omaha, oral commun., 1992). A July 1991 retrieval from the USEPA STORET system included the USACOE lake-waterquality data.

U.S. Department of Energy

The Hydrogeochemical and Stream Sediment Reconnaissance Survey (HSSRS) was the only USDOE program that collected waterquality data in the study unit. The purpose and procedures of the HSSRS activities in the study unit are described by Arendt and others (1979) and by Union Carbide Corporation, Nuclear Division (1978a, 1978b), who conducted the HSSRS in Nebraska during 1978-79 under contract with the USDOE. The HSSRS was conducted as part of the National Uranium Resource Evaluation (NURE) Program, established by the USDOE, and was intended to the hydrogeochemistry characterize and streambed-sediment geochemistry of selected areas throughout the United States. Groundwater and streambed-sediment samples were collected at an average density of one site per 26 km². Stream sites having drainage areas from 5.2 to 52 km^2 were selected for streambedsediment sampling. Ground-water samples were collected by the UNL's Conservation and Survey Division, and streambed-sediment samples were collected by Biospheric Consul-International. All analyses tants were performed by Union Carbide Corporation personnel at laboratories in Oak Ridge, Tenn.

(Union Carbide Corporation, Nuclear Division, 1980a, 1980b, 1981a, 1981b, 1981c, 1981d, 1981e, 1981f). The quality-assurance plan for the HSSRS included (1) an internal laboratoryquality-control program, (2) quality-control samples for uranium analysis as part of the Multilaboratory Analytical Quality Control for the HSSRS (D'Silva and others, 1979), and (3) computerized procedures for verification of field, map, and laboratory data.

In May 1991, a retrieval was made of the HSSRS streambed-sediment and ground-water data collected in eight 1- by 2-degree quadrangles of latitude and longitude that were at least partially within the study unit. The data were subsequently partitioned on the basis of a digital map overlay of the study-unit boundary to exclude the data from outside the study unit. The totals shown in table 1 do not include the HSSRS samples collected outside the study unit.

U.S. Environmental Protection Agency

The Regional Ambient Fish Tissue (RAFT) Monitoring Program was the only USEPA program that collected general water-quality data in the study unit. The RAFT monitoring work plan (Bruce Littell, USEPA, written commun., 1992) states that the program's objectives included (1) fixed-station sampling upstream and downstream from industrial areas to measure the effectiveness of urban pollution-control programs, (2) sampling to screen "fishable" water bodies for contaminants, and (3) follow-up sampling at locations where previously collected data indicated that tissue contamination had occurred. RAFT samples were collected in the study unit by the NDEQ and the Nebraska Game and Parks Commission and analyzed by the USEPA, Region VII, Kansas City, Kans. (Littell, 1982; U.S. Environmental Protection Agency, 1985, 1986; Christiansen, 1987, 1988; Christiansen and others, 1989; Callam and others, 1990).

In July 1991, available data were retrieved from the USEPA STORET system. The STORET retrieval was for all non-USGS sites (NDEQ sites plus any others) that were presumed to be in the study unit based on the associated hydrologic unit code. In addition, STORET data were retrieved for 95 non-USGS sites based on the associated latitude and STORET longitude coordinates. Another retrieval was made in September 1992 to acquire data for samples of fish tissue collected in the study unit, after it was learned that parts of that data set had been added to STORET subsequent to the earlier retrieval. A third STORET retrieval was made in October 1992 to acquire only records for samples of ground water collected in three counties for two SPA program studies conducted by the NDEQ, after it was learned that parts of that data set also had been added to STORET subsequent to the initial retrieval.

U.S. Fish and Wildlife Service

The principal water-quality data-collection activity of the USFWS is the National Contaminant Biomonitoring Program (NCBP), which has collected and analyzed tissue samples to document temporal and geographic trends in concentrations of persistent environmental contaminants that may threaten fish and wildlife (Lowe and others, 1985; Schmitt and others, 1985, 1990; Jacknow and others, 1986; Schmitt and Brumbaugh, 1990). The NCBP was begun in 1967 as the National Pesticide Monitoring Program, a multi-agency effort designed to monitor organochlorine pesticides in the Nation's water supplies. When the program was expanded in the mid-1980's to include industrial chemicals and metals in addition to pesticides, it was renamed the NCBP.

NCBP samples of fish tissue were collected biennially at a network of fixed sites. Three samples generally were collected at each site--two replicate samples of bottom-feeding species and one sample of a predatory species. Quality-assurance procedures established for the laboratory analyses include biological reference materials, spiked samples, triplicate determinations, and procedural blanks (Schmitt and others, 1985). Data collected for the NCBP were retrieved in September 1992 during the same STORET retrieval of fish-tissue data described above.

U.S. Geological Survey

The USGS has collected and analyzed stream-water and ground-water samples as part

of Congressionally funded programs, jointly funded programs with State and local agencies, and programs funded by other Federal agencies. The resulting data generally have been published in a yearly series of reports, "Water Resources Data for Nebraska, Water Year 19xx" and have been entered into the USGS National Water Information System (NWIS) and the USEPA STORET system.

Specific conductance and pH measurements onsite were made with meters calibrated and operated according to the instruction manuals provided by the manufacturers. Water temperature was measured by using techniques outlined by Stevens and others (1975). Analysis of alkalinity onsite was performed on filtered water samples in accordance with USGS, Quality of Water Branch Technical Memorandum 82.05 (December 11, 1981). Dissolvedoxygen measurements were made onsite using meters calibrated and operated according to USGS, Quality of Water Branch Technical Memorandum Number 79.10 (March 14, 1979). Samples for analysis of inorganic compounds, nutrients, and suspended sediment were collected using USGS-approved depthintegrated samplers and methods described by Guy and Norman (1970). Inorganic compounds, including major and minor ions and nutrients, were analyzed using methods compiled by Fishman and Friedman (1985). Suspendedconcentration sediment and particle-size distribution analyses were performed using methods described by Guy (1977).

Quality-assurance procedures were followed during sample collection, handling, shipment, and analyses to ensure that (1) the risks of sample contamination and sample mix-up were minimized, and (2) analytical results were verifiably accurate. Laboratory analyses of samples collected for USGS programs were performed primarily at the USGS National Water-Quality Laboratory, Arvada, Colo. However, a number of pesticide analyses were performed by Harris Laboratories, Lincoln, Nebr.

In May 1991, available data were retrieved from the USGS NWIS for all surface-water sites that had associated hydrologic codes indicating that they were located in the study unit and for all ground-water sites that had associated latitude and longitude coordinates indicating locations within 16.1 km of the study unit (the ground-water boundary of the study unit had not been finalized at that time). Additional USGS surface-water data from a 1989-90 study of herbicides in the midwestern United States (Thurman and others, 1992) were acquired in September 1992 prior to their entry into NWIS.

University of Nebraska-Lincoln

Ground-water samples have been collected in the study unit by the Conservation and Survey Division (CSD) of the UNL for a variety of water-quality studies (Junk and others, 1980; Spalding and Exner, 1980; Exner, 1984, 1985; as examples). A comprehensive summary of nitrate and atrazine concentrations in ground water was published by Exner and Spalding (1990) and included available CSD nitrate data collected during 1984-88 and atrazine data collected during 1975-88. One of the largest sets of CSD data included in their summary were those collected for a cooperative study between the CSD and the Papio-Missouri River, Lower Platte North, and Lower Platte South NRDs (Spalding and Exner, 1990). The objectives of the study included determining rates of increase in nitrate concentrations and increasing the areal density of available data in areas considered vulnerable to ground-water contamination. To determine the change in nitrate concentrations, samples were collected at many of the same sites used by the USDOE for the HSSRS in 1978-79. Samples were collected by the NRDs in 1988 and 1989 and were analyzed for nitrates at the UNL, and for pesticides at the USDOE's Ames Laboratory.

The data base that Exner and Spalding (1990) summarized is a compilation of data from six sources: the CSD, the Lincoln-Lancaster County Health Department, the NDEQ, the NDOH, the NRDs, and the USGS. All of the CSD samples included in their summary were analyzed either at the UNL or at the Ames Laboratory. In September 1992, a retrieval of the nitrate and atrazine data presented in their summary was received from the UNL.

A large amount of nitrate data was collected for a CSD ground-water study conducted in conjunction with the USDOE's HSSRS in 1978-79 (University of Nebraska, Conservation and Survey Division, 1980a, 1980b, 1980c, 1980d, 1980e, 1980f). Those samples were collected by the CSD and analyzed for nutrients by the NDEQ. That data set was available only in written form (A.D. Druliner, U.S. Geological Survey, written commun., 1992). These nutrient data comprise the exception to the requirement that data be in machine-readable format to be included in this report. Because they were associated with well-distributed sampling sites and because most of the data for those samples had already been received in machine-readable form, it was deemed appropriate to automate and include these nutrient data in this report.

In September 1992, additional groundwater-quality data were acquired that had been collected for other studies conducted by the CSD (Wehtje and others, 1983; Exner, 1985). Computer files of these data were obtained from USGS sources because they were not available in machine-readable form from the UNL.

SUMMARY APPROACH

Selection of Constituents and Properties to be Summarized

The NAWQA Program design includes the identification of a set of water-quality constituents and properties that will comprise the target variables on which the activities of each study unit focus (Hirsch and others, 1988). The list of target variables is compiled on the basis of national and local water-quality issues of interest. Many of the target variables are the subject of Federal regulations, such as those developed under the Safe Drinking Water Act of 1987. For this report, all quantitative physical values (that is, not categorical values or values from an index that uses nonphysical units) of individual water-guality constituents and properties were considered target variables.

Suitability of Data for Inclusion in the Summary

The methods used for identifying those data that were suitable for the purposes of this report are described in this section. For each type of water-quality data, a set of criteria were applied systematically to screen sampling sites and samples. Available supporting information was gathered from agencies as part of the screening process. This information, which describes the purpose of data collection and methods of sample collection, handling, analysis, and quality control, was reviewed to assist in identifying data that were suitable for inclusion in this summary. In this section, specific mention is made of some groups of data that were excluded from the summary on the basis of the supporting information to permit other investigators to duplicate the results presented in this report.

Onsite and laboratory methods are important in obtaining reliable data that are comparable to those compiled for other NAWQA study units for purposes of national assessment. Established procedures were required for sample handling, which includes the filtering, preservation, and transport of samples. Laboratory analyses were considered reliable if they were performed by the USEPA or a laboratory certified through the USEPA's laboratorycertification programs.

Data reliability can be adversely affected by inaccuracies introduced during recording or transcribing data into machine-readable form. This aspect of data reliability is difficult to evaluate, but the following procedures were used to detect certain types of errors: (1) the frequency of occurrence of each constituent code in each data set was reviewed to identify codes that were invalid or inconsistent with the documentation related to the data set: (2) the frequency of occurrence of each analytical remarks code in each data set was reviewed to identify codes that were invalid or undocumented; and (3) the frequency of occurrence of other available codes and characteristics associated with sites, samples, or analyses (for example, USGS NWIS codes for analysis source, sample type, and quality assurance) also were reviewed to identify data that were unsuitable for inclusion in this summary. Due to the multiple retrievals from some data bases and the presence of overlap between some data bases, it was also important to include as part of the overall screening process a check for, and removal of, duplicate entries of sites, samples, and analyses.

Stream Water

The following set of screening criteria were applied to identify data from stream-water sampling sites that would be included in summarizing recent water-quality conditions in the Central Nebraska Basins:

- (a) Site location is inside the study unit and adequately recorded to permit an onsite inspection (though none were made);
- (b) Data are available for public use;
- (c) Samples represent general conditions;
- (d) Supporting information is available that describes the purpose of data collection and methods of sample collection, handling, analysis, and quality control;
- (e) To be representative of recent conditions, the site was sampled at least quarterly for at least 5 years during 1981-90;
- (f) To provide sufficient data to describe the typical variation, the site was sampled on at least 30 days during 1981-90; and
- (g) Samples are associated with either instantaneous or mean dailv streamflow measurements. The availability of mean daily streamflow measurements was defined to include measurements made at a nearby gaging station if there were no intervening confluences with ungaged, perennial tributary streams.

Because it was anticipated that some sampling sites would have records stored under multiple site identities, a spatial proximity analysis was performed to detect site records having locational coordinates within 2,000 m of one another. Stream-water data criteria (e) and (f) were evaluated using the total number of days on which samples were collected at each common sampling location.

For stream-water data, it is important to ensure that analysis results are not biased by the uneven distribution of suspended sediment within the stream cross section. Therefore, data for water-quality constituents associated with suspended sediment were summarized only from stream-water samples collected using depth integration at three or more verticals in the stream cross section (Guy and Norman, 1970).

One of the NDEQ's sampling sites on the Loup River initially appeared to satisfy all screening criteria. However, during review of supporting information, it was determined that streamflow data associated with samples at that site had been estimated from measurements made at nearby gaging stations using a procedure that failed to satisfy screening criterion (g) due to the occurrence of intervening confluences with ungaged perennial tributaries. Therefore, that site was not included in the summary of stream-water-quality conditions.

Other data not used in the summary were available for one of the included sites. Salt Creek below Stevens Creek near Waverly, Nebr. (site 34, fig. 2). A special study of Salt Creek near Lincoln was conducted for the USEPA by the University of Iowa, Hygienic Laboratory (Miller, 1988). The Salt Creek Survey work plan (University of Iowa, Hygienic Laboratory, written commun., 1988) indicates that the objectives of water-quality sampling during that study were to (1) determine if stream water below two municipal wastewater-treatment plants satisfied water-quality regulations, (2) identify source(s) of increased concentrations of dissolved copper, and (3) calibrate and verify a waste-load allocation simulation. The work plan states that samples for the calibration and verification surveys were collected at the times when a pollution plume was expected to be passing the monitoring sites.

Samples collected by the NDEQ for determinations of fecal-bacteria densities were not required to be analyzed within 6 hours of collection (Nebraska Department of Environmental Quality, written commun., 1990). Therefore, determinations of fecal-bacteria densities in samples collected by the NDEQ were excluded from this summary.

Lake Water

Data from lake-water sampling sites were required to satisfy screening criteria (a) through (d) and (f) listed for stream-water data. For lakes having surface areas less than 1,000 hm², data from multiple sampling sites in the lake that satisfied criteria (a) through (d) were considered as though they were collected from a single site for the purposes of this report.

Streambed Sediment

Data from streambed-sediment sampling sites were required to satisfy screening criteria (a) through (d) listed for stream-water data. Due to the extensive reconnaissance survey (HSSRS) conducted during 1979 for the USDOE and the lack of any other suitable streambed-sediment data for the study unit, the time period used for summarizing recent streambed-sediment data was expanded to 1979-90.

Spatial compositing of streambed-sediment samples collected from several areas of deposition is important to obtain results that are representative of general conditions at a site. Data from streambed-sediment samples collected during low flow from the active stream channel and composed of multiple subsamples of the top 2.5 to 5.0 cm of fine, recently deposited sediment were considered suitable for inclusion in this summary. Constituent concentrations in streambed sediment exhibit much less temporal variability than do concentrations in water: therefore, data from short-term (up to several hours) temporal composite samples that result from spatial compositing were used in this summary.

Fish Tissue

The only data from aquatic-biological-tissue samples that were available for use in this report were from fish-tissue samples. Data from fish-tissue sampling sites were required to satisfy screening criteria (a) through (d) listed for stream-water data. In addition, a minimum of two samples were required to have been collected at a site during 1981-90. The two samples may have been collected on a single date.

To obtain results that were representative of general conditions at a site, fish-tissue samples were composites from multiple specimens. Each fish-tissue sample was a composite of a minimum of two specimens of a single species. In addition, for comparison of fish-tissue data from multiple samples or sites, it was important that samples be differentiated on the basis of two factors: (1) species or the most specific

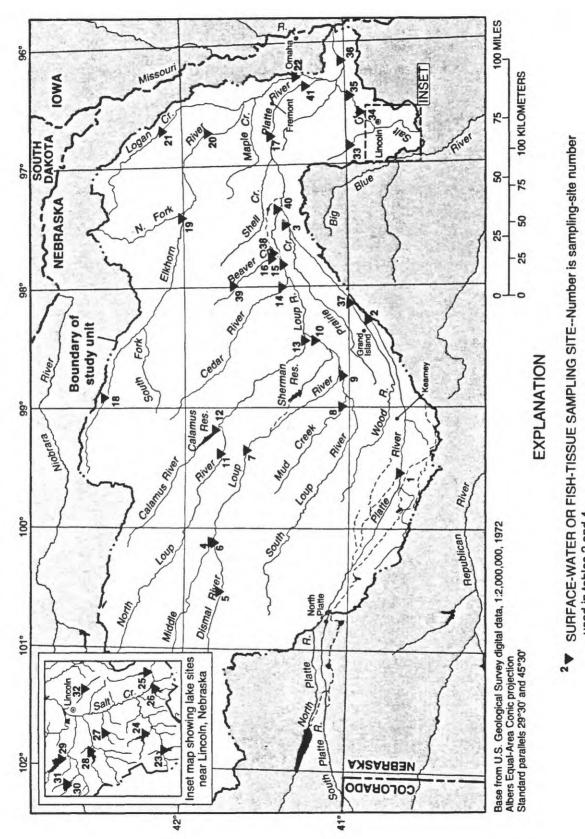


Figure 2. Location of surface-water or fish-tissue sampling sites included in summary of recent water-quality conditions.

taxonomic group applicable and (2) anatomical part, such as whole fish, edible portion, or fillet. Data from each combination of those factors were summarized separately. Specific taxa were recommended for collection from different species categories (Ludke and Schmitt, 1980; May and McKinney, 1981): (1) carp (Cyprinus carpio) was the preferred bottom-dwelling species to collect, but in areas where carp are not found, members of the sucker or catfish families were acceptable substitutes; (2) largemouth bass (Micropterus salmoides) was the preferred warm-water predator, followed by members of the sunfish family, such as crappie, that prey primarily on other fish. No data for other taxa were included in this summary. To optimize data comparability, samples were required to have been collected using an established procedure to minimize variation in specimen size. Samples also were required to be collected using nonchemically based methods, such as by electrofishing or seining.

During the review of the fish-tissue data, five constituent codes were found that were invalid for fish tissue. Communication with the USEPA (Bruce Littell, U.S. Environmental Protection Agency, oral commun., 1992) resulted in correction of the codes for two constituents, but three others were excluded from the summary as unidentified constituents. Discrepancies were noted for constituent identities and analytical results between those retrieved from STORET and those published by Schmitt and others (1985, 1990). Communication with the USFWS (C.J. Schmitt, U.S. Fish and Wildlife Service, oral commun., 1992) confirmed that the published data were correct. Necessary changes were made to the computer files included in the summary.

Aquatic Ecology

Data from aquatic-ecological survey sites were required to satisfy screening criteria (a) through (d) listed for stream-water data. Samples were included only from surveys of fish and macroinvertebrate communities.

Documentation of methods used for the NDEQ ecological surveys of macroinvertebrate communities indicates that organism enumerations often were recorded as 100+ when counts exceeded 100 (Nebraska Department of Environmental Control, 1990b, 1991a). Therefore, the relative abundance values that were calculated and summarized for this report excluded samples of macroinvertebrates that included any taxon count that was equal to 100 exactly because that calculation was dependent on the total number of organisms in a sample.

Two additional ecological data-collection activities were conducted during the period of interest, but these activities had study objectives directed toward special water-quality problems rather than general conditions. One of the objectives of the NDEQ's Lost Creek Survey was to assess the effects of wastewater discharge from a meat-packing plant on the biological communities downstream (Christiansen and Maret, 1985). The NDEQ also conducted Rapid Bioassessment Studies beginning in 1990, as part of their sewage-treatment-plant monitoring activities (Ken Bazata, NDEQ, oral commun., 1992). Data from those two studies were excluded from this summary.

Ground Water

Data from ground-water sampling sites (springs or wells) were required to satisfy screening criteria (a) through (d) listed for stream-water data. In addition, for sites that are wells, data were included only for sites where the well depth was known. An exception to the definition of the period of "recent conditions" was allowed to include ground-water samples collected during 1978-80 in the summary, thus encompassing a data set collected for the HSSRS of the NURE Program. A major part of the available ground-water data for dissolved metals and trace elements were collected for the HSSRS at a set of sites that were well distributed spatially through a large part of the study unit.

Ground-water samples included in this summary were collected as close to the spring or well head as feasible. Data were excluded from the summary for samples collected from water that had entered a filtering or softening system. Supporting information for included data indicated that appropriate methods were used to collect samples that were representative of water in the aquifer rather than water that had been stagnant in the well.

Some ground-water data were excluded from the summary because they were associated with invalid or unidentified constituent codes. In addition, samples collected by the NDEQ for determination of fecal-bacteria densities were not required to be analyzed within 6 hours of collection (Ehrman, 1988; Nebraska Department of Environmental Quality, written commun., 1990). Therefore, determinations of fecal-bacteria densities in samples collected by the NDEQ were excluded from this summary. Also, determinations of 2.4-D concentrations made by the NDEQ laboratory used an unapproved method (Karyn Kennedy, NDEQ, oral commun., 1992), and these data were not included in the summary.

The Lower Loup NRD collected annual ground-water samples at some sites, but because many of their analyses were performed using onsite test kits and the remainder by their laboratory which has not participated in certification programs, data from the Lower Loup NRD were not included in this report.

Methods of Data Summary

Methods used for summarizing recent water-quality conditions included (1) preparation of the data for summary, (2) statistical summary of the data, and (3) comparison of recent conditions with national water-quality criteria.

Data Preparation

Appropriate methods of data preparation were identified according to the specific type of samples to be summarized and are described separately in the following sections of the report.

Stream water

Preparation of stream-water data was done in an attempt to reduce bias that might have been present in the summary statistics if some seasons of the year had been overrepresented in the data used. Most sampling schedules were monthly, and some were quarterly; therefore, the goal in data preparation was to decrease the data quantity to no more than one measurement of any constituent or property in any given month. The result was not precisely equal distribution by month or quarter, but neither

was the distribution grossly unequal. The most common occurrences of more than one sample in a month were the result of sampling by more than one agency. In many of these cases, one agency's measurements covered most of the same constituents and properties as the other agency's, plus additional measurements. In these cases, the sample having the largest number of measurements was retained for summary purposes. In some cases, two samples had been collected in each month for one or more full years; in these cases, no season would be overrepresented, and data from all samples were retained for summary. In other cases, data from the sample collected closest to the middle of the month were retained. The exception was when one of the samples was in the first few days of the month and was obviously a substitute for a sample intended but not obtained in the previous month, in which case data from both samples were retained.

Lake water

The lake-water data included in this summary were those from samples collected from deep water near dams and those collected from shallow water, sometimes identified as "near inflow," usually collected on the same day. Data from the two types of samples were summarized together as one group for each lake. Data from a few special-purpose samples collected near boat ramps and in outflows were not included in the summaries.

Streambed sediment

Preparation of streambed-sediment data involved the assignment of each sampling site to one of the four study-unit subunits that were used as summary groups. A digital map-overlay analysis was performed using GIS computer software (Environmental Systems Research Institute, 1992) to locate each sampling site within the corresponding subunit.

Fish tissue

Ideally, the fish-tissue data would have been summarized separately for each sampling site. However, an inadequate number of samples were available from any site for any of the desired sample groups (that is, combinations of anatomical-part category and species group). Therefore, the fish-tissue data were summarized by sampling-site groups, distinguished by both water-body type and site location with respect to the subunits of the Central Nebraska Basins. Each sampling site was assigned to either the "streams" or "lakes" category for water-body type. Sites were assigned by individual inspection to one of the subunits or to a special subunit category defined for sampling sites having drainage areas that were representative of multiple subunits. Table 2 lists the subunit assignment for each sampling site. Each fish-tissue sample also was assigned to a single category for each of two additional categorical variables--anatomical part and species group. Three categories were identified for grouping samples according to the anatomical part analyzed--whole organism, edible portion, and filet. Each sample was assigned to one of these categories on the basis of codes included in the data retrieval. Each sample likewise was assigned to a species group on the

basis of included codes. Two species groups were used--bottom dwellers (carp, suckers, and catfish species) and predators (largemouth bass and sunfish family).

Aquatic ecology

The aquatic-ecological surveys conducted in the study unit involved a large number of sites and an inadequate number of samples at each site to be summarized separately for each site. Between-site variability of many of the data collected for the surveys is thought to be related to stream size (Nebraska Department of Environmental Control, 1991a). Therefore, preparation of aquatic-ecological data involved the assignment of each sampling site to a stream-order class. Stream-order codes were included in the retrieved data and were used as the basis for grouping sites into one of three categories (first- to third-order streams, fourth-

Table 2. Fish-tissue sampling sites and subunit assignments included in the summary of recentwater-quality conditions within Central Nebraska Basins

[USEPA, U.S. Environmental Protection Agency; USFWS, U.S. Fish and Wildlife Service; Integrated,
integrates multiple subunits; Glaciated, Glaciated Area subunit; Valley, Platte Valley subunit]

Sampling-	-				
site			Number	Period	Subunit
number	Agency and		of	of	assign-
(fig.2)	site number	Site name	samples	sampling	ment
-				1001.00	
1	USEPA 006003	Platte River near Overton, Nebr.	2	1981-83	Integrated
2	USEPA 006827	Platte River near Grand Island, Nebr.	4	1984-86	Integrated
17	USEPA 006826	Platte River at North Bend, Nebr.	8	1984-90	Integrated
19	USEPA 006821	Elkhorn River at Norfolk, Nebr.	3	1984-85	Integrated
20	USEPA 006822	Elkhorn River at West Point, Nebr.	6	1984-8 8	Integrated
21	USEPA 006823	Logan Creek at Pender, Nebr.	4	1984-86	Glaciated
$\overline{22}$	USEPA 005935	Elkhorn River at Waterloo, Nebr.	5	1982-89	Integrated
${24}$	USEPA 007729	Bluestem Lake, Nebr.	3	1986	Glaciated
28	USEPA 007731	Conestoga Lake, Nebr.	2	1986	Glaciated
2 9	USEPA 007733	Pawnee Lake, Nebr.	$\overline{2}$	1986	Glaciated
40	CELINCONIDO	i awhee Luke, Nebi.	4	1000	Glaciated
31	USEPA 007732	East Twin Lake, Nebr.	2	1986	Glaciated
33	USEPA 007730	Branched Oak Lake, Nebr.	2 2	1986	Glaciated
35	USEPA 006825	Salt Creek at Greenwood, Nebr.	11	1984-90	Glaciated
36	USEPA 005947,	Platte River at Louisville, Nebr.	9	1981-86	Integrated
•••	USFWS 89		-		
37	USEPA 007219	Wood River near Chapman, Nebr.	2	1987-89	Valley
38	USEPA 005939	Loup River at Genoa, Nebr.	3	1982-86	Integrated
39	USEPA 007216	Beaver Creek at Albion, Nebr.	4	1987-90	Integrated
39 40	USEPA 007210	Loup River at Columbus, Nebr.	4 2	1987-90	Integrated
40 41	USEPA 008327	Platte River near Valley, Nebr.	$\frac{2}{2}$	1989-90	
	USEFA 000332	riatte river near valley, ivedr.	۷	1909-90	Integrated

to sixth-order streams, and lakes). For a few sites, a stream-order code was not present in the retrieved data, and those sites were assigned to a class consistent with adjacent sites in the stream network. The retrieved stream-order codes for some sites were inconsistent with those of adjacent sites, and those sites also were reassigned. In addition, each sampling site was assigned to the subunit in which it is located on the basis of the same map-overlay procedure used for streambed-sediment sites.

To decrease bias that might have been present in the summaries due to the overrepresentation of aquatic-ecological sites that were sampled more frequently, a single determination for each ecological characteristic was selected to represent each site. To minimize the effect of any time trend in the data, the determination made from the sample collected closest to the beginning of 1986 was selected to represent each site. Data on habitat characteristics collected during surveys of either fish or macroinvertebrates were summarized together, whereas data on other ecological characteristics were summarized separately for fish and macroinvertebrates.

Ground water

General preparation of the ground-water data involved a three-stage procedure. First, each sampling site was assigned to one of eight summary groups distinguished by the combination of well-depth category and subunit. Guidelines developed by the NAWQA Program to improve national consistency of results from available data (D.R. Helsel, U.S. Geological Survey, written commun., 1992) state that constituent concentrations in samples from the shallower and deeper parts of the aquifer should be distinguished. The depth criterion dividing the deep- and shallow-well categories was specific for each subunit and was selected by examining a histogram of the well depths of sites in a subunit to identify a depth that was both a multiple of 25 m and was clearly larger than the modal interval on the histogram. The depths selected that divided the deep and shallow well-depth categories were: 50 m for Sandhills wells, 75 m for Loess Hills wells, 50 m for Glaciated Area wells, and 25 m for Platte Valley wells. Sampling sites were assigned to subunits using the same map-overlay procedure described for streambed-sediment sites.

The second stage of ground-water-data preparation was to decrease the possible bias in the summary caused by the different temporal frequency of sample collection at different sites. A single analysis for each constituent was selected to represent each sampling site. To maximize the use of data that were subjected to the same quality-assurance procedures, non-USGS data were excluded from consideration for sites that had suitable USGS data available. For the remaining sites, the analysis from the sample collected closest to the beginning of 1986 was selected to minimize the effect of possible time trends in the data.

The third stage of data preparation was intended to decrease the possible bias caused by uneven areal distribution of sampling sites. To accomplish this, a 15-minute grid of latitude and longitude was used to subdivide the study unit into subsampling cells. Each sampling site was assigned a code number identifying the subsampling cell it was located in. Through the use of statistical functions of GIS computer software, the number of analyses selected in the second-stage procedure was totaled for each subsampling cell for each summary group. The areal density of sampling sites was computed (as density equals the number of sites divided by the area of the subsampling cell) for each summary group and subsampling cell combination that had five or more analyses. (Summary group and subsampling cell enumeration units having fewer than five analyses were considered to be underrepresented.) The minimum density was identified for each summary group through the use of statistical functions of GIS computer software. A target size for the subsample of analyses from each summary group and subsampling cell combination was computed as the product of the summary-group minimum density and the area of the subsampling cell that was within the subunit corresponding to the summary group. The target size was set to at least one in all cases. A subsample of the analyses in each summary group and subsampling cell was selected if the number of analyses available for subsampling exceeded the target size for the subsample. The subsample was selected using a two-part selection procedure: (1) If USGS data were available for the subsampling cell, analyses were selected randomly from among the USGS data; (2) if the subsample target size was larger than the

number of USGS analyses, then all the USGS analyses were selected and the additional number of analyses needed were selected randomly from among the non-USGS data.

By repeating the second and third stages of the data-preparation procedure for each target variable, a ground-water data set was obtained that was more representative of the entire summary-group population than would be the case otherwise. However, other biases still may be present in the data, including those caused by uneven vertical distribution of samples within the well-depth classes (Parkhurst and others, 1989). No additional adjustments were made to account for these potential biases.

In addition to the general preparation procedure used for all ground-water constituent summaries, there were several constituent-code pairs that required additional preparation to allow a combined summary that treated the data as though they were assigned to a single constituent code. There were two types of constituent-code pairs summarized in combination: (1) those that were determined to be duplicate codes for essentially the same constituent (for example, codes 39033 and 39630 for atrazine); and (2) those that were determined to be environmentally equivalent on the basis of technical and statistical results reported in USGS, Office of Water Quality Technical Memorandum 93.04 (December 2, 1992). Three combined constituent-code pairs were of the latter type: codes 00618 and 00620 for nitrate as nitrogen, codes 00630 and 00631 for nitrite plus nitrate as nitrogen, and codes 00608 and 00610 for ammonia as nitrogen.

Statistical Summary

Selected percentile values of the data form the statistical basis for most of the summary tables and illustrations in this report. The rationale for this nonparametric method of summarizing data is presented in detail in statistical methods texts (Ott, 1988; Helsel and Hirsch, 1992), and a distillation of the rationale adapted from Jordan (1991) is presented here. The median (50th percentile) was selected as the principal measure of central tendency because it is resistant to the effect of extreme values. The 25th and 75th percentiles span the central one-half of the data and thus provide information on both central tendency and variation. The 10th and 90th percentiles provide a reasonable estimate of the typical variation in the data because they account for all but the most extreme 10 percent of the data at each end of the distribution.

The number of analyses summarized should be large enough to provide a valid estimate of conditions during the time period selected for summary. For example, although a median value may be calculated for a set of two or three analyses, it would not be expected that such a median is a good estimate of the median of all values of that water-quality constituent that occurred during a 10-year period. To achieve the purposes of this report, it was sufficient to define the minimum number of analyses required for percentile computations to be 10 values for the 25th, 50th, and 75th percentiles, and a minimum of 30 values for the 10th and 90th percentiles (Jordan, 1991). A single exception to the requirement for the median was made for analyses of fish-tissue samples; a median was computed for as few as two analyses. This exception was allowed because the fish-tissue analyses included in the summary are all composite samples of several individual fish, typically three to five individuals. The summary tables presented in this report include the number of analyses involved in each percentile computation to aid the reader in evaluating the adequacy of the data.

For constituents that had censored values (concentrations less than some reporting level) included in the data, the summary statistics were computed as follows: (1) percentile values were first computed treating each censored value as equal to the reporting level; (2) percentile values were computed a second time, treating each censored value as equal to zero; (3) the two resulting values for each of the computed summary statistics were compared and, if not equal, the result was reported as less than the larger value. This procedure is illustrated by the following table of results for the three steps as applied to an example constituent--arsenic in whole-fish tissue of bottom-dwelling species from stream sites that represent an integration of multiple subunits:

	Value at indicated percentile, in milligrams per kilogram				
Procedural step	10th	25th	50th (median)	75th	90th
(1) Set equal to reporting level	0.05	0.05	0.08	0.11	0.143
(2) Set equal to zero(3) Reported results	0 < .05	0 < .05	.05 < .08	.11 .11	.143 .14

An additional consideration was applied to constituents that had data values of zero included in the retrievals. For those constituents for which values of zero cannot be measured, such values were treated as censored values for purposes of statistical summary. There were two sizable groups of ground-water data that contained such zero values: (1) some older USGS data on nutrients, major ions, and trace elements: and (2) most of the NRD data on synthetic-organic compounds retrieved from the NNRC. For those constituents that had zero values but also had additional censored values from the same agency and time period that quantified the reporting level, the zero values were treated as equal to the largest reporting level so quantified. However, for most of the synthetic-organic compounds, no information was readily available to indicate what those reporting levels may have been. Therefore, those data were simply treated as being less than an unknown reporting level assumed to be less than any quantified values for that constituent (that is, they were treated as equal to zero in the computations, but reported as "less than reporting level" in the summary).

Comparison with Water-Quality Criteria

Currently established national waterquality criteria were defined for the purposes of this report to be: (1) the "Drinking Water Regulations and Health Advisories" published by the U.S. Environmental Protection Agency (1992a); (2) the USEPA's Section 304(a) freshwater aquatic-life acute and chronic criteria published as Federal water-quality standards (U.S. Environmental Protection Agency, 1992b); (3) the U.S. Food and Drug Administration Action Levels for concentrations in edible fish (U.S. Food and Drug Administration, 1992); (4) the National Academy of Sciences recommended maximum tissue concentrations in whole-fish tissue (National Academy of

Sciences, 1972); and (5) the USEPA's criteria for nonpriority pollutants listed in its "Toxic Substance Spreadsheet" (U.S. Environmental Protection Agency, Region IV, written commun., 1993). Many of the relevant criteria are summarized on a poster (U.S. Environmental Protection Agency, 1991) that also was used as a reference. It should be noted that in many cases the water-quality constituents and properties summarized are not strictly comparable with the criteria because the summary is based on instantaneous samples of environmental conditions (except for fish tissue streambed sediment. which were and composited samples), whereas many criteria are stated in terms of averages of analyses, composited samples, or relate to treated water. However, for those water-quality constituents having currently established national criteria that may be applied independently (that is, the criterion is not dependent on the value of a second constituent), results of comparing the statistical summaries with the criteria are reported if the value of a summary statistic exceeded a water-quality criterion value.

CHARACTERISTICS OF WATER-QUALITY DATA

Table 3 presents a summary by agency of the quantity of water-quality data, in terms of numbers of sites and samples, that by application of the screening criteria just described were determined to be suitable for inclusion in this report. Several general characteristics of those data sets are presented in this section. The distribution of the summarized determinations through time, space, and the range of hydrologic conditions can be important for evaluating the significance of the summary statistics.

Source agency or organization	Number of sites	Number of samples
Stream-Water Data		
Nebraska Department of Environmental Quality U.S. Geological Survey	14 22	765 1,957
Lake-Water Data		
U.S. Army Corps of Engineers	11	1,024
Streambed-Sediment Data		
U.S. Department of Energy	1,369	1,369
Fish-Tissue Data		
Nebraska Department of Environmental Quality U.S. Fish and Wildlife Service	19 1	70 6
Aquatic-Ecological Survey Data		
Nebraska Department of Environmental Quality	185	513
Ground-Water Data		
Nebraska Department of Environmental Quality Nebraska Department of Health Nebraska Natural Resources Districts U.S. Department of Energy U.S. Geological Survey University of Nebraska, Conservation and Survey Division	82 763 1,065 1,343 553 241	82 763 1,195 1,343 1,594 522

Table 3. Summary of sources and quantities of water-quality data included in the summary of recentwater-quality conditions within Central Nebraska Basins

Stream Water

The spatial distribution of suitable stream-water data is shown in figure 2. The 25 stream-sampling sites shown satisfied the set of criteria for inclusion in the summary and are listed in table 4. All major drainages within the study unit are represented by this set of sampling sites. The range of years sampled during 1981-90 for the stream-water sampling sites also are listed in table 4. There were several sites at which water-quality monitoring activi- ties began or ceased during the period, resulting in uneven sample frequencies for some years. For example, due to funding constraints, the NDEQ decreased the size of its AWQMN in 1990 and also modified sample-collection methods at some sites, affecting 12 of the 25 sites included in this summary.

Table 5 summarizes the distribution of selected stream-water analyses relative to the streamflow conditions that occurred during 1981-90. For each percentile, the value listed is the ratio of the percentile value of streamflows at the times of sampling to the percentile value of all streamflows during 1981-90. Ratios of 1.00 would be ideal, whereas large departures from 1.00 might indicate that the available analyses of the property or constituent did not represent typical conditions for 1981-90.

Table 4. Stream-water sampling sites included in the summary of recent water-quality conditionswithin Central Nebraska Basins

Sampling site number		e numbers	_	Period of
(fig. 2)	USGS	NDEQ	Site name	sampling
1	06768000	301484, 301486	Platte River near Overton, Nebr.	19 81-90
2	06770500	301036	Platte River near Grand Island, Nebr.	1981-90
3	06774000		Platte River near Duncan, Nebr.	1981-9 0
4		300990	Middle Loup River north of Dunning, Nebr.	1981-89
5	06775900		Dismal River near Thedford, Nebr.	1981-90
6		3009 9 3	Dismal River at Dunning, Nebr.	1983-89
7		300989	Middle Loup River at Sargent, Nebr.	1981-89
8	06783500		Mud Creek near Sweetwater, Nebr.	1981-89
9	06784000	300922	South Loup River at St. Michael, Nebr.	1981-90
10	06785000		Middle Loup River at St. Paul, Nebr.	1981-90
11	06786000	300983	North Loup River at Taylor, Nebr.	19 81-89
12	06787500	300986	Calamus River near Burwell, Nebr.	1981-89
13	06790500	300920	North Loup River near St. Paul, Nebr.	19 81-90
14	06792000	300935	Cedar River near Fullerton, Nebr.	1 9 81-90
15	06792499		Loup River Power Canal at diversion near Genoa, Nebr.	1981-86
16	06794000		Beaver Creek at Genoa, Nebr.	1981-89
17	06796000		Platte River at North Bend, Nebr.	1981-90
18	06796973		Elkhorn River near Atkinson, Nebr.	1982-89
19	06799000		Elkhorn River at Norfolk, Nebr.	1981-89
20	06799350		Elkhorn River at West Point, Nebr.	1981-89
21	06799450		Logan Creek at Pender, Nebr.	1 9 81-90
22	06800500	301001	Elkhorn River at Waterloo, Nebr.	1 9 81-90
34	06803525		Salt Creek below Stevens Creek near Waverly, Nebr.	19 81-90
35	06803555	301292	Salt Creek at Greenwood, Nebr.	1981-90
36	06805500	301170	Platte River at Louisville, Nebr.	1981-90

[USGS, U.S. Geological Survey; NDEQ, Nebraska Department of Environmental Quality; --, not applicable]

Lake Water

The lake-water data included in the summary were collected from the 11 lakes listed in table 6. These lakes are all in Salt Creek basin upstream from Lincoln, as shown in figure 2. Because of the concentration of sampling sites in one small part of the Glaciated Area subunit, the statistical summary of lake-water data may not be representative of recent water-quality conditions in the entire subunit or study unit, and no comparisons with water-quality criteria were made. Some lake samples were collected in every month but December; however, 87 percent were collected in May through October and only 13 percent in November through April. No adjustments of the data were made for seasonal distribution of samples, so the summaries represent generally May-through-October conditions.

Table 5. Ratio of streamflow at times of sampling to streamflow for all days during 1981-90 for	
analyses of selected chemical properties and constituents	

[Number in parentheses is parameter code used in U.S. Environmental Protection Agency's Storage and Retrieval System and U.S. Geological Survey's National Water Information System. --, not determined for fewer than 30 analyses]

Sampling- site		Number	Streamflow ratio at indicated percentile					
number (fig. 2)	Site name	of	10th	25th	50th (mediar	75th	9 0th	
	Streamflow ratios for							
_		_						
1 2 3 5	Platte River near Overton, Nebr. Platte River near Grand Island, Nebr. Platte River near Duncan, Nebr. Dismal River near Thedford, Nebr.	$104 \\ 101 \\ 64 \\ 44$	$\begin{array}{c} 0.69 \\ 1.13 \\ 1.02 \\ 1.03 \end{array}$	0.60 1.12 .96 1.02	0.83 1.03 .96 1.00	1.01 1.14 .95 .99	1.18 1.13 .78 .98	
8	Mud Creek near Sweetwater, Nebr.	101	1.25	1.03	1.04	1.05	1.11	
9 10 11 12 13	South Loup River at St. Michael, Nebr. Middle Loup River at St. Paul, Nebr. North Loup River at Taylor, Nebr. Calamus River near Burwell, Nebr. North Loup River near St. Paul, Nebr.	179 125 84 55 173	.99 .96 1.12 .45 1.04	1.00 .98 1.03 1.02 1.00	.98 1.00 1.00 .98 .98	.98 .95 1.02 1.04 .94	.89 .88 1.07 1.06 .94	
14 16 17 18 19	Cedar River near Fullerton, Nebr. Beaver Creek at Genoa, Nebr. Platte River at North Bend, Nebr. Elkhorn River near Atkinson, Nebr. ¹ Elkhorn River at Norfolk, Nebr.	157 93 98 78 83	1.02 1.04 1.08 1.21 1.12	1.04 .98 1.12 1.13 1.16	1.03 1.01 1.19 1.35 1.13	1.03 1.04 1.09 1.53 1.10	.98 .86 1.07 1.73 1.32	
20 21 22 35 36	Elkhorn River at West Point, Nebr. Logan Creek at Pender, Nebr. Elkhorn River at Waterloo, Nebr. Salt Creek at Greenwood, Nebr. Platte River at Louisville, Nebr.	87 91 106 95 102	1.16 .96 1.10 .99 .94	1.15 1.07 1.30 1.11 .96	$1.10 \\ 1.10 \\ 1.08 \\ 1.12 \\ .99$	1.29 1.08 1.17 1.01 1.10	2.08 1.01 1.12 1.21 1.01	
	Streamflow ratios for s	ulfate (0094	<u>45) anal</u>	<u>yses</u>				
1 2 3 5 8	Platte River near Overton, Nebr. Platte River near Grand Island, Nebr. Platte River near Duncan, Nebr. Dismal River near Thedford, Nebr. Mud Creek near Sweetwater, Nebr.	97 101 66 43 101	.73 1.13 1.09 1.03 1.25	.64 1.12 .97 1.02 1.03	.89 1.03 .97 1.00 1.04	1.09 1.14 .98 .99 1.05	1.19 1.13 .78 .98 1.11	
9 10 13 14 16	South Loup River at St. Michael, Nebr. Middle Loup River at St. Paul, Nebr. North Loup River near St. Paul, Nebr. Cedar River near Fullerton, Nebr. Beaver Creek at Genoa, Nebr.	20 29 20 119 96	 .99 1.05	1.01 .73 .95 1.01 1.00	1.27 .64 1.03 1.03 1.03	1.22 .95 1.04 1.04 1.10	 1.02 .86	
17 18 19 20 21	Platte River at North Bend, Nebr. Elkhorn River near Atkinson, Nebr. ¹ Elkhorn River at Norfolk, Nebr. Elkhorn River at West Point, Nebr. Logan Creek at Pender, Nebr.	102 76 89 91 92	1.11 1.19 1.13 1.14 .96	1.12 1.11 1.07 1.12 1.07	1.21 1.35 1.13 1.01 1.09	1.09 1.54 1.06 1.25 1.08	1.07 1.86 1.21 1.87 1.01	
22 35 36	Elkhorn River at Waterloo, Nebr. Salt Creek at Greenwood, Nebr. Platte River at Louisville, Nebr.	108 97 104	1.11 1.00 .93	1.25 1.12 .94	1.08 1.11 .97	1.17 1.01 1.08	1.11 1.20 1.00	

.

Sampling- site	-	Number	Streamflow ratio at indicated percentile							
number		of	10th	25th	50th	75th	90th			
(fig. 2)	Site name	analyses	IUII		(median		50011			
			(= 0 0 0 1)			·				
Streamflow ratios for dissolved-solids (70301) analyses										
1 2 3 5 8	Platte River near Overton, Nebr.	63	0.80	0.62	1.03	1.47	1.40			
2	Platte River near Grand Island, Nebr.	37	.96	.76	.70	.80	1.58			
3	Platte River near Duncan, Nebr.	66	1.09	.97	.97	.98	.78			
5	Dismal River near Thedford, Nebr.	4 0	1.03	1.02	1.00	.99	.99			
8	Mud Creek near Sweetwater, Nebr.	15		1.00	1.00	1.29				
9	South Loup River at St. Michael, Nebr.	20		1.01	1.27	1.22				
10	Middle Loup River at St. Paul, Nebr.	29		.73	.64	.95				
13	North Loup River near St. Paul, Nebr.	19		.94	1.00	1.06				
14	Cedar River near Fullerton, Nebr.	117	1.00	1.01	1.06	1.04	1.02			
16	Beaver Creek at Genoa, Nebr.	14		.80	.95	1.36				
17	Platte River at North Bend, Nebr.	15		1.09	1.04	1.74				
19	Elkhorn River at Norfolk, Nebr.	14		1.03	.92	1.32				
20	Elkhorn River at West Point, Nebr.	14		1.18	.82	1.67				
20	Logan Creek at Pender, Nebr.	15		.70	.88 .89	.93				
$21 \\ 22$	Elkhorn River at Waterloo, Nebr.	62	 1.04	1.11	.89 1.07	.93 1.25	 1.23			
35	Salt Creek at Greenwood, Nebr.	16		. 9 0	.84	3.65				
36	Platte River at Louisville, Nebr.	44	.75	.71	.77	1.07	1.16			
	Streamflow ratios for dissolved nit	trite-plus-n	itrate (C)0631) a	nalyses					
1	Platte River near Overton, Nebr.	92	.64	.59	.83	1.06	1.18			
$\overline{2}$	Platte River near Grand Island, Nebr.	37	.96	.76	.70	.80	1.58			
2 3	Platte River near Duncan, Nebr.	66	1.09	.97	.97	.98	.78			
5	Dismal River near Thedford, Nebr.	43	1.03	1.02	1.00	.99	.98			
8	Mud Creek near Sweetwater, Nebr.	18		.97	.98	1.12				
9	South Loup River at St. Michael, Nebr.	20		1.01	1.27	1.22				
10	Middle Loup River at St. Paul, Nebr.	29		.73	.64	.95				
13	North Loup River near St. Paul, Nebr.	20	-	.95	1.03	.95 1.04				
14	Cedar River near Fullerton, Nebr.	119	.99	.95 1.01	1.05	1.04	 1.03			
16	Beaver Creek at Genoa, Nebr.	115	.33	.83	.86	$1.04 \\ 1.32$	1.03			
17	Platte River at North Bend, Nebr.	17		.95	.97	1.55				
18	Elkhorn River near Atkinson, Nebr. ¹	11		1.19	1.39	1.54				
19	Elkhorn River at Norfolk, Nebr.	15		1.02	.93	1.12				
20	Elkhorn River at West Point, Nebr.	14		1.10	.88	1.67				
21	Logan Creek at Pender, Nebr.	16		.77	.97	.96				
2 2	Elkhorn River at Waterloo, Nebr.	59	1.07	1.12	1.14	1.39	1.28			
35	Salt Creek at Greenwood, Nebr.	16		.90	.84	3.65				
36	Platte River at Louisville, Nebr.	46	.76	.68	.77	1.04	1.11			

Table 5. Ratio of streamflow at times of sampling to streamflow for all days during 1981-90 for analyses of selected chemical properties and constituents--Continued

Sampling- site			Streamflow ratio at indicated percentile					
site number (fig. 2)	Site name	Number of an alyses	10th	25th	50th (median	75th	90th	
	Streamflow ratios for disso	lved-seleniur	n (01145	5) analy	ses			
3 5 14 22 36	Platte River near Duncan, Nebr. Dismal River near Thedford, Nebr. Cedar River near Fullerton, Nebr. Elkhorn River at Waterloo, Nebr. Platte River at Louisville, Nebr.	40 27 17 42 36	0.87 .93 .76	1.07 1.04 1.11 1.11 .90	1.06 1.02 1.25 1.28 .99	1.01 1.01 1.25 1.49 1.14	0.87 1.34 1.34	

Table 5. Ratio of streamflow at times of sampling to streamflow for all days during 1981-90 foranalyses of selected chemical properties and constituents--Continued

¹Daily streamflow data not available for 1981-82.

Streambed Sediment

The spatial distribution of suitable streambed-sediment data is shown in figure 3. The 1,369 sampling sites are unevenly distributed through the study unit because (1) HSSRS samples were not collected in the area between 100° and 102° W longitude, and (2) there were insufficient streambed sediments of the desired particle size in several other areas where sand channels are typical of the lower order streams that were targeted for that survey. All of the streambed-sediment samples were collected during the 4-month period of August through November 1979.

Fish Tissue

The summary of fish-tissue data was based on a data set consisting of 76 samples collected at the 19 sites listed in table 2 and shown in figure 2. Table 2 indicates which sites were sampled most frequently during 1981-90. Summary statistics may be biased toward the conditions measured at the sites sampled more frequently.

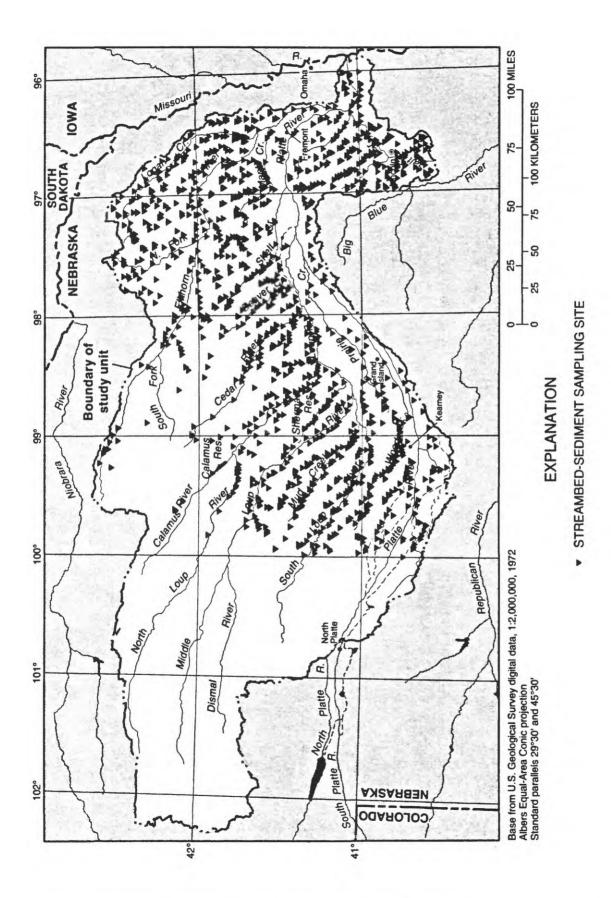
The temporal distribution of samples also was uneven, with five or fewer samples collected during 5 years in 1981-90 and 10 to 20 samples collected during 3 years--1985, 1986, and 1989. All samples were collected during the months of July through October, with sampling most common during September (32 samples).

Aquatic Ecology

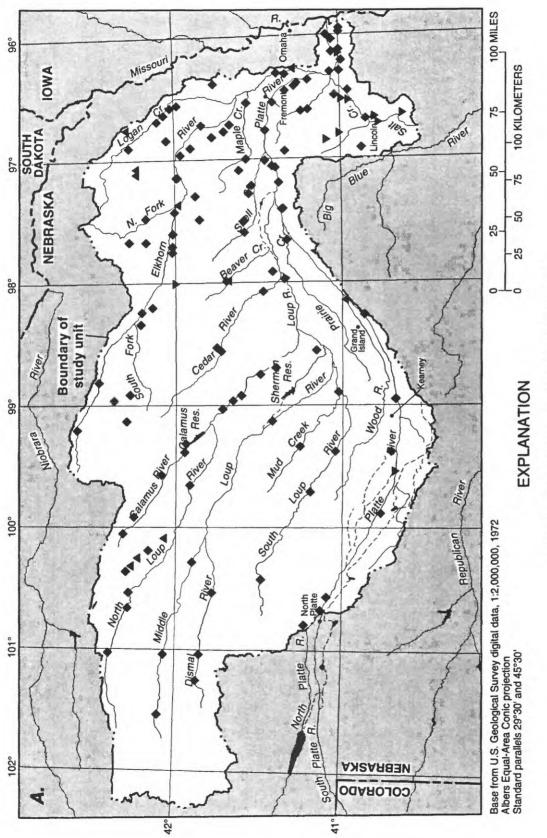
The summary of aquatic-ecological data was based on samples collected at the stream-survey sites shown in figure 4A and the lake-survey sites shown in figure 4B. There were 112 sites where both fish and macroinvertebrate community samples were collected, 10 sites sampled only for fish, and 63 sites sampled only for macroinvertebrates. The 52 lake sites (fig. 4B) were sampled only for macroinvertebrates. Two hundred twenty-nine (229) samples of fish communities and 284 samples of macroinvertebrate communities were considered suitable for inclusion in this summary. Habitat characteristics were measured during surveys of both fish and macroinvertebrate communities.

The temporal distribution of the fish samples was somewhat uneven, with no samples collected prior to 1984 and only five collected in 1987. For the other years during 1981-90, the number of fish samples ranged from 21 in 1986 to 61 in 1985. All fish community samples were collected during the months of May through November, with the largest numbers collected in July and August (61 and 48, respectively). Of the 222 macroinvertebrate samples from streams, only 11 were collected prior to 1984 and only 12 during 1986-87; the number collected in the remaining years ranged from 29 in 1990 to 57 in 1984. The monthly distribution of macroinvertebrate samples from

Table 6. Lake-water sampling sites included in the summary of recent water-quality conditions within Central Nebraska Basins


Sampling- site number (fig. 2)	USACOE site number(s)	Site name	Drainage area (km ²)	Surface area (hm ²)	Number of samples	Period of sampling
23	30CEO1, 30CEO3	Olive Creek Lake, Nebr.	21.2	70.4	80	1981-90
24	30CEL1, 30CEL2	Bluestem Lake, Nebr.	43.0	128	80	1981-90
25	30CEW1, 30CEW2	Wagon Train Lake, Nebr.	40.4	123	91	1981-90
26	30CES1, 30CES2	Stagecoach Lake, Nebr.	25.1	79.3	78	1981-90
27	30CEY1, 30CEY2, 30CEY3	Yankee Hill Lake, Nebr.	21.8	84.2	135	1981-90
28	30CEC1, 30CEC2	Conestoga Lake, Nebr.	39.1	93.1	90	1981-90
29	30CEP1, 30CEP2	Pawnee Lake, Nebr.	93.0	295	90	1981-90
30	30CET1	West Twin Lake, Nebr.	28.5	103	35	1981-90
31	300352, 30CET3	East Twin Lake, Nebr.	J		76	1981-90
32	30CEH1, 30CEH2, 30CEH3	Holmes Lake, Nebr.	14.0	40.5	135	1981-90
33	30CEB1, 30CEB2, 30CEB3	Branched Oak Lake, Nebr.	230	720	134	1981-90

[Surface area is at conservation pool level; USACOE, U.S. Army Corps of Engineers; km², square kilometers; hm², square hectometers]


streams was concentrated in the warmer months of June through August, but some samples were collected in each month from May through November. The 62 macroinvertebrate samples from lakes were all collected during 1989-90, with 40 samples collected in each of three other months (May, June, and October).

Ground Water

Data from 5,499 ground-water samples that were suitable for inclusion in the summary were collected at 4,047 sampling sites--all wells. There were 2,845 wells assigned to the shallow-depth category, and 1,202 assigned as deep wells. Because of the extensive NURE HSSRS activity, more samples were collected in

AQUATIC-ECOLOGICAL STREAM-SURVEY SITES

- Site where both fish and macroinvertebrate samples were collected
- Site where only fish samples were collected
- Site where only macroinvertebrate samples were collected

Figure 4. Location of aquatic-ecological (A) stream- and (B) lake-survey sites included in summary of recent water-quality conditions.

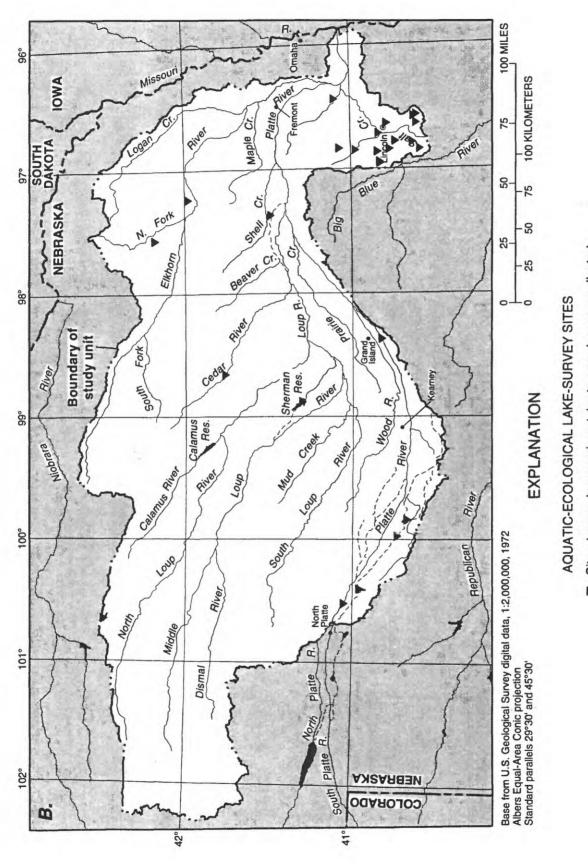


Figure 4. Location of aquatic-ecological (A) stream- and (B) lake-survey sites included in summary of recent water-quality conditions--Continued.

• •

Site where only macroinvertebrate samples were collected

1978 (1,011) than in any other year during 1981-90. There were 3 years (1982-83 and 1990) that had fewer than 100 samples each included, and 4 additional years (1979, 1984, 1987-88) that had more than 500 samples each.

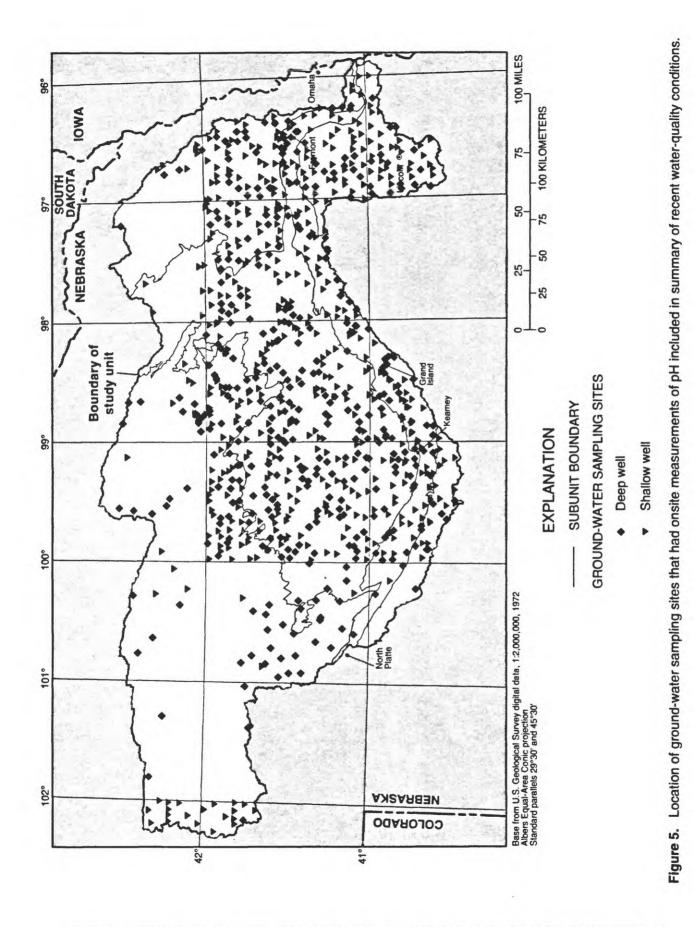
The spatial and temporal distribution of ground-water analyses varied considerably for different water-quality constituents. The sampling-site locations summarized for four constituents (pH, dissolved sulfate, nitrite plus nitrate as nitrogen, and atrazine) are shown in figures 5 through 8 as examples of the variability in spatial distribution of the analyzed samples.

SUMMARY OF RECENT WATER-QUALITY CONDITIONS

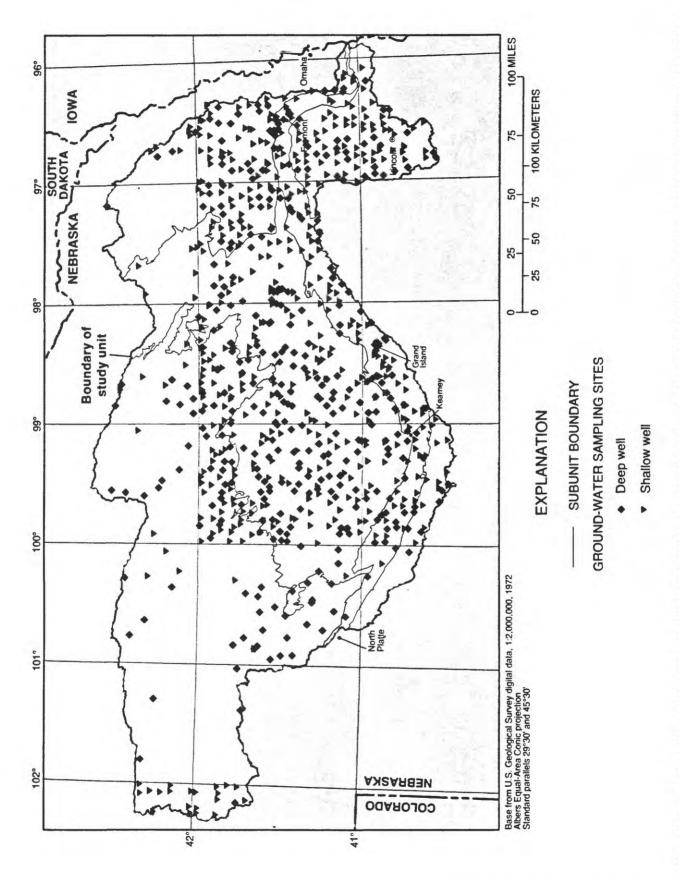
This section presents the results of the statistical summaries of water-quality constituents and properties determined from data collected within the study unit. With the exception of the lake-water data, each table is accompanied by one or more graphs showing summary results for one or more constituents or properties in relation to one or more waterquality criteria, or simply presenting the results graphically if no criteria exist or if none of the percentile values exceeded a water-quality criterion value.

Stream Water

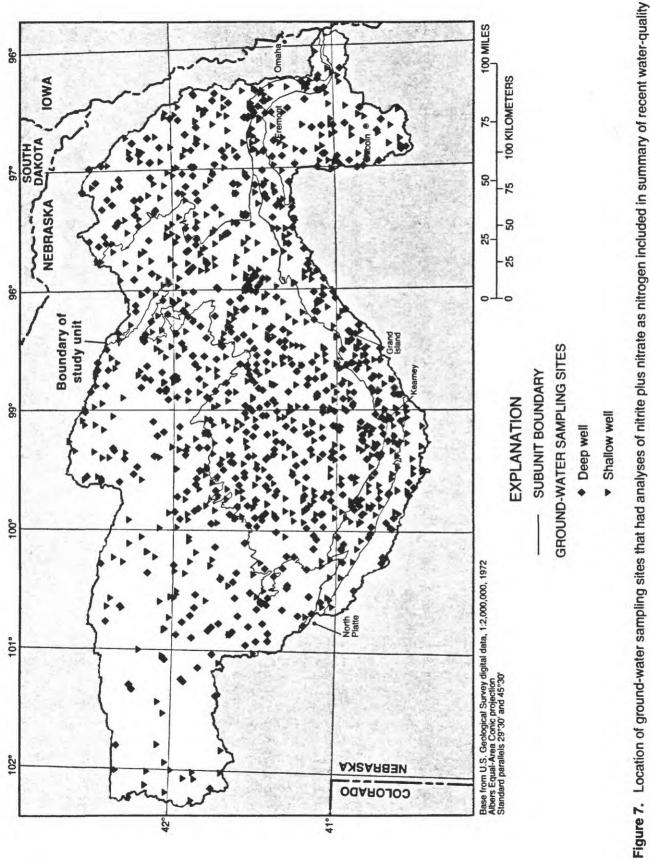
Table 7 (at the end of the report) presents the statistical summary for recent stream-water conditions at the sampling sites selected for inclusion on the basis of the study approach. Results for sites that had fewer than 10 measurements of a particular constituent or property are not reported. The results for pH in relation to the Secondary Maximum Contaminant Levels (SMCLs) of 6.5 and 8.5 standard units (U.S. Environmental Protection Agency, 1992a) and the freshwater aquatic-life chronic criteria of 6.5 and 9.0 standard units (U.S. Environmental Protection Agency, 1991) are shown in figure 9.


There were two major ions for which percentile values exceeded established waterquality criteria values. The results for dissolved sulfate, with a Secondary Maximum Contaminant Level (SMCL) of 250 mg/L (milligrams per liter) (U.S. Environmental Protection Agency, 1992a), are shown in figure 10. Although no graph is included in this report for dissolved chloride, the freshwater aquatic-life chronic and acute criteria values of 230 and 860 mg/L (U.S. Environmental Protection Agency, 1991), respectively, and the SMCL of 250 mg/L (U.S. Environmental Protection Agency, 1992a) were exceeded by 90 percent of the concentrations at the two sampling sites on Salt Creek.

The summary results for dissolved solids in relation to the SMCL of 500 mg/L (U.S. Environmental Protection Agency, 1992a) are shown in figure 11. The results for dissolved nitrite plus nitrate as nitrogen and the drinking-water Maximum Contaminant Level (MCL) of 10 mg/L (U.S. Environmental Protection Agency, 1992a) are shown in figure 12. Although none of the computed percentile values exceed the MCL for nitrate, figure 12 was included to permit the reader to graphically compare and contrast the stream- and ground-water results.


Percentile values exceeded water-quality criteria values for two constituents in the trace metals and other minor constituents group. For dissolved manganese (no graph shown), the SMCL of 50 μ g/L (micrograms per liter) (U.S. Environmental Protection Agency, 1992a) was exceeded by the 75th-percentile concentration at three sites: Mud Creek near Sweetwater, Logan Creek at Pender, and Salt Creek at Greenwood. The summary results for total selenium in relation to the freshwater aquaticlife chronic criterion of 5 μ g/L and acute criterion of 20 μ g/L (U.S. Environmental Protection Agency, 1992b) are presented in figure 13.

Lake Water


Recent water-quality conditions in the lakes selected for inclusion in this summary are presented in table 8 (at the end of the report). All of the data summarized in table 8 are from samples collected and analyzed by the USACOE, Omaha, Nebr. Results for sites that had fewer than 10 measurements of a particular constituent or property are not reported. Lake sites were the only surface-water sites that had sufficient suitable data on pesticides to be summarized in this report. Because the spatial distribution of the summarized data for lakes

³⁰ WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

32 WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

conditions.

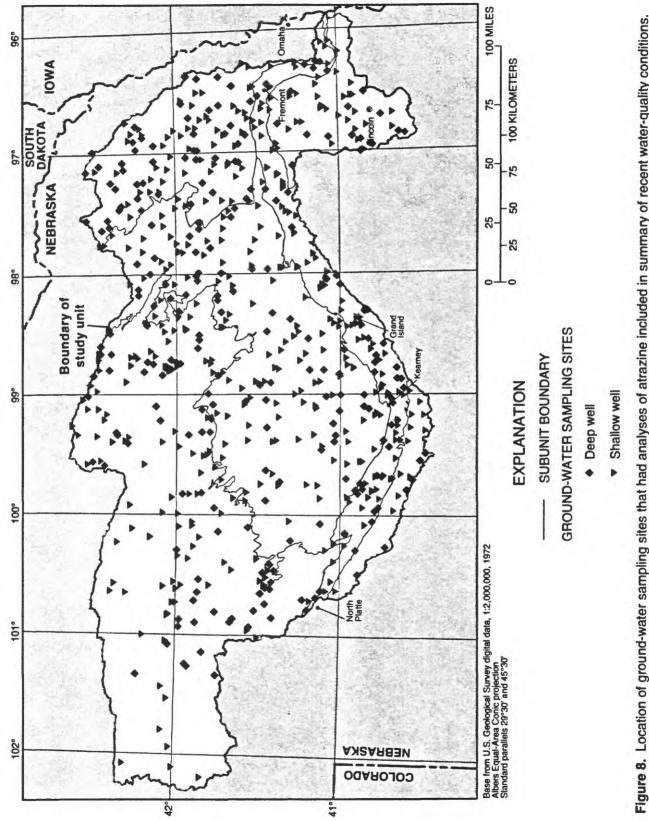
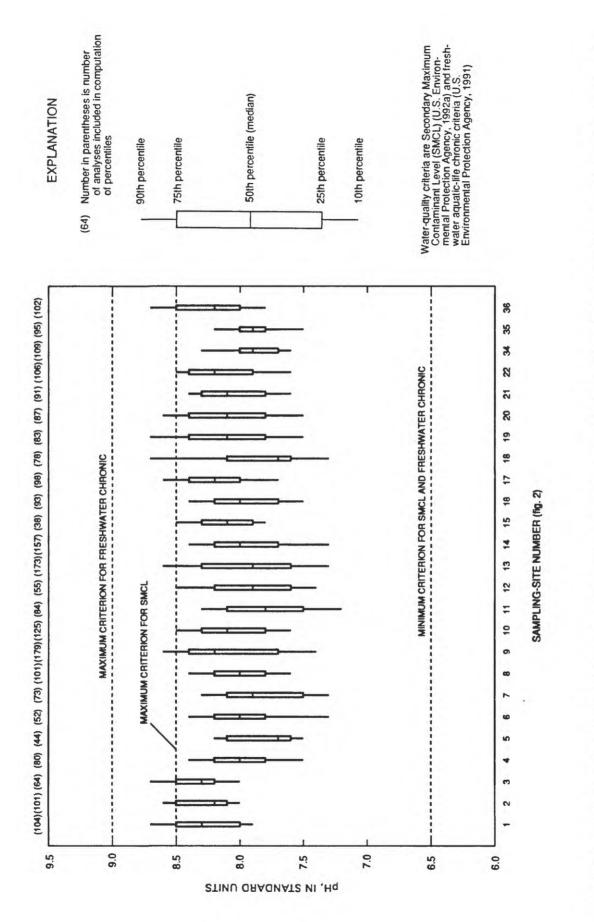
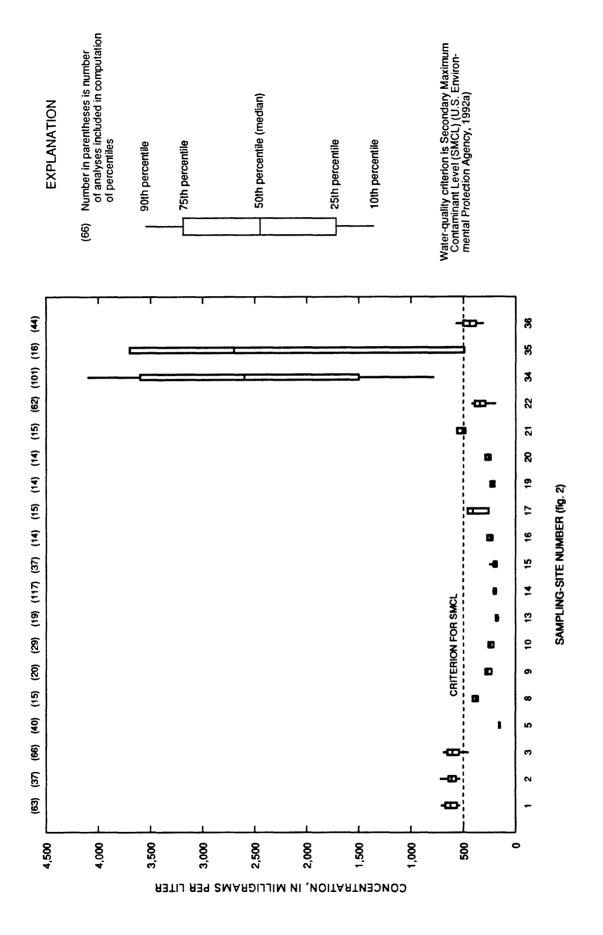
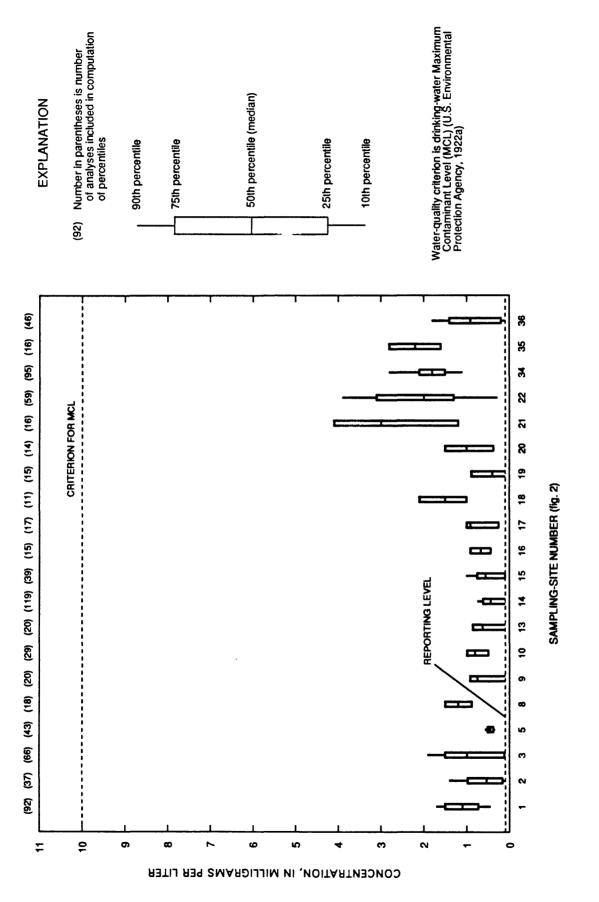
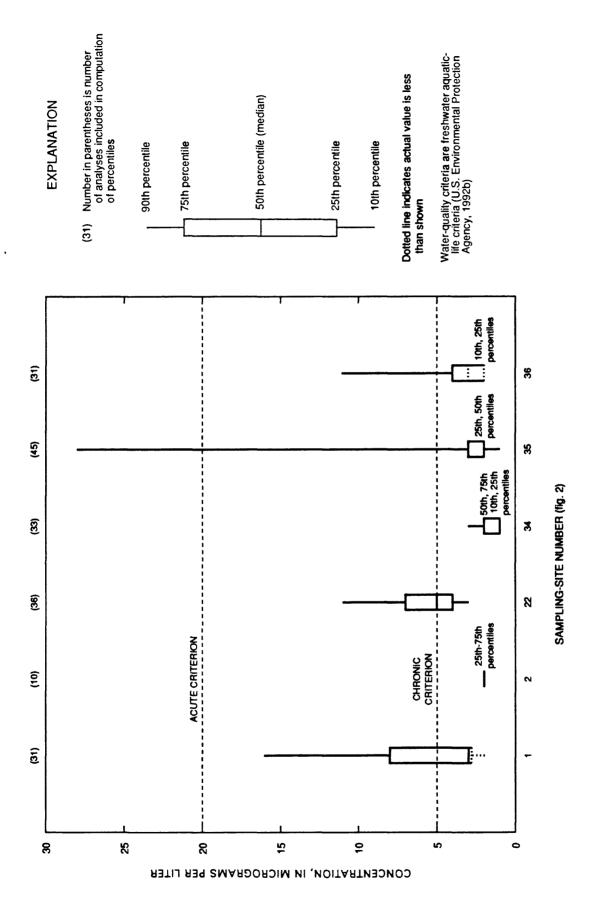



Figure 8. Location of ground-water sampling sites that had analyses of atrazine included in summary of recent water-quality conditions.

34 WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990


Figure 10. Distribution of concentrations of dissolved sulfate in stream-water samples collected from Central Nebraska Basins in relation to water-quality criterion, 1981-90.

was extremely limited, no comparisons with water-quality criteria were made.

Streambed Sediment

Statistical summaries for recent conditions in streambed sediment within the four subunits are presented in table 9 (at the end of the report). Sediment criteria have not been established yet. The distribution of phosphorus concentrations in streambed sediment is shown in figure 14. Phosphorus is typically abundant in sediment and is an essential nutrient for aquatic biota (Hem. 1989). The summary results for arsenic and selenium in the streambed sediments of the four subunits are presented in figure 15. These two nonmetallic elements are toxic to aquatic biota (Hem, 1989). Selenium can accumulate in the tissues of fish, but although arsenic generally does not bioaccumulate through the food chain, it is more toxic than selenium at small concentrations (May and McKinney, 1981).

Fish Tissue

The descriptive statistics summarizing recent water-quality conditions measured in fish-tissue samples are presented in table 10 (at the end of the report). The summaries were computed for aggregations of samples that were grouped by anatomical part and species group and for aggregations of sites grouped by water-body type and subunit, as previously described. Only two of the three subunits represented in table 2 appear in table 10 because there was an insufficient number of suitable data available from the Platte Valley subunit with which to compute any of the summary statistics. Results for summary groups that had fewer than two analyses of a particular constituent are not reported. Because reporting levels were variable throughout the summary period for most constituents, many of the percentile computations yielded a concentration range rather than a specific concentration. The distributions of arsenic, cadmium, copper, mercury, and selenium concentrations for two subunit categories are presented in figure 16. Those five elements are potentially toxic to fish and wildlife (Schmitt and Brumbaugh, 1990).

Aquatic Ecology

Aquatic habitat characteristics are summarized in table 11 (at the end of the report) for samples grouped by stream-order category and by subunit. There were insufficient data from the higher order (fourth- to sixth-order) streams to compute summary statistics for any of the habitat characteristics. Results for sites that had fewer than 10 measurements of a particular characteristic were not reported. The distribution of one habitat characteristic of the first- to third-order streams--the sand component of the channel substrate--is shown in figure 17.

The fish and macroinvertebrate taxa that were collected at the largest number of sampling sites are listed in table 12 (at the end of the report) along with the corresponding number of sites. Only the taxa that occurred at the 10 highest frequencies in each summary group are listed, and only frequencies of two or more sites are included. The relative abundance of fish and macroinvertebrate taxa collected in the study unit is summarized in table 13 (at the end of the report). Relative abundance was computed as the percentage of a sample that was composed of a specific taxon. The distribution of relative-abundance values for the taxa that were collected at the largest number of sampling sites on the first- to third-order streams of each subunit is shown in figure 18. Relative abundance was not computed for summary groups that had fewer than 10 determinations selected for inclusion in the summary, and therefore only three fish taxa are shown for the Platte Valley subunit.

The statistical summaries for two additional ecological characteristics related to the concept of biological diversity are presented in table 14 (at the end of the report). The two additional ecological characteristics are (1) taxonomic richness of the sampled community, defined as the number of different taxa included in a single sample, and (2) taxonomic dominance, defined as the percentage of a sample that was composed of the single most abundant taxon. The distributions of these two ecological characteristics in first- to third-order streams of each subunit are shown in figures 19 and 20.

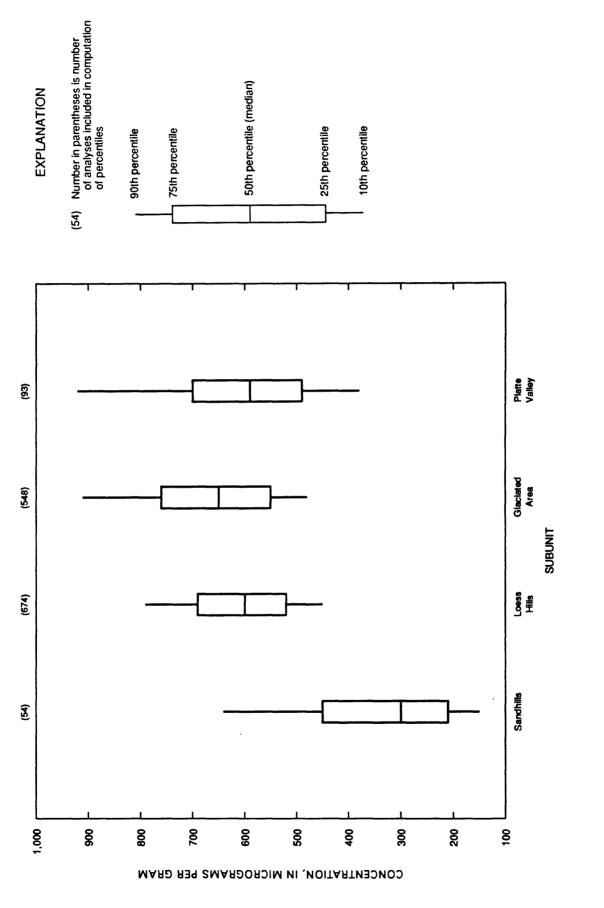
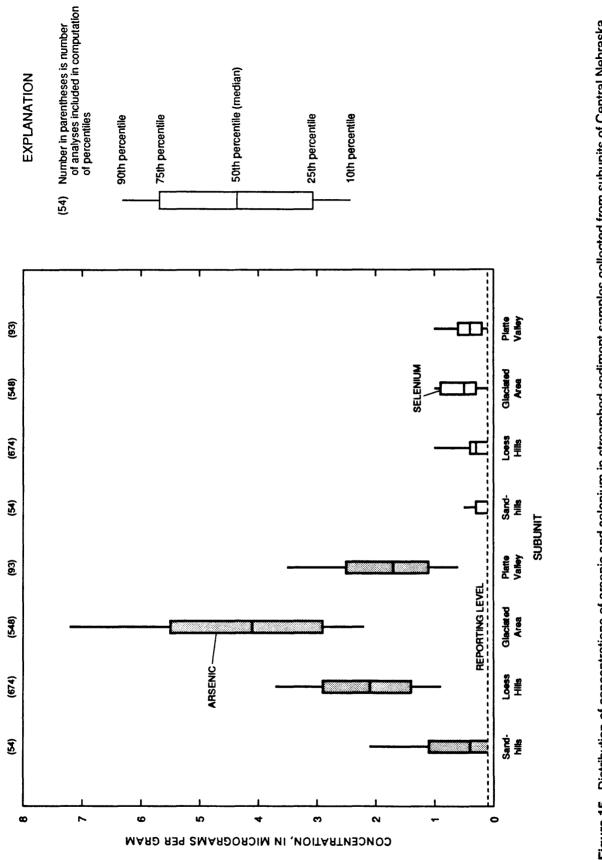
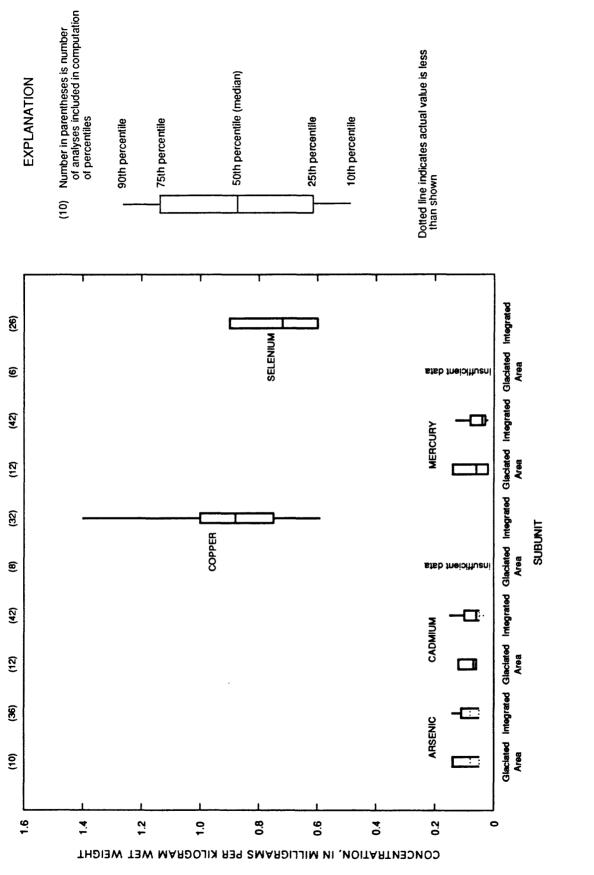




Figure 14. Distribution of concentrations of phosphorus in streambed-sediment samples collected from subunits of Central Nebraska Basins, 1979.

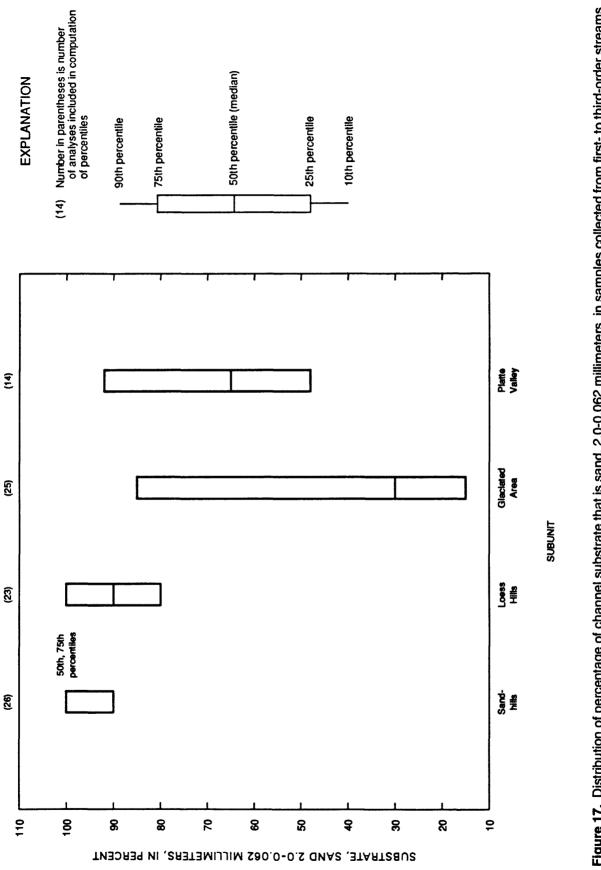
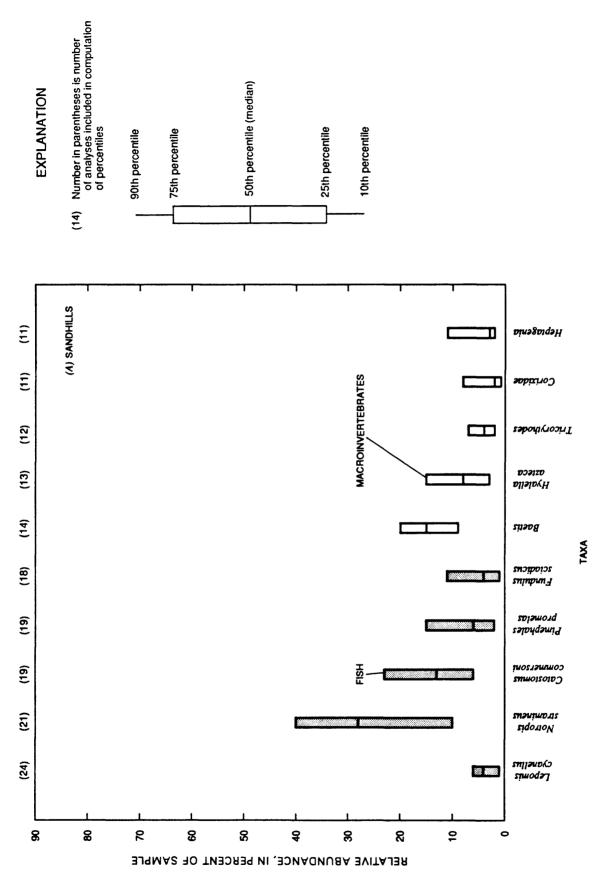
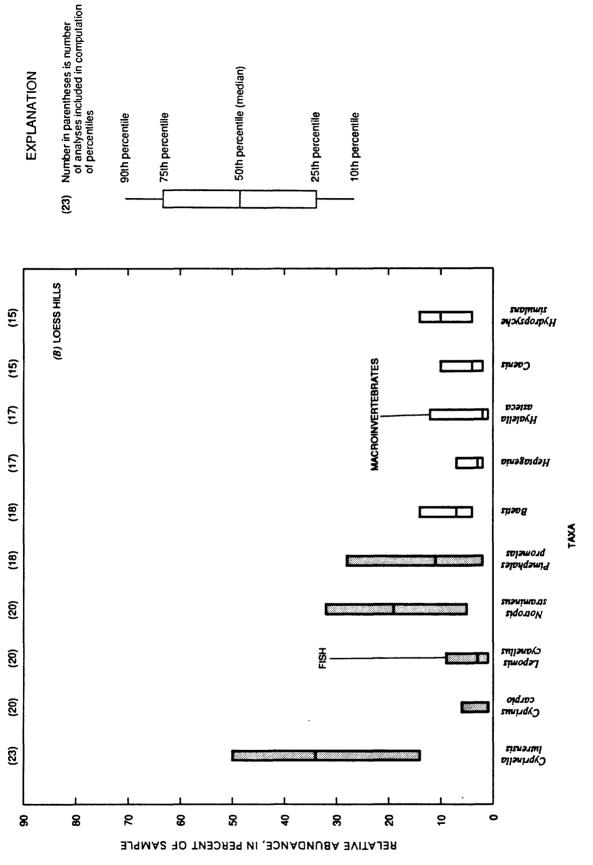
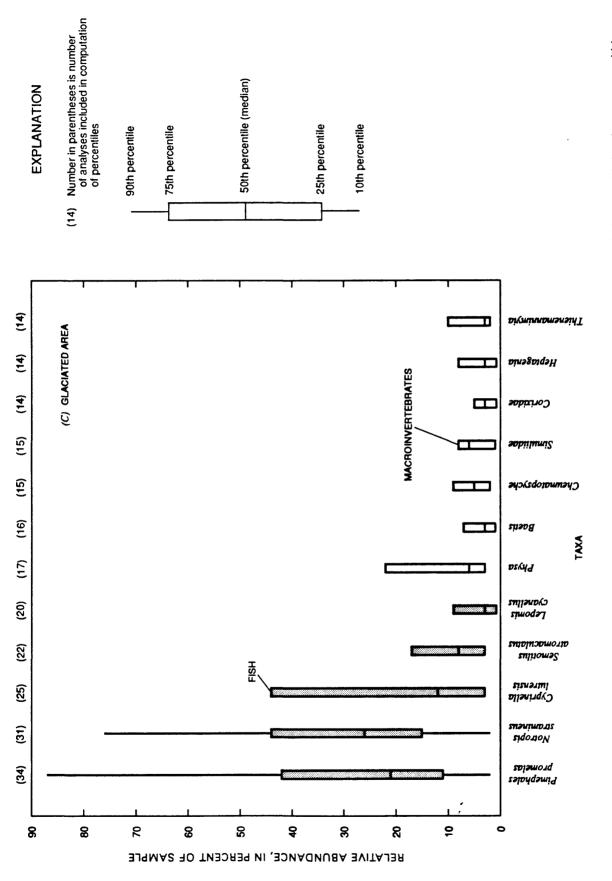
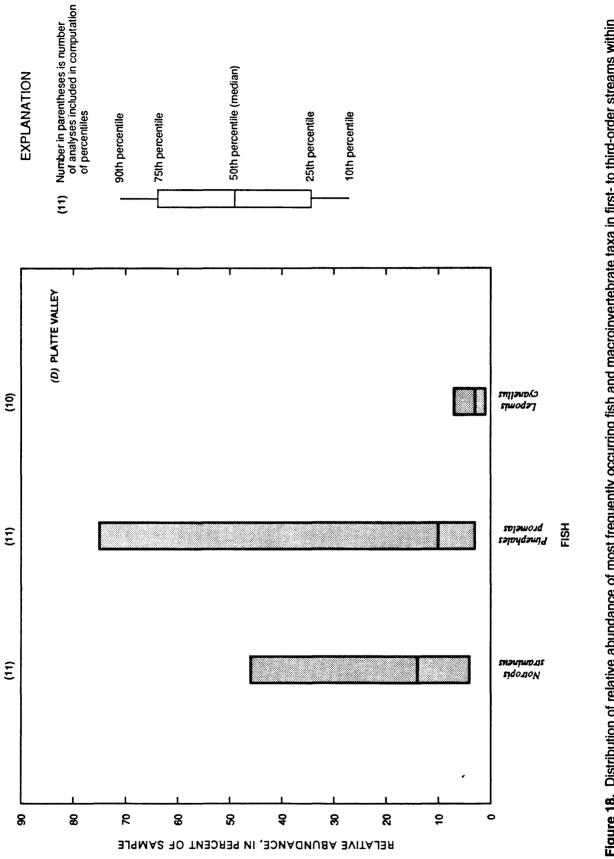
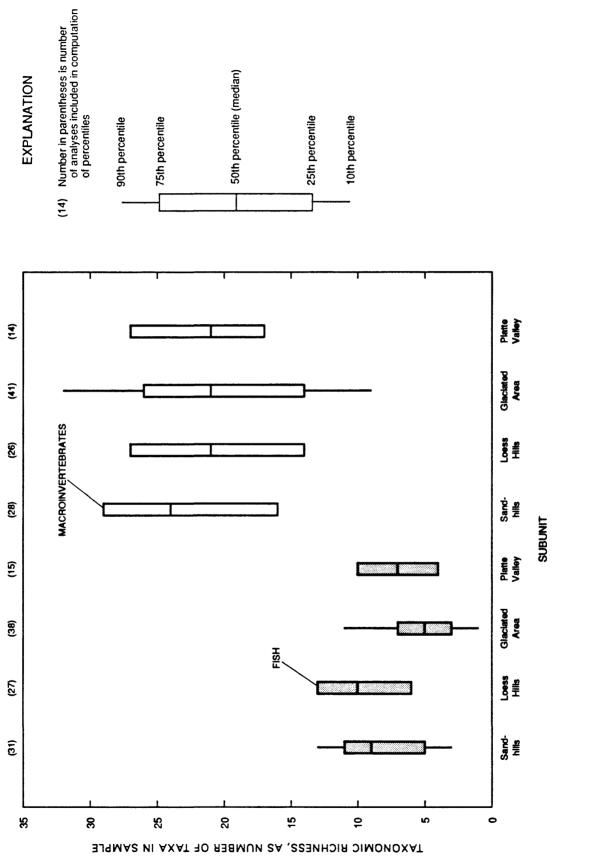


Figure 17. Distribution of percentage of channel substrate that is sand, 2.0-0.062 millimeters, in samples collected from first- to third-order streams within subunits of Central Nebraska Basins, 1981-90.


Figure 18. Distribution of relative abundance of most frequently occurring fish and macroinvertebrate taxa in first- to third-order streams within subunits of Central Nebraska Basins, 1981-90.


SUMMARY OF RECENT WATER-QUALITY CONDITIONS 45


Figure 18. Distribution of relative abundance of most frequently occurring fish and macroinvertebrate taxa in first- to third-order streams within

subunits of Central Nebraska Basins, 1981-90--Continued.

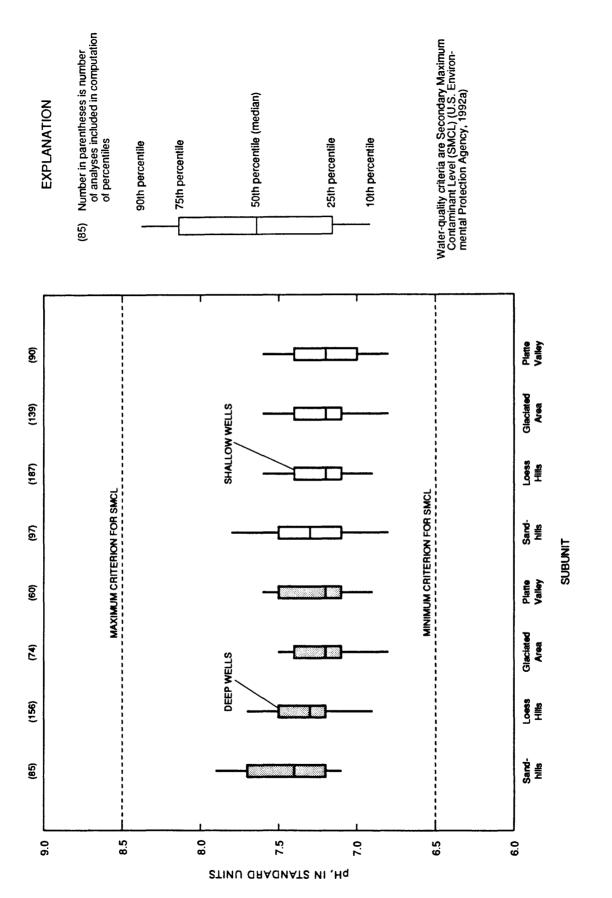


SUMMARY OF RECENT WATER-QUALITY CONDITIONS 49

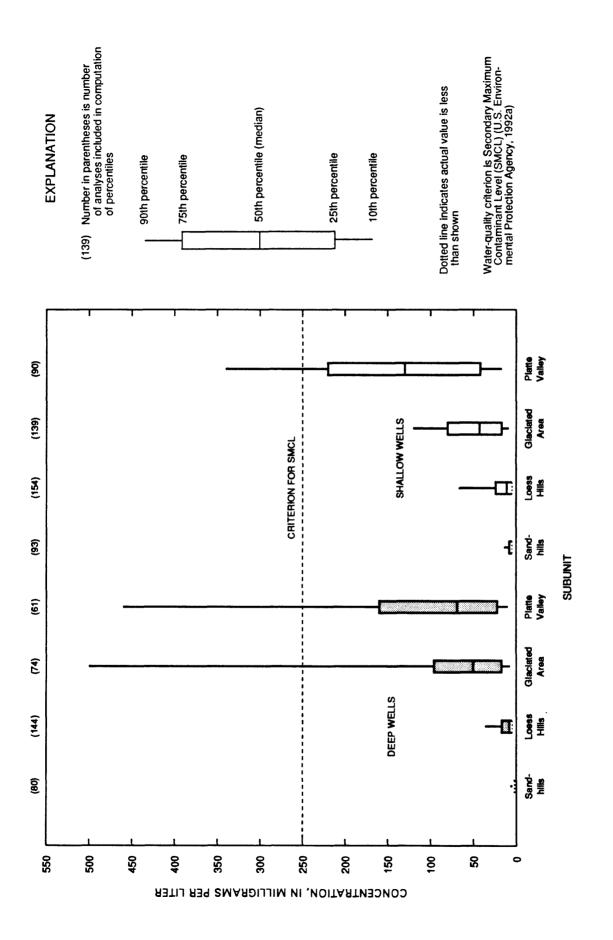
Ground Water

Statistical summaries for the water-quality constituents and properties determined from ground-water samples are presented in tables 15 and 16 (at the end of the report). These results were computed for summary groups defined by well-depth category and by subunit as previously described. Results for summary groups that had fewer than 10 measurements of a particular constituent or property are not reported.

Statistical summaries for ground-water constituents were compared only with drinkingwater Maximum Contaminant Levels (MCLs) and SMCLs because other established waterquality criteria are not applicable. The percentile values for pH in relation to the SMCLs of 6.5 and 8.5 standard units (U.S. Environmental Protection Agency, 1992a) are shown in figure 21. Although none of the computed percentile values for pH exceeded the SMCL values, figure 21 was included to permit the reader to graphically compare and contrast the stream- and ground-water results for a common physical property.


The percentile values for dissolved sulfate in relation to the SMCL of 250 mg/L (U.S. Environmental Protection Agency, 1992a) are shown in figure 22. The percentile values for dissolved solids and the SMCL of 500 mg/L (U.S. Environmental Protection Agency, 1992a) are shown in figure 23. There were fewer than 10 analyses summarized for two of the summary groups, and therefore, no summary statistics were reported in table 15 nor are percentile values for those groups included in figure 23.

Summary results for two nutrient constituents in ground water are presented graphically in this report. The percentile values for nitrate as nitrogen in relation to the drinking-water MCL for nitrate of 10 mg/L (U.S. Environmental Protection Agency, 1992a) are shown for the Loess Hills and Platte Valley subunits in figure 24. The other subunits had insufficient data for the computation of summary statistics. The percentile values for nitrite plus nitrate as nitrogen in relation to the drinking-water MCL for nitrate of 10 mg/L (U.S. Environmental Protection Agency, 1992a) are shown in figure 25 for all four subunits. Two of the dissolved metals had 90th-percentile values that exceeded waterquality regulation values. The percentile values for dissolved iron and the SMCL of 300 μ g/L (U.S. Environmental Protection Agency, 1992a) are shown in figure 26. The percentile values for dissolved manganese and the SMCL of 50 μ g/L (U.S. Environmental Protection Agency, 1992a) are shown in figure 27.


There were a considerable number of the synthetic organic compounds that had been analyzed from a sufficient number of groundwater samples for summary statistics to be computed, but for which all the resulting percentile values were less than an unknown reporting level assumed to be less than any specified values in the respective summary groups. The number of analyses that were summarized for each of these constituents for each summary group that had a sufficient number of analyses to compute summary statistics (10 or more analyses) are listed in table 16 (at the end of the report). Both the deep-well and shallow-well summary groups in the Platte Valley subunit had insufficient data and are not included in table 16.

REPORT SUMMARY

Among the first activities undertaken in the Central Nebraska Basins water-quality assessment were compilation, screening, and available statistical summarv of data concerning recent water-quality conditions in the study unit. The water-quality conditions of interest in addressing the objectives of the NAWQA Program are those that are representative of the general water quality of a given stream reach or area of an aquifer. This report was prepared (1) to identify which of the existing water-quality data are available and suitable for characterizing general conditions in a nationally consistent manner and (2) to describe, to the extent possible, recent, general water-quality conditions in the Central Nebraska Basins. The study unit consists of the area drained by the Platte River between the confluence of the North Platte and South Platte Rivers near North Platte downstream to its confluence with the Missouri River south of Omaha.

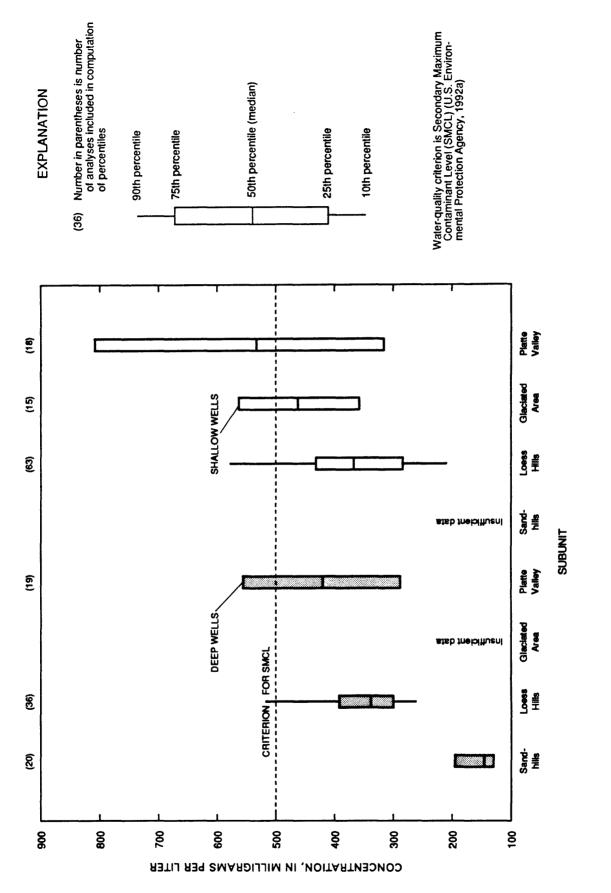
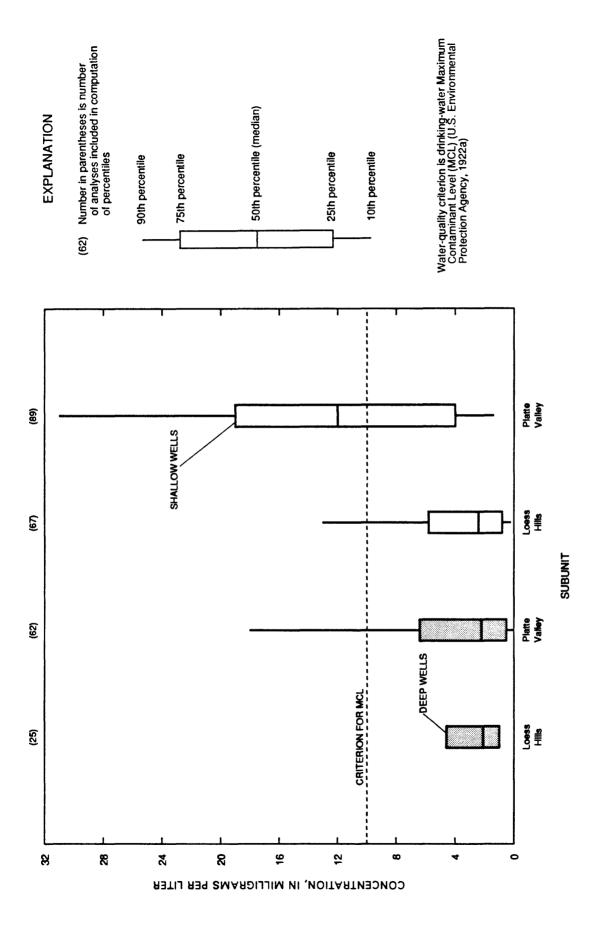
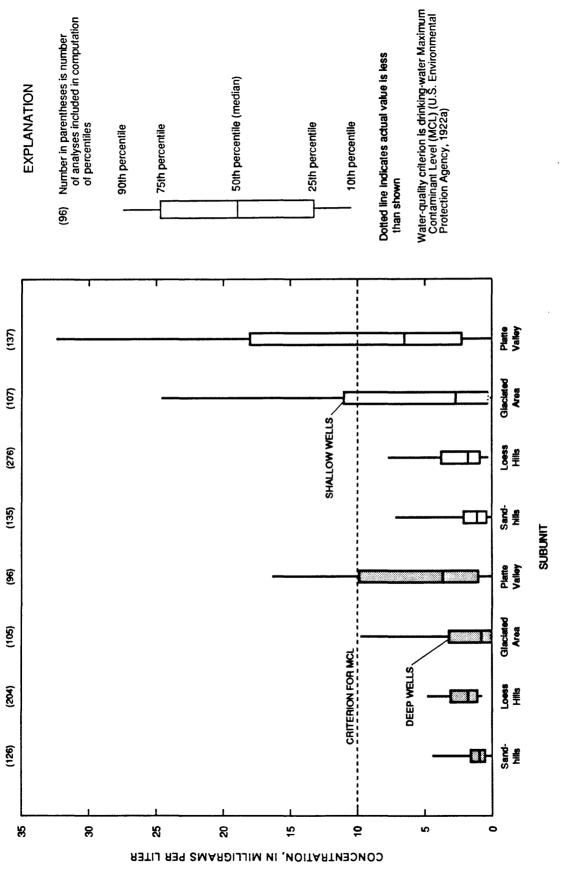




Figure 23. Distribution of concentrations of dissolved solids, sum of constituents, in ground-water samples collected from subunits of Central Nebraska Basins in relation to water-quality criterion, 1978-90.

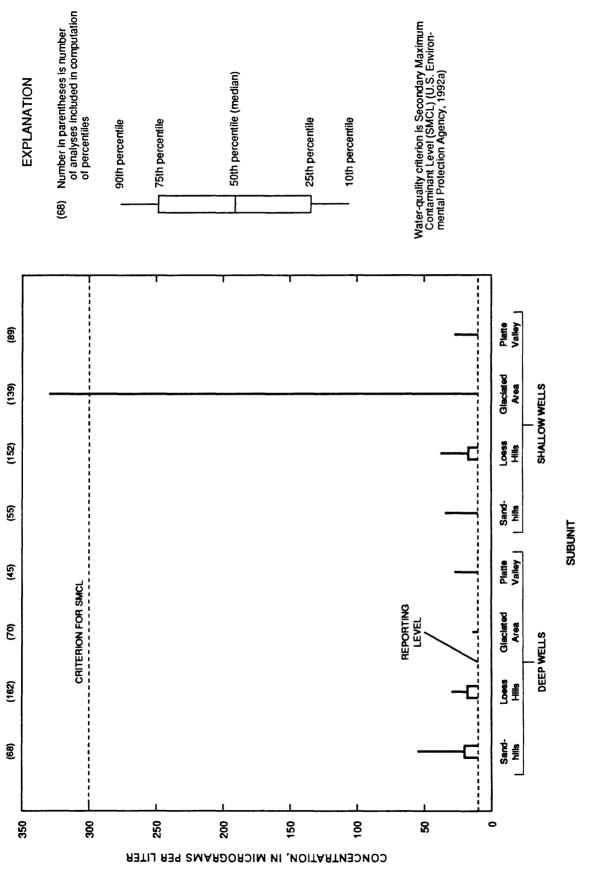
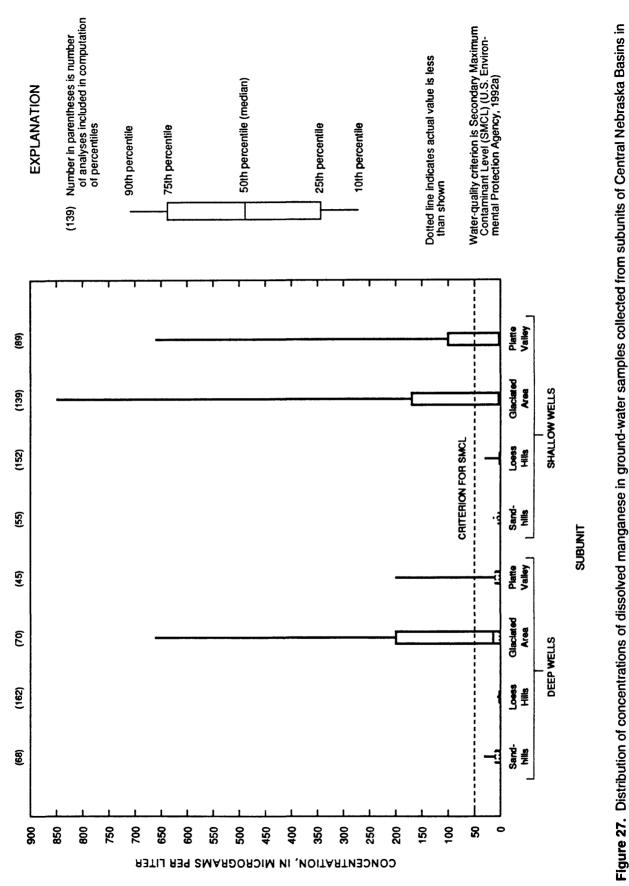



Figure 26. Distribution of concentrations of dissolved iron in ground-water samples collected from subunits of Central Nebraska Basins in relation to water-quality criterion, 1978-90.

REPORT SUMMARY 57

The report includes (1) a description of the sources and characteristics of water-quality data that are available. (2) a description of the approach used for screening data to identify a subset of the data suitable for summary and comparisons, (3) a presentation of statistical and graphical summaries of recent waterquality conditions, and (4) results from comparisons of recent water-quality conditions to established national water-quality criteria, where applicable. Data from 11 different agencies were compiled. Screening criteria were applied to identify those data suitable for inclusion in the summary computations. Six types of samples were included in the summary--stream water, lake water, streambed sediment, fish tissue, aquatic ecology, and ground water. Preparation of the data for summary was specific to each type of sample and may have included grouping sites and samples or adjustments for decreasing potential effects of sources of bias that were recognized in the data. Stream- and lake-water data were summarized for selected sampling sites, and data were summarized by major subunits of the study unit for streambed-sediment, fish-tissue, aquatic-ecological, and ground-water samples.

The statistical summaries focused on the central tendencies and typical variation in the data and used nonparametric statistics such as frequencies and percentile values. Comparisons of selected recent water-quality conditions to established national water-quality criteria were performed for stream water, fish tissue, and ground water. Summary statistics describing water-quality conditions exceeded recent water-quality criteria values for several properties and constituents: (1) for pH, dissolved sulfate, dissolved chloride, dissolved solids, dissolved manganese, and total selenium in stream water; and (2) for dissolved sulfate, dissolved solids, nitrate as nitrogen, nitrite plus nitrate as nitrogen, dissolved iron, and dissolved manganese in ground water.

REFERENCES CITED

Arendt, J.W., Butz, T.R., Cagle, G.W., Kane, V.E., and Nichols, C.E., 1979, Hydrogeochemical and stream sediment reconnaissance procedures of the uranium resource evaluation project: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report K/UR-100, 56 p.

- Bleed, Ann, and Flowerday, Charles, eds., 1990, An atlas of the sand hills (2d ed.): University of Nebraska-Lincoln, Conservation and Survey Division Resource Atlas 5a, 265 p.
- Callam, Michael, Lund, John, Brakhage, Paul, Bubb, David, and Bazata, Ken, 1990, Findings of the 1989 regional ambient fish tissue monitoring program (RAFTMP), follow-up and special survey sites in Nebraska: Lincoln, Nebraska Department of Environmental Control, 20 p.
- Christiansen, C.C., 1987, Report of the analysis of fishes collected during 1986 from the regional ambient fish tissue monitoring program for the state of Nebraska: Lincoln, Nebraska Department of Environmental Control, 30 p.
- _____1988, Findings of the 1987 regional ambient fish tissue monitoring program (RAFTMP) in Nebraska: Lincoln, Nebraska Department of Environmental Control, [11] p.
- Christiansen, C.C., Lund, John, Bazata, Ken, Brakhage, Paul, and Bubb, David, 1989, Findings of the 1988 regional ambient fish tissue monitoring program (RAFTMP) and follow-up survey in Nebraska: Lincoln, Nebraska Department of Environmental Control, [19] p.
- Christiansen, C.C., and Maret, T.R., 1985, Effects of Spencer Foods packing plant effluent on the biological integrity and water quality of Lost Creek and Shonka Ditch--Colfax County, Nebraska: Lincoln, Nebraska Department of Environmental Control, 160 p.
- D'Silva, A.P., Haas, W.J., and Floyd, M.A., 1979, Multilaboratory analytical quality control program for the hydrogeochemical and stream sediment reconnaissance: Ames, Iowa State University, Ames Laboratory, IS-4624.
- Ehrman, Dick, 1988, Strategy for studying nonpoint source ground water pollution for the special protection area program: Lincoln, Nebraska Department of Environmental Control, 13 p.
- Environmental Systems Research Institute, 1992, Understanding GIS--The Arc/Info method: Redlands, Calif., Environmental Systems Research Institute, 450 p.

- Exner, M.E., 1984, Implication of temporal variations and vertical stratification of groundwater nitrate-nitrogen in the Hall County special use area: Lincoln, University of Nebraska, Water Center, 44 p.
- _____1985, Concentration of nitrate-nitrogen in groundwater, central Platte region, Nebraska, 1984: Lincoln, University of Nebraska, Conservation and Survey Division, scale [1:525,000].
- Exner, M.E., and Spalding, R.F., 1990, Occurrence of pesticides and nitrate in Nebraska ground water: Lincoln, University of Nebraska, Water Center, 39 p.
- Fishman, M.J., and Friedman, L.C., eds., 1985, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, Open-File Report 85-495, 709 p.
- Guy, H.P., 1977, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques for Water-Resources Investigations, book 3, chap. C1, 58 p.
- Guy, H.P., and Norman, V.W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. C2, 59 p.
- Helsel, D.R., and Hirsch, R.M., 1992, Statistical methods in water resources: Amsterdam, Elsevier Publ., 522 p.
- Hem, J.D., 1989, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hirsch, R.M., Alley, W.M., and Wilber, W.G., 1988, Concepts for a national water-quality assessment program: U.S. Geological Survey Circular 1021, 42 p.
- Hren, Janet, Chaney, T.H., Norris, J.M., and Childress, C.J.O., 1987, Phase I--Inventory and evaluation of 1984 programs and costs, chap. A of Water-quality data-collection activities in Colorado and Ohio: U.S.

Geological Survey Water-Supply Paper 2295, 71 p.

- Jacknow, Joel, Ludke, J.L., and Coon, N.C., 1986, Monitoring fish and wildlife for environmental contaminants--the National Contaminant Biomonitoring Program: U.S. Fish and Wildlife Service Fish and Wildlife Leaflet 4, 15 p.
- Jordan, P.R., 1991, Assessment approach, in Jordan, P.R., and Stamer, J.K., eds., Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska--Analysis of available data through 1986: U.S. Geological Survey Open-File Report 91-75, p. 21-24.
- Junk, G.A., Spalding, R.F., and Richard, J.J., 1980, Areal, vertical, and temporal differences in ground water chemistry--II. Organic constituents: Journal of Environmental Quality, v. 9, no. 3, p. 479-483.
- Leahy, P.P., Rosenshein, J.S., and Knopman, D.S., 1990, Implementation plan for the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 90-174, 10 p.
- Link, M.L., 1990, A study of nonpoint source ground water contamination near Wilcox and Hildreth, Nebraska: Lincoln, Nebraska Department of Environmental Control, 59 p.
- Littell, Bruce, [1982?], Report of the analysis of fishes collected during 1981 from the basic water monitoring program sites in Nebraska: Kansas City, Kans., U.S. Environmental Protection Agency, 6 p.
- Lowe, T.P., May, T.W., Brumbaugh, W.G., and Kane, D.A., 1985, National Contaminant Biomonitoring Program--Concentrations of seven elements in freshwater fish, 1978-81: Archives of Environmental Contamination and Toxicology, v. 14, p. 363-388.
- Ludke, J.L., and Schmitt, C.J., 1980, Monitoring contaminant residues in freshwater fishes in the United States--the National Pesticide Monitoring Program, sec. 8 of Swain, W.R., and Shannon, V.R., eds., Theoretical aspects of aquatic toxicology: USA-USSR Symposium on the Effects of Pollutants Upon Aquatic Ecosystems, 3rd, Duluth, Minn., 1980, Proceedings, p. 97-110.

- May, T.W., and McKinney, G.L., 1981, Cadmium, lead, mercury, arsenic, and selenium concentrations in freshwater fish, 1976-1977--National Pesticide Monitoring Program: Pesticides Monitoring Journal, v. 15, no. 1, p. 14-38.
- Miller, J.G., III, 1988, Salt Creek survey-Lincoln, Nebraska: [Iowa City], University of Iowa Hygienic Laboratory, Report 88-5, 19 p.
- National Academy of Sciences, 1972, Water quality criteria 1972: Washington, D.C., Report of Committee on Water Quality Criteria, 594 p.
- Nebraska Department of Environmental Control, 1990a, 1990 Nebraska water quality report: Lincoln, Nebraska Department of Environmental Control, 309 p.
- _____1990b, Ambient biological network monitoring project plan: Lincoln, Nebraska Department of Environmental Control, [16] p.
- ____1991a, Nebraska stream classification study: Lincoln, Nebraska Department of Environmental Control, 342 p.
- Nebraska Department of Health, [1985?], Drinking water quality in Nebraska communities--1984: Lincoln, Nebraska Department of Health, 163 p.
- Ott, Lyman, 1988, An introduction to statistical methods and data analysis: Boston, PWS-Kent Publ. Co., 835 p.
- Parkhurst, D.L., Christenson, S.C., and Schlottmann, J.L., 1989, Ground-waterquality assessment of the central Oklahoma aquifer, Oklahoma--Analysis of available water-quality data through 1987: U.S. Geological Survey Open-File Report 88-728, 80 p.
- Schmitt, C.J., and Brumbaugh, W.G., 1990, National Contaminant Biomonitoring Program--Concentrations of arsenic, cadmium, copper, lead, mercury, selenium, and zinc in U.S. freshwater fish, 1976-84: Archives of Environmental Contamination and Toxicology, v. 19, p. 731-747.

- Schmitt, C.J., Zajicek, J.L., and Peterman, P.H., 1990, National Contaminant Biomonitoring Program--Residues of organochlorine chemicals in U.S. freshwater fish, 1976-84: Archives of Environmental Contamination and Toxicology, v. 19, p. 748-781.
- Schmitt, C.J., Zajicek, J.L., and Ribick, M.A., 1985, National Pesticide Monitoring Program--Residues of organochlorine chemicals in freshwater fish, 1980-81: Archives of Environmental Contamination and Toxicology, v. 14, p. 225-260.
- Seaber, P.R., Kapinos, F.P., and Knapp, G.L., 1986, Hydrologic unit maps: U.S. Geological Survey Water-Supply Paper 2294, 63 p.
- Spalding, R.F., and Exner, M.E., 1980, Areal, vertical, and temporal differences in ground water chemistry--I. Inorganic constituents: Journal of Environmental Quality, v. 9, no. 3, p. 466-79.
- _____1990, Ground-water quality in the lower Platte valley, *in* Spalding, R.F., Water quality in the lower Platte River basin with emphasis on agrichemicals: Lincoln, University of Nebraska, Conservation and Survey Division, p. B1-B35.
- Stevens, H.H, Jr., Ficke, J.F., and Smoot, G.F., 1975, Water-temperature-influential factors, field measurement, and data presentation: U.S. Geological Survey Techniques of Water-Resources Investigations, book 1, chap. D1, 65 p.
- Thurman, E.M., Goolsby, D.A., Meyer, M.T., Mills, M.S., Pomes, M.L., and Kolpin, D.W., 1992, A reconnaissance study of herbicides and their metabolites in surface water of the midwestern United States using immunoassay and gas chromatography/mass spectrometry: Environmental Science and Technology, v. 26, no. 12, p. 2440-2447.
- Union Carbide Corporation, Nuclear Division, 1978a, Procedures manual for groundwater reconnaissance sampling: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report K/UR-12, 57 p.

- _____1978b, Procedures manual for stream sediment reconnaissance sampling: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report K/UR-13, 56 p.
- _____1980a, Hydrogeochemical and stream sediment reconnaissance basic data for Alliance NTMS quadrangle, Nebraska; South Dakota: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report GJBX-219(80), 151 p.
- 1980b, Hydrogeochemical and stream sediment reconnaissance basic data for Grand Island NTMS quadrangle, Nebraska; Kansas: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report GJBX-185(80), 138 p.
- _____1981a, Hydrogeochemical and stream sediment reconnaissance basic data for Broken Bow NTMS quadrangle, Nebraska: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report GJBX-274(81), 86 p.
- _____1981b, Hydrogeochemical and stream sediment reconnaissance basic data for Fremont NTMS quadrangle, Nebraska; Iowa: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report GJBX-392(81), 125 p.
- _____1981c, Hydrogeochemical and stream sediment reconnaissance basic data for Lincoln NTMS quadrangle, Nebraska; Kansas: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report GJBX-229(81), 132 p.
- ____1981d, Hydrogeochemical and stream sediment reconnaissance basic data for O'Neill NTMS quadrangle, South Dakota; Nebraska: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report GJBX-307(81), 122 p.
- _____1981e, Hydrogeochemical and stream sediment reconnaissance basic data for Scottsbluff NTMS quadrangle, Nebraska and Colorado: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous

Diffusion Plant, Report GJBX-145(81), 147 p.

- _____1981f, Hydrogeochemical and stream sediment reconnaissance basic data for Sioux City NTMS quadrangle, Nebraska; Iowa; South Dakota: Oak Ridge, Tenn., Union Carbide Corporation, Oak Ridge Gaseous Diffusion Plant, Report GJBX-393(81), 112 p.
- U.S. Environmental Protection Agency, [1985?], Report of the analysis of fishes collected during 1984 from the ambient fish tissue monitoring program sites in Nebraska: Kansas City, Kans., U.S. Environmental Protection Agency, 5 p.
- [1986?], Report of the analysis of fishes collected during 1985 from the ambient fish tissue monitoring program sites in Nebraska: Kansas City, Kans., U.S. Environmental Protection Agency,12 p.
- ____1991, Water quality criteria summary: Washington, D.C., U.S. Environmental Protection Agency, 1 poster.
- ____1992a, Drinking water regulations and health advisories: Washington, D.C., U.S. Environmental Protection Agency, 11 p.
- 1992b, Water quality standards, establishment of numeric criteria for priority toxic pollutants, states' compliance--Final rule: Federal Register, v. 57, no. 246, p. 60848-60923.
- U.S. Food and Drug Administration, 1992, Action levels for poisonous and deleterious substances in human food and animal feed: Washington, D.C., U.S. Department of Health and Human Services, Food and Drug Administration, 16 p.
- U.S. Geological Survey, 1979a, Land use and land cover, 1975-1976, Alliance, Nebraska; South Dakota: U.S. Geological Survey Open-File Report 79-513-1, Land Use Series, scale 1:250,000.
- ____1979b, Land use and land cover, 1974, Broken Bow, Nebraska: U.S. Geological Survey Open-File Report 79-907-1, Land Use Series, scale 1:250,000.

- ____1979c, Land use and land cover, 1978, Grand Island, Nebraska; Kansas: U.S. Geological Survey Open-File Report 79-1054-1, Land Use Series, scale 1:250,000.
- ____1979d, Land use and land cover, 1974-1978, McCook, Nebraska; Kansas: U.S. Geological Survey Open-File Report 79-906-1, Land Use Series, scale 1:250,000.
- ____1979e, Land use and land cover, 1974-1978, North Platte, Nebraska: U.S. Geological Survey Open-File Report 79-1328-1, Land Use Series, scale 1:250,000.
- ____1979f, Land use and land cover, 1973-1974, O'Neill, Nebraska; South Dakota: U.S. Geological Survey Open-File Report 79-908-1, Land Use Series, scale 1:250,000.
- _____1979g, Land use and land cover, 1976-1979, Scottsbluff, Nebraska; Colorado: U.S. Geological Survey Open-File Report 79-909-1, Land Use Series, scale 1:250,000.
- _____1981, Land use and land cover, 1979, Valentine, Nebraska; South Dakota: U.S. Geological Survey Open-File Report 81-622-1, Land Use Series, scale 1:250,000.
- ____1982a, Land use and land cover, 1974-81, Fremont, Nebraska; Iowa: U.S. Geological Survey Open-File Report 82-248-1, Land Use Series, scale 1:250,000.
- ____1982b, Land use and land cover, 1974-81, Lincoln, Nebraska; Kansas: U.S. Geological Survey Open-File Report 82-249-1, Land Use Series, scale 1:250,000.
- ____1982c, Land use and land cover, 1973-78, Sioux City, Iowa; Nebraska; South Dakota: U.S. Geological Survey Open-File Report 82-246-1, Land Use Series, scale 1:250,000.
- ____1984a, Land use and land cover, 1982, Nebraska City, Nebr.; Mo.; Iowa, Kans.: U.S. Geological Survey Open-File Report 84-200-1, Land Use Series, scale 1:250,000.
- ____1984b, Land use and land cover, 1982, Omaha, Nebraska; Iowa: U.S. Geological Survey Open-File Report 84-196-1, Land Use Series, scale 1:250,000.

- University of Nebraska, Conservation and Survey Division, 1980a, Groundwater nitrate-nitrogen concentrations, Alliance quadrangle, Nebraska: Lincoln, University of Nebraska, Conservation and Survey Division, scale [1:250,000].
- ____1980b, Groundwater nitrate-nitrogen concentrations, Broken Bow quadrangle, Nebraska: Lincoln, University of Nebraska, Conservation and Survey Division, scale [1:250,000].
- ____1980c, Groundwater nitrate-nitrogen concentrations, Fremont quadrangle, Nebraska: Lincoln, University of Nebraska, Conservation and Survey Division, scale [1:250,000].
- ____1980d, Groundwater nitrate-nitrogen concentrations, Grand Island quadrangle, Nebraska: Lincoln, University of Nebraska, Conservation and Survey Division, scale [1:250,000].
- ____1980e, Groundwater nitrate-nitrogen concentrations, Lincoln quadrangle, Nebraska: Lincoln, University of Nebraska, Conservation and Survey Division, scale [1:250,000].
- ____1980f, Groundwater nitrate-nitrogen concentrations, Scottsbluff quadrangle, Nebraska: Lincoln, University of Nebraska, Conservation and Survey Division, scale [1:250,000].
- Verstraeten, I.M., 1989, A study of nonpoint source ground water contamination in southern Dodge County, Nebraska: Lincoln, Nebraska Department of Environmental Control, 58 p.
- Wehtje, G.R., Spalding, R.F., Burnside, O.C., Lowry, S.R., and Leavitt, J.R.C., 1983, Biological significance and fate of atrazine under aquifer conditions: Weed Science, v. 31, p. 610-618.
- Zaroban, D.W., 1987, A field test of habitat evaluation procedures for creek chub (Semotilus atromaculatus) and channel catfish (Ictalurus punctatus): Lincoln, University of Nebraska, master's thesis, 45 p.

Table 7. Statistical summary of data on water-quality constituents and properties in stream-water samples collected from selected sites within Central Nebraska Basins, 1981-90

[Number in parentheses following constituent or property name is parameter code used in U.S. Environmental Protection Agency's Storage and Retrieval System and U.S. Geological Survey's National Water Information System; <, less than; --, value not determined for fewer than 30 analyses]

Sampling- site number		Number of analyses	Value at indicated percentile				
			10th	25th	50th	75th	9 0th
(fig. 2)	Site name			(median)			
Spe	ecific conductance, onsite, in microsieme	ens per cen	timeter,	at 25 de	grees Ce	lsius (00	<u>095)</u>
1	Platte River near Overton, Nebr.	112	790	850	890	9 60	1,000
2	Platte River near Grand Island, Nebr.	110	830	870	910	1,000	1,100
3	Platte River near Duncan, Nebr.	60	750	830	900	96 0	1,000
4	Middle Loup River north of Dunning, Nebr.	101	170	180	190	200	210
5	Dismal River near Thedford, Nebr.	44	170	170	170	180	180
6	Dismal River at Dunning, Nebr.	69	160	160	170	170	180
7	Middle Loup River at Sargent, Nebr.	102	16 0	170	190	200	210
8	Mud Creek near Sweetwater, Nebr.	101	520	590	630	660	710
9	South Loup River at St. Michael, Nebr.	207	330	380	410	44 0	480
10	Middle Loup River at St. Paul, Nebr.	125	270	28 0	310	350	380
11	North Loup River at Taylor, Nebr.	113	150	160	170	180	200
12	Calamus River near Burwell, Nebr.	81	140	140	150	170	180
13	North Loup River near St. Paul, Nebr.	206	200	220	230	250	260
14	Cedar River near Fullerton, Nebr.	174	250	270	280	300	320
15	Loup River Power Canal at diversion near Genoa, Nebr.	37	240	260	290	300	330
16	Beaver Creek at Genoa, Nebr.	88	3 00	320	360	380	420
17	Platte River at North Bend, Nebr.	93	360	460	530	63 0	740
18	Elkhorn River near Atkinson, Nebr.	76	220	230	240	270	310
19	Elkhorn River at Norfolk, Nebr.	85	290	320	330	350	370
20	Elkhorn River at West Point, Nebr.	85	360	400	450	490	530
21	Logan Creek at Pender, Nebr.	90	710	780	840	9 00	92 0
22	Elkhorn River at Waterloo, Nebr.	107	440	500	560	610	670
34	Salt Creek below Stevens Creek near Waverly, Nebr.	97	1,300	2,800	4,300	6,500	7,300
35	Salt Creek at Greenwood, Nebr.	89	1,300	2,400	3,600	5,200	6,400
36	Platte River at Louisville, Nebr.	100	460	550	650	740	840

•

Sampling- site		Number	Value at indicated percentile						
number		of	10th	25th	50th	75th	9 0th		
(fig. 2)	Site name	analyses	10111	20111	(median		30111		
	pH, whole water, onsit	te, in stand	ard unit	<u>s (00400</u>)				
1	Platte River near Overton, Nebr.	104	7.9	8.0	8.3	8.5	8.7		
2	Platte River near Grand Island, Nebr.	101	8.0	8.1	8.2	8.5	8.6		
3	Platte River near Duncan, Nebr.	64	8.0	8.2	8.3	8.5	8.7		
4	Middle Loup River north of Dunning, Nebr.	80	7.5	7.8	8.0	8.2	8.4		
5	Dismal River near Thedford, Nebr.	44	7.5	7.6	7.7	8.1	8.2		
6	Dismal River at Dunning, Nebr.	52	7.3	7.8	8.0	8.2	8.4		
7	Middle Loup River at Sargent, Nebr.	73	7.3	7.5	7.9	8.1	8.3		
8	Mud Creek near Sweetwater, Nebr.	101	7.6	7.8	8.0	8.2	8.4		
9	South Loup River at St. Michael, Nebr.	179	7.4	7.7	8.2	8.4	8.6		
10	Middle Loup River at St. Paul, Nebr.	125	7.6	7.8	8.1	8.3	8.5		
11	North Loup River at Taylor, Nebr.	84	7.2	7.5	7.8	8.1	8.3		
12	Calamus River near Burwell, Nebr.	55	7.4	7.6	7.9	8.2	8.5		
13	North Loup River near St. Paul, Nebr.	173	7.3	7.6	7.9	8.3	8.6		
14	Cedar River near Fullerton, Nebr.	157	7.3	7.7	8.0	8.2	8.4		
15	Loup River Power Canal at diversion near Genoa, Nebr.	38	7.8	7.9	8.1	8.3	8.5		
16	Beaver Creek at Genoa, Nebr.	93	7.5	7.7	8.0	8.2	8.4		
17	Platte River at North Bend, Nebr.	9 8	7.7	8.0	8.2	8.4	8.6		
18	Elkhorn River near Atkinson, Nebr.	78	7.3	7.6	7.7	8.1	8.7		
19	Elkhorn River at Norfolk, Nebr.	83	7.5	7.8	8.1	8.4	8.7		
20	Elkhorn River at West Point, Nebr.	87	7.5	7.8	8.1	8.4	8.6		
21	Logan Creek at Pender, Nebr.	91	7.6	7.8	8.1	8.3	8.4		
22	Elkhorn River at Waterloo, Nebr.	106	7.6	7.9	8.2	8.4	8.5		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	109	7.6	7.7	7.9 .	8.0	8.3		
35	Salt Creek at Greenwood, Nebr.	95	7.5	7.8	7.9	8.0	8.2		
36	Platte River at Louisville, Nebr.	102	7.8	8.0	8.2	8.5	8.7		
	Temperature, water,	in degrees	<u>Celsius</u>	<u>(00010)</u>					
1	Platte River near Overton, Nebr.	116	0	2.5	13.0	20.5	27.0		
2	Platte River near Grand Island, Nebr.	113	.5	2.0	12.5	21.0	26.5		
3	Platte River near Duncan, Nebr.	66	.5	4.5	14.0	22.0	25.5		
4	Middle Loup River north of Dunning, Nebr.	99	0	3.0	11.0	17.0	20.5		
5	Dismal River near Thedford, Nebr.	4 5	4.0	6.0	12.5	18.5	20.0		

 Table 7. Statistical summary of data on water-quality constituents and properties in stream-water samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		NT	Value at indicated percentile					
site number		Number of	10th	25th	50th	75th	90th	
(fig. 2)	Site name	analyses	1001	20111	(median)	7000	5000	
	Temperature, water, in de	rees Celsiu	15 (0001)	<u>0)</u> Cont	inued			
6	Dismal River at Dunning, Nebr.	69	1.0	3.0	11.0	17.5	20.0	
7	Middle Loup River at Sargent, Nebr.	100	0	1.0	8.0	18.0	22.0	
8	Mud Creek near Sweetwater, Nebr.	102	.5	1.0	11.0	18.5	23.0	
9	South Loup River at St. Michael, Nebr.	206	.5	1.0	10.5	19.0	24.0	
10	Middle Loup River at St. Paul, Nebr.	123	.5	3.0	14.0	22.5	27.5	
11	North Loup River at Taylor, Nebr.	111	0.	1.0	9.0	19.0	21.0	
12	Calamus River near Burwell, Nebr.	80	1.0	3.0	9.0	19.0	22.0	
13	North Loup River near St. Paul, Nebr.	206	.5	1.0	10.0	20.0	25.0	
14	Cedar River near Fullerton, Nebr.	186	0	1.0	10.0	20.0	25.0	
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	0	1.0	12.0	23.0	27.0	
16	Beaver Creek at Genoa, Nebr.	96	0	1.5	12.0	20.5	26.5	
17	Platte River at North Bend, Nebr.	102	0	1.0	10.5	21.5	26.0	
18	Elkhorn River near Atkinson, Nebr.	79	.5	3.0	13.0	22.5	26.0	
19	Elkhorn River at Norfolk, Nebr.	89	0	3.0	13.0	23.0	28.0	
20	Elkhorn River at West Point, Nebr.	92	0	.5	11.0	20.5	25.0	
21	Logan Creek at Pender, Nebr.	92	0	1.5	11.5	20.0	25.0	
22	Elkhorn River at Waterloo, Nebr.	114	0	1.5	13 .0	20.5	26.0	
34	Salt Creek below Stevens Creek near Waverly, Nebr.	110	1.0	5.0	14.0	21.5	26.5	
35	Salt Creek at Greenwood, Nebr.	97	.5	3.5	12.0	22.0	26.5	
36	Platte River at Louisville, Nebr.	112	0	3.0	12.0	22.0	26.5	
	<u>Turbidity, in nephelom</u>	etric turbic	lity unit	s (00076	<u>3)</u>			
3	Platte River near Duncan, Nebr.	65	3.1	8.4	15	35	70	
5	Dismal River near Thedford, Nebr.	32	6.8	10	15	20	29	
14	Cedar River near Fullerton, Nebr.	25		14	22	36		
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	8.3	18	29	50	130	
22	Elkhorn River at Waterloo, Nebr.	59	12	22	40	85	330	
36	Platte River at Louisville, Nebr.	4 5	14	24	39	85	470	

Sampling-			Value at indicated percentile						
site		Number							
number		of	10th	25th	50th	75th	9 0th		
(fig. 2)	Site name	analyses			(median))			
	Dissolved oxygen, in p	milligrams	per lite	<u>r (00300</u>	2				
1	Platte River near Overton, Nebr.	115	7.6	8.6	10	12	13		
2	Platte River near Grand Island, Nebr.	113	8.4	9.1	10	12	13		
3	Platte River near Duncan, Nebr.	64	7.8	9 .5	11	13	14		
4	Middle Loup River north of Dunning, Nebr.	99	7.6	8.4	9.9	12	13		
5	Dismal River near Thedford, Nebr.	44	7.8	8.4	9.2	11	11		
6	Dismal River at Dunning, Nebr.	68	7.8	8.5	9.9	12	13		
7	Middle Loup River at Sargent, Nebr.	97	7.6	8.5	10	12	13		
8	Mud Creek near Sweetwater, Nebr.	100	6.3	7.0	8.7	12	13		
9	South Loup River at St. Michael, Nebr.	204	7. 9	8.6	9.9	12	13		
10	Middle Loup River at St. Paul, Nebr.	115	8.1	8.6	9 .7	12	13		
11	North Loup River at Taylor, Nebr.	100	8.1	8.8	10	12	12		
12	Calamus River near Burwell, Nebr.	71	7.8	8.9	11	13	14		
13	North Loup River near St. Paul, Nebr.	201	7.8	8.9	10	12	13		
14	Cedar River near Fullerton, Nebr.	102	7.3	8.3	10	12	14		
15	Loup River Power Canal at diversion near Geneoa, Nebr.	38	8.0	9.5	11	13	15		
16	Beaver Creek at Genoa, Nebr.	9 5	7.6	9.0	10	12	14		
17	Platte River at North Bend, Nebr.	102	8.0	9.8	11	13	14		
18	Elkhorn River near Atkinson, Nebr.	78	7.4	8.6	9.9	12	13		
19	Elkhorn River at Norfolk, Nebr.	89	7.7	9.4	11	12	14		
20	Elkhorn River at West Point, Nebr.	91	8.3	9.6	11	13	14		
21	Logan Creek at Pender, Nebr.	92	7.9	8.8	10	12	13		
22	Elkhorn River at Waterloo, Nebr.	112	6.7	8.3	10	13	15		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	106	6.0	6.9	9 .5	11	14		
35	Salt Creek at Greenwood, Nebr.	95	6.0	7.0	9.2	11	13		
36	Platte River at Louisville, Nebr.	109	7.7	8.8	11	13	15		
	<u>Coliform, fecal, M-FC media, ir</u>	n colonies p	er 100 r	milliliter	s (31616)	2			
1	Platte River near Overton, Nebr.	12		120	300	860			
2	Platte River near Grand Island, Nebr.	12		22	36	92			
4	Middle Loup River north of Dunning, Nebr.	100	7	20	67	140	280		
6	Dismal River at Dunning, Nebr.	6 8	16	40	80	140	310		
7	Middle Loup River at Sargent, Nebr.	101	4	9	20	74	3 20		

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling	.	Number	Value at indicated percentile						
site		Number	1041	OFAL	FOIL	7541	90th		
number (fig. 2)	Site name	of analyses	10th	25th	50th (median)	75th	90tn		
	· · · · · · · · · · · · · · · · · · ·			<u></u>					
	Coliform, fecal, M-FC media, in color	nies per 100) millilit	ers (316	<u>616)</u> Con	tinued			
9	South Loup River at St. Michael, Nebr.	91	16	4 8	170	630	2,20 0		
11	North Loup River at Taylor, Nebr.	103	5	10	33	81	20 0		
12	Calamus River near Burwell, Nebr.	71	4	7	7	29	120		
13	North Loup River near St. Paul, Nebr.	101	10	26	64	220	910		
14	Cedar River near Fullerton, Nebr.	72	24	43	160	560	1,300		
<u> </u>	Coliform, fecal, 0.7-micrometer membrar	ne filter, in	colonies	per 100	milliliter	<u>s_(316</u>	<u>25)</u>		
1	Platte River near Overton, Nebr.	92	21	59	180	520	1,200		
2	Platte River near Grand Island, Nebr.	100	16	38	140	360	1,200		
3	Platte River near Duncan, Nebr.	62	8	28	86	420	1,400		
5	Dismal River near Thedford, Nebr.	43	12	24	73	180	320		
8	Mud Creek near Sweetwater, Nebr.	99	37	94	370	2,100	7,300		
14	Cedar River near Fullerton, Nebr.	25		140	230	1,100			
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	14	66	220	1,400	4,400		
16	Beaver Creek at Genoa, Nebr.	95	110	420	970	3,500	20,000		
17	Platte River at North Bend, Nebr.	97	65	110	320	1,000	12,000		
18	Elkhorn River near Atkinson, Nebr.	78	140	380	84 0	1,900	3,300		
19	Elkhorn River at Norfolk, Nebr.	84	41	100	3 80	1,100	7,000		
20	Elkhorn River at West Point, Nebr.	87	140	260	770	2,200	22,000		
21	Logan Creek at Pender, Nebr.	87	60	200	490	2,500	26,000		
22	Elkhorn River at Waterloo, Nebr.	104	350	760	1,400	4,100	17,000		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	101	92	350	•	28,000	50,000		
35	Salt Creek at Greenwood, Nebr.	94	9 0	32 0	5,400	17 000	36,000		
36	Platte River at Louisville, Nebr.	103	56	140	33 0	1,800	12,000		
S	Streptococci, fecal, M-enterococcus agar i	nedium, in	colonies	per 100) milliliter	rs (3167	<u>79)</u>		
1	Platte River near Overton, Nebr.	12		66	130	2 00			
2	Platte River near Grand Island, Nebr.	12		28	130 72	200 340			
2 4	Middle Loup River north of Dunning, Nebr.	67	18	28 43	100	15 0	29 0		
6	Dismal River at Dunning, Nebr.	67	17	32	81	150	350		
-	Middle Loup River at Sargent, Nebr.	68	- ·		U #	20V	500		

Sampling-		N	١	Value at in	ndicated	l percent	ile
site		Number	1041	0541	FOIL	7511	0041
number (fig. 2)	Site name	of a nalyses	10th	25th	50th (media)	75th n)	90th
Strepto	ococci, fecal, M-enterococcus agar mediu	m. in colon	ies per	100 milli	liters (3	<u>1679)</u> C	ontinued
9	South Loup River at St. Michael, Nebr.	60	50	81	190	640	2,90 0
11	North Loup River at Taylor, Nebr.	70	10	30	48	100	2 20
12	Calamus River near Burwell, Nebr.	70	7	7	20	55	250
13	North Loup River near St. Paul, Nebr.	72	25	4 0	130	440	2,400
14	Cedar River near Fullerton, Nebr.	72	61	130	320	99 0	1,700
	Streptococci, fecal, KF agar mediu	m, in coloni	ies per	100 millil	iters (3	<u>1673)</u>	
1	Platte River near Overton, Nebr.	95	39	100	300	1,400	6,000
2	Platte River near Grand Island, Nebr.	100	48	79	160	620	2,400
3	Platte River near Duncan, Nebr.	63	27	100	240	92 0	1,800
5	Dismal River near Thedford, Nebr.	43	40	54	9 0	280	600
8	Mud Creek near Sweetwater, Nebr.	99	140	400	1,200	4,300	12,000
14	Cedar River near Fullerton, Nebr.	25		300	76 0	1,200	
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	9 0	120	820	3,500	18,000
16	Beaver Creek at Genoa, Nebr.	96	360	1,000	3,200	9,300	55,000
17	Platte River at North Bend, Nebr.	101	80	190	520	2,300	18,000
18	Elkhorn River near Atkinson, Nebr.	77	110	260	600	1,200	2,600
19	Elkhorn River at Norfolk, Nebr.	86	90	160	4 80	2 ,600	10,000
20	Elkhorn River at West Point, Nebr.	88	140	370	1,000	7,100	42,000
21	Logan Creek at Pender, Nebr.	89	130	280	960	5,500	60,000
22	Elkhorn River at Waterloo, Nebr.	104	380	770	4,500	21,000	49,000
34	Salt Creek below Stevens Creek near Waverly, Nebr.	107	69	230	2,000	8,200	49 ,000
3 5	Salt Creek at Greenwood, Nebr.	96	21 0	500	2,000	9.700	35,000
36	Platte River at Louisville, Nebr.	101	100	250	1,000		53,000
	<u>Hardness, total, as CaCO₃</u>	<u>, in milligra</u>	ams per	liter (00	<u>900)</u>		
1	Platte River near Overton, Nebr.	107	250	280	30 0	3 30	350
2	Platte River near Grand Island, Nebr.	113	240	270	290	330	350
3	Platte River near Duncan, Nebr.	6 6	210	250	280	310	340
4	Middle Loup River north of Dunning, Nebr.	98	60	66	70	74	83
5	Dismal River near Thedford, Nebr.	43	67	69	71	72	75
6	Dismal River at Dunning, Nebr.	68	56	59	62	66	70

 Table 7. Statistical summary of data on water-quality constituents and properties in stream-water samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-			Value at indicated percentile						
site number		Number of	10th	2 5th	50th	75th	90t]		
(fig. 2)	Site name	or analyses	IUth		(median)		901		
(<u>8</u> /	Hardness, total, as CaCO ₃ , in m		er liter (<u></u>	<u> </u>		
	Z								
8	Mud Creek near Sweetwater, Nebr.	101	240	280	300	320	340		
9	South Loup River at St. Michael, Nebr.	111	140	160	190	210	220		
10	Middle Loup River at St. Paul, Nebr.	29		120	140	160	-		
11	North Loup River at Taylor, Nebr.	112	56	61	65	70	79		
12	Calamus River near Burwell, Nebr.	81	49	52	56	60	66		
13	North Loup River near St. Paul, Nebr.	119	75	85	92	100	110		
14	Cedar River near Fullerton, Nebr.	187	100	120	120	130	14(
15	Loup River Power Canal at diversion- near Genoa, Nebr.	39	100	110	120	130	150		
16	Beaver Creek at Genoa, Nebr.	9 5	120	140	16 0	170	200		
17	Platte River at North Bend, Nebr.	102	140	160	180	210	250		
18	Elkhorn River near Atkinson, Nebr.	77	84	89	9 5	110	12(
19	Elkhorn River at Norfolk, Nebr.	8 9	130	140	150	160	160		
2 0	Elkhorn River at West Point, Nebr.	92	143	170	200	220	24(
21	Logan Creek at Pender, Nebr.	92	310	360	420	450	460		
22	Elkhorn River at Waterloo, Nebr.	114	170	210	24 0	270	300		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	104	180	2 70	340	360	380		
35	Salt Creek at Greenwood, Nebr.	97	190	280	3 30	350	370		
36	Platte River at Louisville, Nebr.	112	160	170	200	230	250		
	<u>Hardness, noncarbonate, as Ca</u>	1CO ₃ , in mi	lligrams	s per liter	(00904)				
3	Platte River near Duncan, Nebr.	30	54	73	9 8	120	150		
22	Elkhorn River at Waterloo, Nebr.	27		15	19	31			
36	Platte River at Louisville, Nebr.	18		18	31	49			
	Calcium, dissolved, in	milligrams	per lite	r (00915)	!				
1	Platte River near Overton, Nebr.	107	65	72	79	86	92		
2	Platte River near Grand Island, Nebr.	113	60	68	77	85	9 2		
3	Platte River near Duncan, Nebr.	66	50	62	74	83	90		
4	Middle Loup River north of Dunning, Nebr.	99	19	22	23	2 5	27		
5	Dismal River near Thedford, Nebr.	43	21	2 2	23	23	24		
6	Dismal River at Dunning, Nebr.	68	17	19	20	21	23		
7	Middle Loup River at Sargent, Nebr.	101	19	21	24	25	27		

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling- site		Number	Value at indicated percentile						
number (fig. 2)	Site name	of analyses	10th	2 5th	50th (median	75th	90th		
	Calcium, dissolved, in millig	rams per l	iter (00	<u>915)</u> Cor	ntinued				
8	Mud Creek near Sweetwater, Nebr.	101	74	88	95	100	110		
9	South Loup River at St. Michael, Nebr.	111	43	50	61	65	69		
10	Middle Loup River at St. Paul, Nebr.	29		4 0	44	50			
11	North Loup River at Taylor, Nebr.	112	17	19	21	23	25		
12	Calamus River near Burwell, Nebr.	81	15	17	18	19	21		
13	North Loup River near St. Paul, Nebr.	119	24	27	29	32	34		
14	Cedar River near Fullerton, Nebr.	187	33	37	39	42	4 4		
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	33	34	38	41	46		
16	Beaver Creek at Genoa, Nebr.	95	38	4 5	51	54	62		
17	Platte River at North Bend, Nebr.	102	40	4 6	52	6 0	68		
18	Elkhorn River near Atkinson, Nebr.	77	27	29	31	35	39		
19	Elkhorn River at Norfolk, Nebr.	89	4 0	44	47	50	52		
20	Elkhorn River at West Point, Nebr.	92	43	51	59	6 5	70		
21	Logan Creek at Pender, Nebr.	92	84	100	120	120	130		
22	Elkhorn River at Waterloo, Nebr.	114	48	6 0	68	79	86		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	104	50	76	8 9	9 5	100		
35	Salt Creek at Greenwood, Nebr.	97	52	74	87	93	9 8		
36	Platte River at Louisville, Nebr.	112	45	50	56	65	69		
	<u>Magnesium, dissolved, in</u>	n milligran	ns per li	iter (009	<u>25)</u>				
1	Platte River near Overton, Nebr.	107	21	23	25	27	30		
2	Platte River near Grand Island, Nebr.	113	22	23	26	28	30		
3	Platte River near Duncan, Nebr.	66	19	21	24 .	27	29		
4	Middle Loup River north of Dunning, Nebr.	99	2.6	3.0	3.1	3 .6	4.0		
5	Dismal River near Thedford, Nebr.	43	3.2	3.3	3.4	3.5	3.6		
6	Dismal River at Dunning, Nebr.	69	2.5	2.8	3.0	3.3	3 .6		
7	Middle Loup River at Sargent, Nebr.	101	2.7	3.0	3.4	3 .8	4.1		
8	Mud Creek near Sweetwater, Nebr.	101	12	14	16	17	18		
9	South Loup River at St. Michael, Nebr.	111	6.9	7.7	9 .0	10	12		
10	Middle Loup River at St. Paul, Nebr.	29		6.4	7.5	8.6			
11	North Loup River at Taylor, Nebr.	112	2.4	3.0	3.1	3.5	4.0		
12	Calamus River near Burwell, Nebr.	81	2.3	2.6	2.8	3.1	3.4		

.

Table 7. Statistical summary of data on water-quality constituents and properties in stream-water
samples collected from selected sites within Central Nebraska Basins, 1981-90Continued

Sampling- site		Number	Value at indicated percentile						
number		of	10th	25th	50th	75th	90th		
(fig. 2)	Site name	analyses	1001	2011	(median		3001		
	Magnesium, dissolved, in mill		liter (0	<u>0925)</u> C	ontinued				
13	North Loup River near St. Paul, Nebr.	119	3.8	4.2	4.7	5.1	5.9		
14	Cedar River near Fullerton, Nebr.	187	5.5	6.0	6.6	7.1	7.5		
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	5.3	5.5	6.2	6.8	7.6		
16	Beaver Creek at Genoa, Nebr.	96	6.4	7.5	8.3	9.1	10		
17	Platte River at North Bend, Nebr.	102	8.6	11	14	16	19		
18	Elkhorn River near Atkinson, Nebr.	77	3.7	4.1	4.3	5.3	5.9		
19	Elkhorn River at Norfolk, Nebr.	89	6.4	7.0	7.5	7.9	8.3		
20	Elkhorn River at West Point, Nebr.	92	9.2	10	12	14	15		
21	Logan Creek at Pender, Nebr.	92	22	26	30	33	35		
22	Elkhorn River at Waterloo, Nebr.	114	12	14	17	19	21		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	104	14	21	28	30	32		
35	Salt Creek at Greenwood, Nebr.	97	15	22	26	28	31		
3 6	Platte River at Louisville, Nebr.	112	11	12	15	17	19		
	Sodium, dissolved, in 1	milligrams	per lite	r (00930)				
1	Platte River near Overton, Nebr.	113	68	75	82	86	91		
2	Platte River near Grand Island, Nebr.	105	77	82	88	9 3	100		
3	Platte River near Duncan, Nebr.	6 6	6 6	77	82	90	96		
4	Middle Loup River north of Dunning, Nebr.	99	5.5	6.5	7.0	7.4	8.2		
5	Dismal River near Thedford, Nebr.	43	6.6	6.7	6.9	7.0	7.4		
6	Dismal River at Dunning, Nebr.	6 8	4.8	5.8	6.3	6.5	6.9		
7	Middle Loup River at Sargent, Nebr.	100	5.7	6.4	6.8	7.2	7.7		
8	Mud Creek near Sweetwater, Nebr.	71	10	14	16	17	20		
9	South Loup River at St. Michael, Nebr.	110	8.3	10	11	13	14		
	Middle Loup River at St. Paul, Nebr.	29		9.5	11	12			
10	Mildule Boup Hiver at St. I aui, Hesi.								
11	North Loup River at Taylor, Nebr.	111	5.1	5.8	6.1	6 .6	7.4		
11 12	North Loup River at Taylor, Nebr. Calamus River near Burwell, Nebr.	81	5.0	5.4	5.9	6.5	7.4 7.0		
11 12 13	North Loup River at Taylor, Nebr. Calamus River near Burwell, Nebr. North Loup River near St. Paul, Nebr.	81 118		5.4 7.1					
11 12 13 14	North Loup River at Taylor, Nebr. Calamus River near Burwell, Nebr. North Loup River near St. Paul, Nebr. Cedar River near Fullerton, Nebr.	81	5.0	5.4	5.9	6.5	7.0		
11 12 13	North Loup River at Taylor, Nebr. Calamus River near Burwell, Nebr. North Loup River near St. Paul, Nebr.	81 118	5.0 6.4	5.4 7.1	5.9 7.7	6.5 8.3	7.0 9.1		
11 12 13 14	North Loup River at Taylor, Nebr. Calamus River near Burwell, Nebr. North Loup River near St. Paul, Nebr. Cedar River near Fullerton, Nebr. Loup River Power Canal at diversion	81 118 187	5.0 6.4 7.1	5.4 7.1 7.7	5.9 7.7 8.4	6.5 8.3 9.1	7.0 9.1 11		

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		N7 1	V	alue at i	ndicated	percent	ile
site number		Number of	10th	25th	50th	75th	90th
(fig. 2)	Site name	analyses			(median))	
	Sodium, dissolved, in millig	rams per li	ter (009	<u>30)</u> Cor	tinued		
18	Elkhorn River near Atkinson, Nebr.	61	9.1	9 .8	11	12	16
19	Elkhorn River at Norfolk, Nebr.	65	8.7	9.3	10	11	13
20	Elkhorn River at West Point, Nebr.	69	13	15	17	18	21
21	Logan Creek at Pender, Nebr.	68	23	26	27	30	34
22	Elkhorn River at Waterloo, Nebr.	106	16	21	23	25	26
34	Salt Creek below Stevens Creek near Waverly, Nebr.	104	200	470	840	1,300	1,400
35	Salt Creek at Greenwood, Nebr.	70	180	390	640	9 30	1,300
36	Platte River at Louisville, Nebr.	101	31	40	56	76	90
	Potassium, dissolved, in	n milligran	n <mark>s per lit</mark>	er (0093	5)		
1	Platte River near Overton, Nebr.	90	9.5	10	12	13	15
2	Platte River near Grand Island, Nebr.	37	9.6	11	12	13	15
3	Platte River near Duncan, Nebr.	66	9.6	10	12	13	14
5	Dismal River near Thedford, Nebr.	43	4.7	4.8	4.9	5.1	5.3
8	Mud Creek near Sweetwater, Nebr.	15		12	14	19	
9	South Loup River at St. Michael, Nebr.	20		8.7	9.9	12	
10	Middle Loup River at St. Paul, Nebr.	29		7.4	8.3	11	
13	North Loup River near St. Paul, Nebr.	20		6.7	7.4	7.8	
14	Cedar River near Fullerton, Nebr.	119	6.2	6.6	7.0	7.6	8.4
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	6.4	6.9	7.5	8.4	9.0
16	Beaver Creek at Genoa, Nebr.	15		6.9	7.9	9.7	
17	Platte River at North Bend, Nebr.	15		8.6	9.3	10	
19	Elkhorn River at Norfolk, Nebr.	15		6.9	7.4	8.0	
20	Elkhorn River at West Point, Nebr.	15		7.6	8.2	8.8	
21	Logan Creek at Pender, Nebr.	15		6.5	6.8	9.4	
22	Elkhorn River at Waterloo, Nebr.	62	6. 9	7.5	8.4	9.6	11
34	Salt Creek below Stevens Creek near Waverly, Nebr.	103	7.9	9.4	11	14	16
35	Salt Creek at Greenwood, Nebr.	16		9.2	11	14	
36	Platte River at Louisville, Nebr.	45	7.9	8.4	9.3	9 .8	11

Sampling-			Va	alue at ii	ndicated p	ercentil	е
site number		Number of	10th	25th	50th	75th	90th
(fig. 2)	Site name	analyses	1000	(median)		7501	5000
	Bicarbonate, dissolved, fiel	d, in millig	rams pe	r liter (0	<u>0453)</u>		
3	Plate River near Duncan, Nebr.	30	130	160	210	230	270
5	Dismal River near Thedford, Nebr.	19		94	97	9 9	
14	Cedar River near Fullerton, Nebr.	23		150	160	170	
2 2	Elkhorn River at Waterloo, Nebr.	27		220	250	290	
36	Platte River at Louisville, Nebr.	17		180	200	210	
	Carbonate, dissolved, onsit	e, in millig	rams pe	r liter (O	<u>0452)</u>	•	
3	Platte River near Duncan, Nebr.	30	0	0	11	14	2 2
5	Dismal River near Thedford, Nebr.	19		0	0	0	
14	Cedar River near Fullerton, Nebr.	23		0	0	4	
22	Elkhorn River at Waterloo, Nebr.	27		0	0	12	
36	Platte River at Louisville, Nebr.	17		0	0	10	
	<u>Alkalinity, total, onsite, as Ca</u>	<u>CO₃, in mil</u>	ligrams	per liter	(39 086)		
3	Platte River near Duncan, Nebr.	30	120	150	180	210	220
5	Dismal River near Thedford, Nebr.	19		77	79	81	
14	Cedar River near Fullerton, Nebr.	23		130	130	140	
22	Elkhorn River at Waterloo, Nebr.	27		190	2 20	240	**
36	Platte River at Louisville, Nebr.	18		160	170	17 0	**
	Alkalinity, titration to pH 4.5, laborato	ry, as CaCC) <u>3. in mi</u>	lligrams	per liter	<u>(90410)</u>	
1	Platte River near Overton, Nebr.	90	170	180	200	210	2 20
2	Platte River near Grand Island, Nebr.	37	160	180	190	200	220
3	Platte River near Duncan, Nebr.	65	140	160	180	200	210
5	Dismal River near Thedford, Nebr.	43	76	80	81	83	85
8	Mud Creek near Sweetwater, Nebr.	15		240	290	300	
9	South Loup River at St. Michael, Nebr.	20		160	180	210	
10	Middle Loup River at St. Paul, Nebr.	2 9		130	150	170	
13	North Loup River near St. Paul, Nebr.	20		110	120	120	
14	Cedar River near Fullerton, Nebr.	118	120	130	140	140	150
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	110	120	130	140	150
16	Beaver Creek at Genoa, Nebr.	15		160	180	20 0	
17	Platte River at North Bend, Nebr.	15	**	140	160	180	
19	Elkhorn River at Norfolk, Nebr.	15		150	160	170	

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		NT	Va	alue at ir	ndicated	percentil	e
site number		Number of	 10th	25th	50th	75th	90th
(fig. 2)	Site name	analyses	10011		(median)	10011	
Alkal	inity, titration to pH 4.5, laboratory, as	CaCO <u>3</u> , in	milligra	ms per li	ter (904)	<u>10)</u> Cont	inued
20	Elkhorn River at West Point, Nebr.	15		160	180	20 0	
21	Logan Creek at Pender, Nebr.	15		270	29 0	30 0	
2 2	Elkhorn River at Waterloo, Nebr.	60	120	190	220	240	26 0
34	Salt Creek below Stevens Creek near Waverly, Nebr.	102	160	240	2 80	300	32 0
35	Salt Creek at Greenwood, Nebr.	16		1 50	29 0	300	
3 6	Platte River at Louisville, Nebr.	44	140 [`]	150	170	190	2 00
	Sulfate, dissolved, in t	milligrams	per liter	· (00945)			
1	Platte River near Overton, Nebr.	97	180	2 00	2 30	2 60	300
2	Platte River near Grand Island, Nebr.	101	2 00	220	2 40	2 80	300
3	Platte River near Duncan, Nebr.	6 6	180	210	2 40	27 0	300
5	Dismal River near Thedford, Nebr.	43	5.0	6.0	7.0	7.7	8
8	Mud Creek near Sweetwater, Nebr.	101	6.0	21	24	2 8	33
9	South Loup River at St. Michael, Nebr.	2 0		16	18	21	
10	Middle Loup River at St. Paul, Nebr.	29		12	16	19	
13	North Loup River near St. Paul, Nebr.	2 0		7.3	10	11	
14	Cedar River near Fullerton, Nebr.	119	5.0	9.3	10	12	14
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	5.0	9.9	11	13	17
16	Beaver Creek at Genoa, Nebr.	96	2 .3	9.2	13	15	18
17	Platte River at North Bend, Nebr.	102	38	61	90	130	160
18	Elkhorn River near Atkinson, Nebr.	76	2.0	7.8	10	11	13
19	Elkhorn River at Norfolk, Nebr.	89	2.0	8.8	11	13	14
2 0	Elkhorn River at West Point, Nebr.	91	8.4	22	30	38	44
21	Logan Creek at Pender, Nebr.	92	110	12 0	140	160	170
22	Elkhorn River at Waterloo, Nebr.	108	2 8	44	54	62	69
34	Salt Creek below Stevens Creek near Waverly, Nebr.	104	94	150	2 40	320	360
35	Salt Creek at Greenwood, Nebr.	97	8 2	140	2 10	280	310
36	Platte River at Louisville, Nebr.	104	58	70	94	120	140
	Chloride, dissolved, in	milligrams	per liter	<u>(00940</u>)		
1	Platte River near Overton, Nebr.	109	2 2	2 5	29	35	38
$\overline{2}$	Platte River near Grand Island, Nebr.	113	25	27	32	36	40
3	Platte River near Duncan, Nebr.	66	24	27	32	36	41

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling- site		Number	V	Value at i	ndicated	percenti	le
number (fig. 2)	Site name	of analyses	10th	25th	50th (median)	75th	90th
	Chloride, dissolved, in millig	rams per l	iter (00	<u>940)</u> Co	ntinued		
4	Middle Loup River north of Dunning, Nebr.	101	1.0	1.3	2.5	5.0	5.0
5	Dismal River near Thedford, Nebr.	43	.5	.8	.9	1.0	1.3
6	Dismal River at Dunning, Nebr.	68	1.0	1.3	2.3		
7	Middle Loup River at Sargent, Nebr.	102	1.0	1.2	2.7	5.0	5.0
8	Mud Creek near Sweetwater, Nebr.	101	6.4	8. 9	11	14	17
9	South Loup River at St. Michael, Nebr.	112	3.5	4.3	5.0	5.5	6.7
10	Middle Loup River at St. Paul, Nebr.	29		2.8	3.7	4.4	
11	North Loup River at Taylor, Nebr.	112	1.0	1.1	2.2	5.0	5.0
12	Calamus River near Burwell, Nebr.	80	1.0	1.2	3.8	5.0	5.0
13	North Loup River near St. Paul, Nebr.		1.5	1.8	2.7	5.0	5.0
14	Cedar River near Fullerton, Nebr.	187	1.6	2.0	2.7	5.0	5.0
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	1. 9	2.4	2.9	3.4	3.7
16	Beaver Creek at Genoa, Nebr.	95	2.9	3.4	4.2	5.0	6 .0
17	Platte River at North Bend, Nebr.	101	7.1	10	14	18	21
18	Elkhorn River near Atkinson, Nebr.	77	2.6	3.2	3.6	5.0	5.0
19	Elkhorn River at Norfolk, Nebr.	89	3.1	3.4	4.0	5.0	5.2
20	Elkhorn River at West Point, Nebr.	92	6.3	7.9	9.0	10	12
21	Logan Creek at Pender, Nebr.	92	7.6	8.6	10	12	15
22	Elkhorn River at Waterloo, Nebr.	114	8.8	11	12	16	21
34	Salt Creek below Stevens Creek near Waverly, Nebr.	109	290	740	1,200	1,800	2,100
35	Salt Creek at Greenwood, Nebr.	97	250	580	930	1,400	1,900
36	Platte River at Louisville, Nebr.	111	14	21	42	67	95
	Fluoride, dissolved, in	milligram	s per lite	er (00950	D		
1	Platte River near Overton, Nebr.	91	.5	.5	.6	.6	.6
2	Platte River near Grand Island, Nebr.	37	.5	.5	.5	.6	.7
3	Platte River near Duncan, Nebr.	66	.4	.5	.5	.6	.6
5	Dismal River near Thedford, Nebr.	43	.2	.3	.3	.3	.4
8	Mud Creek near Sweetwater, Nebr.	15		.2	.2	.3	
9	South Loup River at St. Michael, Nebr.	2 0		.3	.3	.3	
10	Middle Loup River at St. Paul, Nebr.	29		.3	.3	.3	
13	North Loup River near St. Paul, Nebr.	20		.3	.3	.4	

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		N T1	Va	alue at in	dicated j	percentil	e
site		Number	10/1	07/1	5 0/1	7511	0041
number (fig. 2)	Site name	of analyses	10th	25th	50th median)	75th	90th
(116. 2)	······································						
	<u>Fluoride, dissolved, in millig</u>	<u>prams per li</u>	<u>iter (009</u>	<u>50)</u> Con	tinued		
14	Cedar River near Fullerton, Nebr.	119	0.2	0.2	0.2	0.3	0.3
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	.3	.3	.3	.3	.4
16	Beaver Creek at Genoa, Nebr.	15		.3	.3	.3	
17	Platte River at North Bend, Nebr.	15		.4	.4	.5	
19	Elkhorn River at Norfolk, Nebr.	16		.3	.3	.3	
2 0	Elkhorn River at West Point, Nebr.	15		.3	.3	.3	
21	Logan Creek at Pender, Nebr.	15		.2	.3	.3	
22	Elkhorn River at Waterloo, Nebr.	62	.3	.3	.3	.4	.4
34	Salt Creek below Stevens Creek near Waverly, Nebr.	103	.3	.4	.6	.6	.7
35	Salt Creek at Greenwood, Nebr.	16		.3	.6	.7	
36	Platte River at Louisville, Nebr.	45	.3	.3	.4	.4	.4
	<u>Silica, dissolved, in n</u>	nilligrams j	oer liter	<u>(00955)</u>			
1	Platte River near Overton, Nebr.	90	19	22	26	31	36
2	Platte River near Grand Island, Nebr.	37	17	2 0	23	27	29
3	Platte River near Duncan, Nebr.	65	15	17	21	24	26
5	Dismal River near Thedford, Nebr.	43	53	55	56	58	59
8	Mud Creek near Sweetwater, Nebr.	15		40	42	46	
9	South Loup River at St. Michael, Nebr.	20		41	46	4 8	
10	Middle Loup River at St. Paul, Nebr.	29		46	49	52	
13	North Loup River near St. Paul, Nebr.	20		41	46	4 8	
14	Cedar River near Fullerton, Nebr.	119	3 2	36	39	43	45
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	39	42	46	50	54
16	Beaver Creek at Genoa, Nebr.	15		31	35	43	
17	Platte River at North Bend, Nebr.	15		24	29	4 0	
19	Elkhorn River at Norfolk, Nebr.	15		35	3 8	4 0	
20	Elkhorn River at West Point, Nebr.	15		24	3 0	34	
21	Logan Creek at Pender, Nebr.	15		16	20	22	
22	Elkhorn River at Waterloo, Nebr.	61	14	19	25	28	30
34	Salt Creek below Stevens Creek near Waverly, Nebr.	102	11	16	20 21	23	25
35	Salt Creek at Greenwood, Nebr.	16		11	20	23	
	Platte River at Louisville, Nebr.	45	21	24	29	36	39

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		Number	V	Value at :	indicated	percenti	ile
site number		Number of	10th	25th	50th	75th	90th
(fig. 2)	Site name	analyses			(median))	
Disso	olved solids, residue on evaporation at 1	80 degrees	s Celsius	s, in mill	igrams pe	er liter ('	<u>70300)</u>
3	Platte River near Duncan, Nebr.	65	4 60	550	600	660	700
5	Dismal River near Thedford, Nebr.	43	140	150	150	150	160
14	Cedar River near Fullerton, Nebr.	25		180	200	210	
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	180	190	20 0	220	24 0
22	Elkhorn River at Waterloo, Nebr.	58	270	320	360	380	410
36	Platte River at Louisville, Nebr.	· 43	300	400	450	510	580
	Dissolved solids, sum of constit	<u>uents, in n</u>	nilligran	<u>ns per li</u>	ter (70301	<u>U</u>	
1	Platte River near Overton, Nebr.	63	530	560	620	670	710
2	Platte River near Grand Island, Nebr.	37	530	570	610	640	720
3	Platte River near Duncan, Nebr.	66	450	540	600	650	690
5	Dismal River near Thedford, Nebr.	40	150	150	150	160	160
8	Mud Creek near Sweetwater, Nebr.	15		360	390	410	
9	South Loup River at St. Michael, Nebr.	20		230	270	290	
10	Middle Loup River at St. Paul, Nebr.	29		210	240	260	
13	North Loup River near St. Paul, Nebr.	19		170	180	190	
14	Cedar River near Fullerton, Nebr.	117	180	190	200	210	220
15	Loup River Power Canal at diversion near Genoa, Nebr.	37	180	180	200	210	250
16	Beaver Creek at Genoa, Nebr.	14		220	240	270	
17	Platte River at North Bend, Nebr.	15		260	410	460	
19	Elkhorn River at Norfolk, Nebr.	14		200	220	240	
20	Elkhorn River at West Point, Nebr.	14		240	260	29 0	
21	Logan Creek at Pender, Nebr.	15		480	510	560	
22	Elkhorn River at Waterloo, Nebr.	62	190	290	340	390	420
34	Salt Creek below Stevens Creek near Waverly, Nebr.	101	780	1,500	2,600	3,600	4,100
35	Salt Creek at Greenwood, Nebr.	16		490	2,700	3,700	
36	Platte River at Louisville, Nebr.	44	310	380	440	500	570
	<u>Nitrite, dissolved, as N, i</u>	n milligra	ms per l	<u>iter (006</u>	<u>13)</u>		
3	Platte River near Duncan, Nebr.	31	<.01	<.01	<.01	.02	.0
5	Dismal River near Thedford, Nebr.	21		<.01		<.01	
14	Cedar River near Fullerton, Nebr.	27		<.01		<.01	
00		~	~ ~				_

 Table 7. Statistical summary of data on water-quality constituents and properties in stream-water samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

31

20

.01

--

.02

.01

.04

.02

.06

.02

.10

Elkhorn River at Waterloo, Nebr.

Platte River at Louisville, Nebr.

22

36

Sampling- site		Number	Value at indicated percentile						
number (fig. 2)	Site name	of analyses	10th	25th	50th (median)	75th	9 0th		
	<u>Nitrite plus nitrate, total, as</u>	N, in mill	igrams j	per liter (<u>00630)</u>				
1	Platte River near Overton, Nebr.	111	0.51	0.84	1.2	1.5	1.9		
2	Platte River near Grand Island, Nebr.	116	<.02	.13	.72	1.2	1.5		
3	Platte River near Duncan, Nebr.	10		.05	.43	.94			
4	Middle Loup River north of Dunning, Nebr.	101	.54	.67	.76	.86	. 9 3		
5	Dismal River near Thedford, Nebr.	12		.38	.42	.51			
6	Dismal River at Dunning, Nebr.	68	.43	.48	.56	.63	.69		
7	Middle Loup River at Sargent, Nebr.	102	.36	.43	.56	.67	.78		
8	Mud Creek near Sweetwater, Nebr.	102	.39	.89	1.2	1.6	2.0		
9	South Loup River at St. Michael, Nebr.	105	<.02	.13	.76	1.0	1.3		
11	North Loup River at Taylor, Nebr.	104	.17	.38	.61	.80	.93		
12	Calamus River near Burwell, Nebr.	73	.05	.11	.26	.52	.73		
13	North Loup River near St. Paul, Nebr.	116	<.02	<.04	.68	.89	1.0		
14	Cedar River near Fullerton, Nebr.	60	<.02	.05	.38	.61	.72		
16	Beaver Creek at Genoa, Nebr.	100	.40	.60	.78	.90	1.1		
17	Platte River at North Bend, Nebr.	103	<.02	<.10	.92	1.2	1.4		
18	Elkhorn River near Atkinson, Nebr.	78	.12	.73	1.6	2.2	2.6		
19	Elkhorn River at Norfolk, Nebr.	98	<.02	.10	.50	.86	1.1		
20	Elkhorn River at West Point, Nebr.	102	<.02	.38	1.0	1.6	2.0		
21	Logan Creek at Pender, Nebr.	100	1.0	1.9	3.1	3.8	5.1		
22	Elkhorn River at Waterloo, Nebr.	106	.32	1.2	2.0	3.1	3.7		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	108	1.1	1.5	1.8	2.1	2.7		
35	Salt Creek at Greenwood, Nebr.	102	1.5	1.7	2.2	2.6	2.9		
36	Platte River at Louisville, Nebr.	112	<.10	.28	1.1	1.7	1.9		
	<u>Nitrite plus nitrate, dissolved,</u>	<u>as N, in mi</u>	illigram	s per liter	r (00631)				
1	Platte River near Overton, Nebr.	92	.45	.73	1.1	1.5	1.7		
2	Platte River near Grand Island, Nebr.	37	.10	.17	.54	. 9 8	1.4		
3	Platte River near Duncan, Nebr.	66	<.10	.12	.98	1.5	1.9		
5	Dismal River near Thedford, Nebr.	43	.34	.38	.45	.51	.57		
8	Mud Creek near Sweetwater, Nebr.	18		.88	1.2	1.5			
9	South Loup River at St. Michael, Nebr.	20		<.10	.75	.92			
10	Middle Loup River at St. Paul, Nebr.	29		.50	.81	.99			
13	North Loup River near St. Paul, Nebr.	20		<.10	.63	.85			

Table 7. Statistical summary of data on water-quality constituents and properties in stream-water samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling- site		Number	Value at indicated percentile						
number (fig. 2)	Site name	of analyses	10th	25th (50th (median)	75th	90th		
	Nitrite plus nitrate, dissolved, as N.	in milligra	ams per	liter (006	<u>31)</u> Con	tinued			
14	Cedar River near Fullerton, Nebr.	119	<0.10	<0.10	0.44	0.61	0.74		
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	<.10	.10	.56	.75	1.0		
16	Beaver Creek at Genoa, Nebr.	15		.44	.67	.91			
17	Platte River at North Bend, Nebr.	17		.26	.92	1.0			
18	Elkhorn River near Atkinson, Nebr.	11		1.0	1.5	2.1			
19	Elkhorn River at Norfolk, Nebr.	15 [·]		<.10	.40	.89			
20	Elkhorn River at West Point, Nebr.	14		.38	1.0	1.5			
21	Logan Creek at Pender, Nebr.	16		1.2	3.0	4.1			
22	Elkhorn River at Waterloo, Nebr.	59	.29	1.3	2.0	3.1	3.9		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	9 5	1.1	1.5	1.8	2.1	2.8		
35	Salt Creek at Greenwood, Nebr.	16		1.6	2.2	2.8			
36	Platte River at Louisville, Nebr.	46	<.10	.20	.91	1.4	1.8		
	<u>Nitrogen, ammonia, total, as</u>	s N, in mill	igrams	per liter (<u>00610)</u>				
1	Platte River near Overton, Nebr.	115	.02	.05	. 0 8	.12	.20		
2	Platte River near Grand Island, Nebr.	116	<.02	.04	.07	.11	.17		
3	Platte River near Duncan, Nebr.	38	.02	.03	.05	.10	.19		
4	Middle Loup River north of Dunning, Nebr.	101	<.02	<.02	<.02	.03	.05		
5	Dismal River near Thedford, Nebr.	31	<.01	.01	.03	.06	.12		
6	Dismal River at Dunning, Nebr.	68	<.02	<.02	<.02	.03	.05		
7	Middle Loup River at Sargent, Nebr.	101	< .0 2	<.02	<.02	.04	.08		
8	Mud Creek near Sweetwater, Nebr.	101	.04	.08	.16	.31	.58		
9	South Loup River at St. Michael, Nebr.	105	<.02	.04	.08	.17	.26		
11	North Loup River at Taylor, Nebr.	104	<.02	<.02	.02	.03	.05		
12	Calamus River near Burwell, Nebr.	72	<.02	<.02	.03	.06	.19		
13	North Loup River near St. Paul, Nebr.	116	<.02	<.02	.02	.05	.07		
14	Cedar River near Fullerton, Nebr.	80	<.02	<.02	.05	.08	.12		
15	Loup River Power Canal at diversion near Genoa, Nebr.	15		.06	.06	.11			
16	Beaver Creek at Genoa, Nebr.	100	.03	.06	.11	.22	.36		
	Platte River at North Bend, Nebr.	103	<.02	.04	.08	.17	.27		
	Elkhorn River near Atkinson, Nebr.	78	.02	.05	. 0 9	.16	.23		
	Elkhorn River at Norfolk, Nebr.	98	.03	.05	.09	.20	.33		

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		Number	Value at indicated percentile						
site number		Number of	10th	25th	50th	75th	90th		
(fig. 2)	Site name	analyses		((median)				
	<u>Nitrogen, ammonia, total, as N, in</u>	milligram	<u>s per lit</u>	er (00610)Contir	nued			
20	Elkhorn River at West Point, Nebr.	102	0.03	0.06	0.16	0.34	0.61		
21	Logan Creek at Pender, Nebr.	100	.04	.07	.14	.26	.50		
22	Elkhorn River at Waterloo, Nebr.	119	.04	.07	.15	.39	.64		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	112	.59	1.1	2.2	3.2	4.8		
35	Salt Creek at Greenwood, Nebr.	101	.39	.69	1.3	2.2	3.0		
36	Platte River at Louisville, Nebr.	117	<.02	.05	.10	.18	.32		
	Nitrogen, ammonia, dissolved,	<u>as N, in m</u>	illigram	<u>s per lite</u>	r (00608	2			
3	Platte River near Duncan, Nebr.	63	<.01	.03	.06	.12	.19		
5	Dismal River near Thedford, Nebr.	43	<.01	<.01	.03	.06	.10		
14	Cedar River near Fullerton, Nebr.	27		.02	.04	.07	••		
15	Loup River Power Canal at diversion near Genoa, Nebr.	38	.04	.05	.07	.14	.18		
22	Elkhorn River at Waterloo, Nebr.	60	.03	.06	.15	.36	. 6 5		
36	Platte River at Louisville, Nebr.	46	<.01	.04	.08	.20	.34		
	Nitrogen, total organic, as	<u>N, in millig</u>	rams pe	er liter (O	<u>0605)</u>				
1	Platte River near Overton, Nebr.	100	.52	. 6 8	.89	1.2	1.7		
2	Platte River near Grand Island, Nebr.	99	.50	.77	1.2	1.5	2.1		
3	Platte River near Duncan, Nebr.	36	.55	.78	.95	1.4	2.1		
5	Dismal River near Thedford, Nebr.	22		.34	.50	.79			
8	Mud Creek near Sweetwater, Nebr.	93	.35	.67	1.0	1.8	2.8		
14	Cedar River near Fullerton, Nebr.	20		.29	.49	.87			
15	Loup River Power Canal at diversion near Genoa, Nebr.	15		.70	.94	1.4			
16	Beaver Creek at Genoa, Nebr.	93	.57	.88	1.4	2.1	4.5		
17	Platte River at North Bend, Nebr.	9 0	.48	.92	1.4	2.5	3.6		
18	Elkhorn River near Atkinson, Nebr.	66	.34	.50	.89	1.5	2.0		
19	Elkhorn River at Norfolk, Nebr.	91	.47	.83	1.2	1.8	2.9		
20	Elkhorn River at West Point, Nebr.	9 5	. 4 8	.81	1.3	2.1	3.2		
21	Logan Creek at Pender, Nebr.	9 0	.37	.56	.97	1.6	3.3		
22	Elkhorn River at Waterloo, Nebr.	116	.65	.93	1.7	2.4	3.5		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	108	.59	. 9 0	1.3	2.2	4.3		
35	Salt Creek at Greenwood, Nebr.	9 8	.60	1.0	1.4	1.9	4.4		
36	Platte River at Louisville, Nebr.	109	.51	.87	1.4	2.1	3.4		

Sampling- site		Number	V	alue at ir	ndicated	percentil	e
number (fig. 2)	Site name	of analyses	10th	25th	50th (median)	75th	90th
	Nitrogen, total ammonia plus orga	nic, as N,	in millig	rams per	liter (00	625)	
1	Platte River near Overton, Nebr.	115	<0.50	0.71	1.0	1.3	1.8
2	Platte River near Grand Island, Nebr.	116	.50	.75	1.2	1.6	2.2
3	Platte River near Duncan, Nebr.	65	.58	.85	1.1	1.6	2.6
5	Dismal River near Thedford, Nebr.	42	.20	.30	.50	.80	.98
8	Mud Creek near Sweetwater, Nebr.	100	<.50	.85	1.2	2.0	2.9
13	North Loup River near St. Paul, Nebr.	13		.62	.75	1.1	
14	Cedar River near Fullerton, Nebr.	24		.33	.55	.98	
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	.60	.80	1.2	1.5	2.3
16	Beaver Creek at Genoa, Nebr.	9 9	.72	.91	1.5	2.1	4.5
17	Platte River at North Bend, Nebr.	103	.52	.99	1.4	2.4	3.6
18	Elkhorn River near Atkinson, Nebr.	78	<.50	.62	. 9 6	1.5	2.1
19	Elkhorn River at Norfolk, Nebr.	9 8	.65	.92	1.3	1.9	3.1
20	Elkhorn River at West Point, Nebr.	100	.80	1.1	1.6	2.4	3.7
21	Logan Creek at Pender, Nebr.	9 8	.50	.65	1.1	1.9	3.4
22	Elkhorn River at Waterloo, Nebr.	118	.81	1.2	1.9	2.7	4.4
34	Salt Creek below Stevens Creek near Waverly, Nebr.	110	2.3	2. 9	3.8	4.9	7.1
35	Salt Creek at Greenwood, Nebr.	9 9	1.5	2.2	3.0	4.1	6.0
36	Platte River at Louisville, Nebr.	117	.70	1.1	1.5	2.1	3.5
	<u>Nitrogen, total, as N, ir</u>	milligram	ns per lit	er (0060(<u>))</u>		
1	Platte River near Overton, Nebr.	102	1.6	1.8	2.2	2.7	3.3
2	Platte River near Grand Island, Nebr.	94	1.3	1.6	2.0	2.5	3.2
3	Platte River near Duncan, Nebr.	10		1.3	1.9	2.1	
5	Dismal River near Thedford, Nebr.	11		. 9 8	1.2	1.3	
8	$M_1 \oplus Creek$ near Sweetwater, Nebr.	94	1.2	2.0	2.7	3.5	4.8
±6	Beaver Creek at Genoa, Nebr.	95	1.4	1.8	2.2	3.0	5.4
17	Platte River at North Bend, Nebr.	85	1.5	1.7	2.3	3.4	4.8
18	Elkhorn River near Atkinson, Nebr.	74	1.5	2.1	2.7	3.1	3.5
19	Elkhorn River at Norfolk, Nebr.	82	1.2	1.5	1.9	2.6	4.1
20	Elkhorn River at West Point, Nebr.	86	1.8	2.2	2.8	3.7	5.6
21	Logan Creek at Pender, Nebr.	95	1.8	2.8	4.4	5.9	8.2
22	Elkhorn River at Waterloo, Nebr.	101	2.3	3.1	3. 9	5.8	7.1

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		NT	V	alue at i	ndicated p	ercentil	e
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th
	Nitrogen, total, as N, in milli		liter (00	<u>600)</u> Co	ntinued		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	106	4 .0	4.8	5.7	6. 6	8.4
35	Salt Creek at Greenwood, Nebr.	99	3.7	4.5	5.2	6.2	7.9
36	Platte River at Louisville, Nebr.	100	1.7	2 .0	2.6	3.6	5.3
	<u>Phosphorus, total, as P. s</u>	in milligrai	ms per li	iter (006	<u>65)</u>		
1	Platte River near Overton, Nebr.	115	.07	.09	.13	.20	.24
2	Platte River near Grand Island, Nebr.	116	.08	.11	.16	.24	.31
3	Platte River near Duncan, Nebr.	65	.09	.13	.17	.28	.36
4	Middle Loup River north of Dunning, Nebr.	101	.06	.12	.16	.20	.27
5	Dismal River near Thedford, Nebr.	43	.14	.17	.19	.22	.30
6	Dismal River at Dunning, Nebr.	68	.18	.20	.22	.25	.31
7	Middle Loup River at Sargent, Nebr.	101	.07	.15	.21	.24	.30
8	Mud Creek near Sweetwater, Nebr.	102	.36	.44	. 6 8	. 9 3	1.5
9	South Loup River at St. Michael, Nebr.	104	.11	.18	.30	.39	.54
11	North Loup River at Taylor, Nebr.	104	.07	.13	.17	.20	.27
12	Calamus River near Burwell, Nebr.	81	.08	.12	.16	.21	.24
13	North Loup River near St. Paul, Nebr.	116	.08	.12	.17	.22	.31
14	Cedar River near Fullerton, Nebr.	120	.19	.22	.28	.37	.47
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	.20	.24	.28	.34	.56
16	Beaver Creek at Genoa, Nebr.	100	.30	.35	.49	.74	. 9 6
17	Platte River at North Bend, Nebr.	103	.17	.22	.27	.37	.63
18	Elkhorn River near Atkinson, Nebr.	78	.10	.18	.23 ⁻	.28	.33
19	Elkhorn River at Norfolk, Nebr.	9 8	.18	.23	.27	.36	.48
20	Elkhorn River at West Point, Nebr.	102	.22	.28	.34	.48	.69
21	Logan Creek at Pender, Nebr.	101	.14	.19	.25	.41	.63
2 2	Elkhorn River at Waterloo, Nebr.	119	.31	.41	.52	.68	1.1
34	Salt Creek below Stevens Creek near Waverly, Nebr.	111	.70	1.2	1.7	2.6	3.5
35	Salt Creek at Greenwood, Nebr.	102	.58	.97	1.5	2.0	2.9
36	Platte River at Louisville, Nebr.	117	.23	.29	.37	.50	.96

Table 7. Statistical summary of data on water-quality constituents and properties in stream-water samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		N	•	Value at i	ndicated	percenti	le
site		Number	1041	OFAL	FOIL	TEAL	0041
number (fig. 2)	Site name	of analyses	10th	25th	50th (median)	75th	9 0th
(IIg. 2)		analyses	<u></u>		(incutan)	,	
	Phosphorus, dissolved, as	P. in milli	<u>rams p</u>	er liter (O	0666)		
1	Platte River near Overton, Nebr.	91	0.02	0.04	0.06	0.11	0.15
2	Platte River near Grand Island, Nebr.	37	.01	.02	.05	.08	.10
3	Platte River near Duncan, Nebr.	65	.01	.03	.08	.12	.17
5	Dismal River near Thedford, Nebr.	41	.12	.13	.13	.15	.16
8	Mud Creek near Sweetwater, Nebr.	16		.46	. 6 8	.83	
9	South Loup River at St. Michael, Nebr.	20		.13	.19	.32	
10	Middle Loup River at St. Paul, Nebr.	18		.18	.19	.21	
13	North Loup River near St. Paul, Nebr.	18		.09	.13	.16	
14	Cedar River near Fullerton, Nebr.	116	.11	.15	.17	.21	.24
15	Loup River Power Canal at diversion near Genoa, Nebr.	39	.09	.13	.16	.20	.23
16	Beaver Creek at Genoa, Nebr.	15		.26	.30	.35	
17	Platte River at North Bend, Nebr.	16		.10	.16	.22	
19	Elkhorn River at Norfolk, Nebr.	15		.14	.18	.23	
20	Elkhorn River at West Point, Nebr.	15		.18	.23	.26	
21	Logan Creek at Pender, Nebr.	16		.12	.16	.22	
22	Elkhorn River at Waterloo, Nebr.	62	.16	.22	.28	.35	.40
35	Salt Creek at Greenwood, Nebr.	16		.32	1.6	2.4	
36	Platte River at Louisville, Nebr.	46	.10	.16	.21	.24	.32
	Phosphorus, dissolved orthophosph	nate, as P.	in milli	grams pei	r liter (00	<u>)671)</u>	
3	Platte River near Duncan, Nebr.	57	.01	.04	.07	.12	.14
5	Dismal River near Thedford, Nebr.	33	.10	.11	.13	.14	.15
14	Cedar River near Fullerton, Nebr.	28		.13	.15	.17	
15	Loup River Power Canal at diversion near Genoa, Nebr.	31	.09	.13	.16	.18	.21
22	Elkhorn River at Waterloo, Nebr.	54	.12	.19	.24	.31	.36
36	Platte River at Louisville, Nebr.	37	.07	.13	.17	.22	. 2 5
	Aluminum, dissolved, in	microgra	ns per l	iter (011)	<u>06)</u>		
3	Platte River near Duncan, Nebr.	32	<10	<10	10	20	30
5	Dismal River near Thedford, Nebr.	24	••	<20	20	4 0	
14	Cedar River near Fullerton, Nebr.	17		<10	20	40	
15	Loup River Power Canal at diversion near Genoa, Nebr.	15		10	30	5 0	
22	Elkhorn River at Waterloo, Nebr.	32	<10	<10	20	30	50
36	Platte River at Louisville, Nebr.	30	<10	<10	20	3 0	50

Sampling-	· · · · · · · · · · · · · · · · · · ·		V	alue at i	ndicated p	percentil	e
site		Number					
number		of	10th	25th	50th	75th	9 0th
(fig. 2)	Site name	analyses			(median)		
	Arsenic, total, in mi	crograms p	er liter	<u>(01002)</u>			
1	Platte River near Overton, Nebr.	31	4	4	7	11	19
2	Platte River near Grand Island, Nebr.	10		4	4	6	
22	Elkhorn River at Waterloo, Nebr.	41	5	7	9	16	25
34	Salt Creek below Stevens Creek near Waverly, Nebr.	36	3	4	5	7	10
35	Salt Creek at Greenwood, Nebr.	47	4	5	7	15	25
3 6	Platte River at Louisville, Nebr.	34	5	7	10	16	22
	Arsenic, dissolved, in a	microgram	s per lite	er (01000))		
3	Platte River near Duncan, Nebr.	40	3	4	4	5	5
5	Dismal River near Thedford, Nebr.	27		5	6	6	
14	Cedar River near Fullerton, Nebr.	17		6	6	$\tilde{7}$	
15	Loup River Power Canal at diversion near Genoa, Nebr.	23		6	7	9	
22	Elkhorn River at Waterloo, Nebr.	42	3	4	5	7	8
36	Platte River at Louisville, Nebr.	36	3	4	6	8	9
	<u>Barium, total, in mic</u>	rograms p	er liter	<u>(01007)</u>			
1	Platte River near Overton, Nebr.	10		<100	<100	100	
2	Platte River near Grand Island, Nebr.	10		<100	100	100	
22	Elkhorn River at Waterloo, Nebr.	16		200	200	400	
34	Salt Creek below Stevens Creek near Waverly, Nebr.	38	<100	<100	200	300	400
35	Salt Creek at Greenwood, Nebr.	32	<100	100	200	200	500
3 6	Platte River at Louisville, Nebr.	14		<100	200	400	
	Barium, dissolved, in r	nicrograms	s per lite	er (01005)		
3	Platte River near Duncan, Nebr.	4 0	70	70	80	9 0	100
5	Dismal River near Thedford, Nebr.	27		50	5 0	50 50	
14	Cedar River near Fullerton, Nebr.	17		120	130	140	
15	Loup River Power Canal at diversion near Genoa, Nebr.	22		110	120	130	
22	Elkhorn River at Waterloo, Nebr.	40	140	150	170	190	210
36	Platte River at Louisville, Nebr.	36	100	110	120	140	140

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		Number _	Va	alue at ir	ndicated j	percentil	e
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th
	Beryllium, dissolved, ir	n microgran	ns per lif	ter (0101	<u>0)</u>	<u> </u>	
3	Platte River near Duncan, Nebr.	31	<0.5	<0.5	<0.5	<0.5	<1.0
5	Dismal River near Thedford, Nebr.	27		<.5	<.5	<1.0	
14	Cedar River near Fullerton, Nebr.	17		<.5	<.5	<.5	
15	Loup River Power Canal at diversion near Genoa, Nebr.	15	••	<.5	<.5	<.5	
22	Elkhorn River at Waterloo, Nebr.	32	<.5	<.5	<.5	<.5	<1.0
36	Platte River at Louisville, Nebr.	30	<.5	<.5	<.5	<.5	<1.0
	Boron, dissolved, in n	nicrograms	per liter	· (01020)			
1	Platte River near Overton, Nebr.	91	110	120	140	150	160
2	Platte River near Grand Island, Nebr.	37	110	130	140	150	170
8	Mud Creek near Sweetwater, Nebr.	15		50	70	70	**
9	South Loup River at St. Michael, Nebr.	20		40	40	50	
10	Middle Loup River at St. Paul, Nebr.	20		30	40	50	
13	North Loup River near St. Paul, Nebr.	20		20	30	30	
14	Cedar River near Fullerton, Nebr.	111	20	20	30	30	30
16	Beaver Creek at Genoa, Nebr.	14		30	30	40	
17	Platte River at North Bend, Nebr.	15		60	90	100	
19	Elkhorn River at Norfolk, Nebr.	15		20	30	30	
2 0	Elkhorn River at West Point, Nebr.	15		30	40	50	
21	Logan Creek at Pender, Nebr.	16		60	70	80	
35	Salt Creek at Greenwood, Nebr.	16		100	420	550	
	<u>Cadmium, total, in m</u>	icrograms	per liter	<u>(01027)</u>			
1	Platte River near Overton, Nebr.	31	<1	<1	<15	<15	<15
2	Platte River near Grand Island, Nebr.	10		<1	<1	<1	
22	Elkhorn River at Waterloo, Nebr.	37	<1	<1	<15	<15	<15
34	Salt Creek below Stevens Creek near Waverly, Nebr.	38	<1	<1	<1	1	2
35	Salt Creek at Greenwood, Nebr.	48	<1	<1	<15	<15	<15
36	Platte River at Louisville, Nebr.	31	<1	<1	<15	<15	<15

Sampling-		1	V	alue at i	ndicated p	ercentil	е
site number	C '4	Number of	10th	25th	50th	75th	9 0th
(fig. 2)	Site name	analyses			(median)		
	<u>Cadmium, dissolved, ir</u>	n microgran	ns per lit	ter (010)	<u>25)</u>		
3	Platte River near Duncan, Nebr.	40	<1	<1	<1	<1	2
5	Dismal River near Thedford, Nebr.	27		<1	<1	<1	
14	Cedar River near Fullerton, Nebr.	17		<1	<1	<1	
15	Loup River Power Canal at diversion near Genoa, Nebr.	23		<1	<1	<1	
22	Elkhorn River at Waterloo, Nebr.	42	<1	<1	<1	<3	<3
36	Platte River at Louisville, Nebr.	36	<1	<1	<1	1	2
	<u>Chromium, total, in r</u>	nicrograms	per lite	r (01034)		
1	Platte River near Overton, Nebr.	31	<10	<10	<10	10	10
2	Platte River near Grand Island, Nebr.	10		<10	<10	10	
22	Elkhorn River at Waterloo, Nebr.	40	<10	<10	10	20	50
34	Salt Creek below Stevens Creek near Waverly, Nebr.	38	<10	<10	<10	20	30
35	Salt Creek at Greenwood, Nebr.	45	<10	<10	10	20	30
36	Platte River at Louisville, Nebr.	32	<10	<10	<10	20	30
	<u>Chromium, dissolved, in</u>	n micrograr	ns per li	<u>ter (010</u>	<u>30)</u>		
3	Platte River near Duncan, Nebr.	36	<1	<1	<1	2	10
5	Dismal River near Thedford, Nebr.	26		<1	1	2	
14	Cedar River near Fullerton, Nebr.	17		<1	<1	1	
15	Loup River Power Canal at diversion near Genoa, Nebr.	16		<1	<1	1	
22	Elkhorn River at Waterloo, Nebr.	36	<1	<1	<1	1	10
36	Platte River at Louisville, Nebr.	33	<1	<1	<1	1	9
	Cobalt, dissolved,	in microgr	ams per	liter			
3	Platte River near Duncan, Nebr.	40	<3	<3	<3	<3	<3
5	Dismal River near Thedford, Nebr.	27		<3	<3	<3	
14	Cedar River near Fullerton, Nebr.	17		<3	<3	<3	
15	Loup River Power Canal at diversion near Genoa, Nebr.	23		<3	<3	<3	
22	Elkhorn River at Waterloo, Nebr.	42	<3	<3	<3	<3	<3
36	Platte River at Louisville, Nebr.	36	<3	<3	<3	<3	<3

Sampling-		N7. 1	Value at indicated percentile					
site number		Number of	 10th	25th	50th	75th	90th	
(fig. 2)	Site name	analyses	Iun		(median		90th	
	Copper. total. in mic	crograms p	er liter	(01042)				
1	Diatta Diana ang Orantan Mala	00	.10	.10	.10	11	00	
1	Platte River near Overton, Nebr.	32	<10	<10	<10	11	20	
2	Platte River near Grand Island, Nebr.	10	.10	4	8	8		
22	Elkhorn River at Waterloo, Nebr. Salt Creek below Stevens Creek near	41	<10	<10	16	30	89	
34	Waverly, Nebr.	38	4	5	9	17	40	
35	Salt Creek at Greenwood, Nebr.	48	<10	<10	10	21	33	
36	Platte River at Louisville, Nebr.	34	<10	<10	20	30	52	
	<u>Copper, dissolved, in r</u>	nicrograms	per lit	er (01040	D)			
3	Platte River near Duncan, Nebr.	4 0	2	3	4	6	10	
5	Dismal River near Thedford, Nebr.	27		<1	<2	<4		
14	Cedar River near Fullerton, Nebr.	17		<1	<1	4		
15	Loup River Power Canal at diversion near Genoa, Nebr.	22		2	3	4		
22	Elkhorn River at Waterloo, Nebr.	43	2	3	5	7	13	
36	Platte River at Louisville, Nebr.	37	2	3	5	7	10	
	<u>Iron, total, as Fe, in n</u>	nicrograms	<u>per lite</u>	<u>r (01045</u>	2			
1	Platte River near Overton, Nebr.	10		57 0	1,600	2,600		
2	Platte River near Grand Island, Nebr.	10		280	720	2,400		
22	Elkhorn River at Waterloo, Nebr.	18		2,600	7,600	21,000		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	38	420	510	840	6,400	30,0 00	
35	Salt Creek at Greenwood, Nebr.	32	4 80	670	1,600	12,000	26,000	
36	Platte River at Louisville, Nebr.	14		3,0 00	6,2 00	24, 000		
	Iron, dissolved, as Fe, in	microgran	ns per l	iter (0104	<u>l6)</u>			
1	Platte River near Overton, Nebr.	91	<3	<4	<7	10	25	
2	Platte River near Grand Island, Nebr.	37	<3	<7	<10	16	20	
3	Platte River near Duncan, Nebr.	40	<4	<6	<9	14	44	
5	Dismal River near Thedford, Nebr.	27		13	20	26		
8	Mud Creek near Sweetwater, Nebr.	15		11	15	20		
9	South Loup River at St. Michael, Nebr.	20		10	20	40		
10	Middle Loup River at St. Paul, Nebr.	20		9	20	23		

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-	· · · · · · · · · · · · · · · · · · ·	NT	v	alue at i	ndicated	percentil	e
site number		Number of	10th	25th	50th	75th	90th
(fig. 2)	Site name	analyses	10011		(median		5000
<u> </u>	Iron, dissolved, as Fe, in micro	ograms per	liter (0	<u>1046)</u> C	ontinued	L	
13	North Loup River near St. Paul, Nebr.	2 0		19	26	53	
14	Cedar River near Fullerton, Nebr.	110	14	2 0	29	48	74
15	Loup River Power Canal at diversion near Genoa, Nebr.	23		16	22	44	
16	Beaver Creek at Genoa, Nebr.	15		10	30	44	
17	Platte River at North Bend, Nebr.	15		12	24	6 0	
[.] 19	Elkhorn River at Norfolk, Nebr.	15		17	4 0	59	
20	Elkhorn River at West Point, Nebr.	15		10	2 0	50	
21	Logan Creek at Pender, Nebr.	16		<6	<10	30	
22	Elkhorn River at Waterloo, Nebr.	41	<6	<9	15	24	140
35	Salt Creek at Greenwood, Nebr.	22		30	50	9 8	
3 6	Platte River at Louisville, Nebr.	36	5	6	10	20	86
	Lead, total, in micr	ograms pe	r liter (C	<u>1051)</u>			
1	Platte River near Overton, Nebr.	32	<4	<7	<20	<20	20
2	Platte River near Grand Island, Nebr.	10		2	4	5	
22	Elkhorn River at Waterloo, Nebr.	4 0	<4	<15	<20	32	59
34	Salt Creek below Stevens Creek near Waverly, Nebr.	38	<1	<2	<5	10	29
35	Salt Creek at Greenwood, Nebr.	48	<1	<3	<9	<20	40
36	Platte River at Louisville, Nebr.	34	<7	<12	<20	27	50
	Lead, dissolved, in m	icrograms j	<u>per liter</u>	(01049)			
3	Platte River near Duncan, Nebr.	38	<1	<1	<1	<5	<5
5	Dismal River near Thedford, Nebr.	24		<1	<4	<5	
14	Cedar River near Fullerton, Nebr.	16		<1	<5	<5	
15	Loup River Power Canal at diversion near Genoa, Nebr.	22		<1	1	3	
22	Elkhorn River at Waterloo, Nebr.	41	<1	<1	<2	<5	<5
36	Platte River at Louisville, Nebr.	35	<1	<1	<5	<5	5

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling-		NT 1	Value at indicated percentile					
site number (fig. 2)	Site name	Number of analyses	10th	25th (50th median)	75th	90th	
	Lithium, dissolved, in	microgram	s per lite	er (01130)			
3	Platte River near Duncan, Nebr.	32	28	33	36	38	40	
5	Dismal River near Thedford, Nebr.	27		11	13	14		
14	Cedar River near Fullerton, Nebr.	17		14	15	16		
15	Loup River Power Canal at diversion near Genoa, Nebr.	15		15	17	20		
22	Elkhorn River at Waterloo, Nebr.	32	16	21	23	26	31	
36	Platte River at Louisville, Nebr.	30	21	24	26	3 0	35	
	<u>Manganese, total, in r</u>	nicrograms	per lite	r (01055)				
1	Platte River near Overton, Nebr.	10		90	170	250		
2	Platte River near Grand Island, Nebr.	10		6 0	100	2 90		
22	Elkhorn River at Waterloo, Nebr.	18	**	27 0	42 0	880		
34	Salt Creek below Stevens Creek near Waverly, Nebr.	38	250	310	440	760	1,200	
35	Salt Creek at Greenwood, Nebr.	32	170	24 0	340	6 80	1,100	
36	Platte River at Louisville, Nebr.	14		190	300	6 80		
	Manganese, dissolved, in	n microgram	ns per li	<u>ter (0105</u>	<u>6)</u>			
1	Platte River near Overton, Nebr.	9 0	2	4	6	11	19	
2	Platte River near Grand Island, Nebr.	37	1	2	5	6	11	
3	Platte River near Duncan, Nebr.	40	1	2	4	9	14	
5	Dismal River near Thedford, Nebr.	27		2	3	4		
8	Mud Creek near Sweetwater, Nebr.	15		17	38	66		
9	South Loup River at St. Michael, Nebr.	20		3	6	11		
10	Middle Loup River at St. Paul, Nebr.	20		3	4	8		
13	North Loup River near St. Paul, Nebr.	20		3	4	6		
14	Cedar River near Fullerton, Nebr.	110	4	8	12	19	25	
15	Loup River Power Canal at diversion near Genoa, Nebr.	23		4	6	12		
16	Beaver Creek at Genoa, Nebr.	15		8	12	30		
17	Platte River at North Bend, Nebr.	15		3	5	8		
19	Elkhorn River at Norfolk, Nebr.	15		7	12	2 0		
20	Elkhorn River at West Point, Nebr.	15		10	12	31		
21	Logan Creek at Pender, Nebr.	16		34	10 0	170		

36 Platte River at Louisville, Nebr. 36 2 3 6 Mercury, total, in micrograms per liter (71900) 1 Platte River near Overton, Nebr. 33 <.1 <.1 <.2 2 Platte River near Overton, Nebr. 33 <.1 <.1 <.2 2 Platte River near Grand Island, Nebr. 10 <.1 .1 22 Elkhorn River at Waterloo, Nebr. 39 <.1 <.2 <.2 34 Salt Creek below Stevens Creek near 36 <.1 <.1 .1 35 Salt Creek at Greenwood, Nebr. 48 <.1 <.1 .1 36 Platte River at Louisville, Nebr. 29 <.1 <.2 Mercury, dissolved, in micrograms per liter (71890) 3 Platte River near Duncan, Nebr. 40 <.1 <.1 <.1 36 Platte River near Fullerton, Nebr. 17 <.1 <.1 3 Platte River at Waterloo, Nebr. 10 <.1 <.1 <.1 15 Loup River Power Canal at diversion as - <t< th=""><th>npling-</th><th></th><th>NT 1</th><th>Vá</th><th>alue at in</th><th>dicated p</th><th>percentil</th><th>е</th></t<>	npling-		NT 1	Vá	alue at in	dicated p	percentil	е
Manganese, dissolved, in micrograms per liter (01056)Continued 22 Elkhorn River at Waterloo, Nebr. 42 3 5 12 35 Salt Creek at Greenwood, Nebr. 22 93 180 36 Platte River at Louisville, Nebr. 36 2 3 6 Mercury, total, in micrograms per liter (71900) 1 Platte River near Overton, Nebr. 33 <.1 <.1 <.2 2 Platte River near Grand Island, Nebr. 10 <.1 .1 22 Elkhorn River at Waterloo, Nebr. 39 <.1 <.2 <.2 34 Salt Creek below Stevens Creek near 36 <.1 <.1 .1 25 Salt Creek at Greenwood, Nebr. 48 <.1 <.1 .1 36 Platte River near Duncan, Nebr. 29 <.1 <.2 Mercury, dissolved, in micrograms per liter (71890) 3 Platte River near Thedford, Nebr. 27 <.1 <.1 36 Platte River near Fullerton, Nebr.	mber	Site name	of	10th			75th	90th
22 Elkhorn River at Waterloo, Nebr. 42 3 5 12 35 Salt Creek at Greenwood, Nebr. 22 93 180 36 Platte River at Louisville, Nebr. 36 2 3 6 Mercury, total, in micrograms per liter (71900) 1 Platte River near Overton, Nebr. 33 <.1 <.1 <.2 2 Platte River near Grand Island, Nebr. 10 <.1 .1 22 Elkhorn River at Waterloo, Nebr. 39 <.1 <.2 <.2 34 Salt Creek below Stevens Creek near 36 <.1 <.1 .1 24 Salt Creek at Greenwood, Nebr. 48 <.1 <.1 .1 35 Salt Creek at Greenwood, Nebr. 48 <.1 <.1 .1 36 Platte River at Louisville, Nebr. 29 - <.1 <.2 Mercury, dissolved, in micrograms per liter (71890) 3 Platte River near Duncan, Nebr. 40 <.1 <.1 <.1 36 Platte River near Fullerton, Nebr. 17 <	-8/			liter (0)				
35Salt Creek at Greenwood, Nebr. 22 93 180 36Platte River at Louisville, Nebr. 36 2 3 6 Mercury, total, in micrograms per liter (71900)1Platte River near Overton, Nebr. 33 $<.1$ $<.1$ $<.2$ 2Platte River near Grand Island, Nebr. 10 $$ $<.1$ $.1$ 22Elkhorn River at Waterloo, Nebr. 39 $<.1$ $<.2$ $<.2$ 34Salt Creek below Stevens Creek near 36 $<.1$ $<.1$ $.1$ 35Salt Creek at Greenwood, Nebr. 48 $<.1$ $<.1$ $.1$ 36Platte River at Louisville, Nebr. 29 $$ $<.1$ $<.2$ Mercury, dissolved, in micrograms per liter (71890)3Platte River near Duncan, Nebr. 40 $<.1$ $<.1$ $<.1$ 36Platte River near Thelford, Nebr. 27 $$ $<.1$ $<.1$ 36Platte River near Thelford, Nebr. 17 $$ $<.1$ $<.1$ 36Platte River near Thulerton, Nebr. 17 $$ $<.1$ $<.1$ 36Platte River at Waterloo, Nebr. 40 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 37Salt Creek at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 37Salt Creek at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 36Platte River at Lo	00		-				40	01
36 Platte River at Louisville, Nebr. 36 2 3 6 Mercury, total, in micrograms per liter (71900) 1 Platte River near Overton, Nebr. 33 <.1					-		40	81
Mercury, total, in micrograms per liter (71900)1Platte River near Overton, Nebr. 33 $<.1$ $<.1$ $<.2$ 2Platte River near Grand Island, Nebr. 10 $ <.1$ $.1$ 22Elkhorn River at Waterloo, Nebr. 39 $<.1$ $<.2$ $<.2$ 34Salt Creek below Stevens Creek near 36 $<.1$ $<.1$ $.1$ 35Salt Creek at Greenwood, Nebr. 48 $<.1$ $<.1$ $.1$ 36Platte River at Louisville, Nebr. 29 $ <.1$ $<.2$ Mercury, dissolved, in micrograms per liter (71890)3Platte River near Duncan, Nebr. 40 $<.1$ $<.1$ $<.1$ 14Cedar River near Thedford, Nebr. 27 $ <.1$ $<.1$ 15Loup River Power Canal at diversion 23 $ <.1$ $<.1$ 22Elkhorn River at Waterloo, Nebr. 40 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ Molybdenum, dissolved, in micrograms per liter (01060)3Platte River near Duncan, Nebr. 32 <10 <10 <10							310	
1Platte River near Overton, Nebr.33 $<.1$ $<.1$ $<.2$ 2Platte River near Grand Island, Nebr.10 $<.1$.122Elkhorn River at Waterloo, Nebr.39 $<.1$ $<.2$ $<.2$ 34Salt Creek below Stevens Creek near36 $<.1$ $<.1$.135Salt Creek at Greenwood, Nebr.48 $<.1$ $<.1$.136Platte River at Louisville, Nebr.29 $<.1$ $<.2$ Mercury, dissolved, in micrograms per liter (71890)3Platte River near Duncan, Nebr.40 $<.1$ $<.1$ $<.1$ 5Dismal River near Thedford, Nebr.27 $<.1$ $<.1$ 14Cedar River near Fullerton, Nebr.17 $<.1$ $<.1$ 15Loup River Power Canal at diversion23 $<.1$ $<.1$ 22Elkhorn River at Waterloo, Nebr.40 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 37Molybdenum, dissolved, in micrograms per liter (01060) $<.1$ $<.1$ $<.1$	36 1	Platte River at Louisville, Nebr.	36	Z	3	0	10	90
2Platte River near Grand Island, Nebr.10<.1		Mercury, total, in mi	crograms r	oer liter ((<u>71900)</u>			
2 Platte River near Grand Island, Nebr. 10 <.1	1	Platte River near Overton, Nebr.	33	<.1	<.1	<.2	<.5	<.
22Elkhorn River at Waterloo, Nebr.39 $<.1$ $<.2$ $<.2$ 34Salt Creek below Stevens Creek near36 $<.1$ $<.1$ $.1$ 35Salt Creek at Greenwood, Nebr.48 $<.1$ $<.1$ $.1$ 36Platte River at Louisville, Nebr.29 $ <.1$ $<.2$ Mercury, dissolved, in micrograms per liter (71890)3Platte River near Duncan, Nebr.40 $<.1$ $<.1$ $<.1$ 5Dismal River near Thedford, Nebr.27 $ <.1$ $<.1$ 14Cedar River near Fullerton, Nebr.17 $ <.1$ $<.1$ 15Loup River Power Canal at diversion23 $ <.1$ $<.1$ 22Elkhorn River at Waterloo, Nebr.40 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr.36 $<.1$ $<.1$ $<.1$ 37 $>.2$ $<.1$ $<.1$ $<.1$ $<.1$ 38Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 36Platte River at Louisville, Nebr. 36 $<.1$ $<.1$ $<.1$ 38Platte River near Duncan, Nebr. 32 <10 <10 <10	•	•		•	<.1	.1	.1	
34Salt Creek below Stevens Creek near Waverly, Nebr.36<.1<.1.135Salt Creek at Greenwood, Nebr.48<.1				<.1			.5	
35Salt Creek at Greenwood, Nebr.48<.1<.1.136Platte River at Louisville, Nebr.29<.1							.2	
36Platte River at Louisville, Nebr.29<.1<.2Mercury, dissolved, in micrograms per liter (71890)3Platte River near Duncan, Nebr.40<.1		Waverly, Nebr.						
Mercury, dissolved, in micrograms per liter (71890) 3 Platte River near Duncan, Nebr. 40 <.1	35	Salt Creek at Greenwood, Nebr.	48	<.1	<.1	.1	.2	
3 Platte River near Duncan, Nebr. 40 <.1	36 J	Platte River at Louisville, Nebr.	29		<.1	<.2	<.5	
5 Dismal River near Thedford, Nebr. 27 <.1		Mercury, dissolved, in p	microgram	s per lite	er (71890))		
5 Dismal River near Thedford, Nebr. 27 <.1	3]	Platte River near Duncan, Nebr.	4 0	<.1	<.1	<.1	<.1	
14 Cedar River near Fullerton, Nebr. 17 <.1			27		<.1	<.1	.1	
15 Loup River Power Canal at diversion 23 <.1		•					<.1	
22 Elkhorn River at Waterloo, Nebr. 40 <.1		Loup River Power Canal at diversion					<.1	
Molybdenum, dissolved, in micrograms per liter (01060)3Platte River near Duncan, Nebr.32<10	22]		4 0	<.1	<.1	<.1	.1	
3 Platte River near Duncan, Nebr. 32 <10 <10 <10 <	36]	Platte River at Louisville, Nebr.	36	<.1	<.1	<.1	.1	
,		<u>Molybdenum, dissolved, i</u>	n microgra	<u>ms per l</u>	iter (010)	<u>60)</u>		
,	3 1	Platte River near Duncan, Nebr	32	<10	<10	<10	<10	<10
							<10	~10
							<10	
		Loup River Power Canal at diversion					<10	
	22 I		32	<10	<10	<10	<10	<10
36 Platte River at Louisville, Nebr. 30 <10 <10 <10 <	36 I	Platte River at Louisville, Nebr.	30	<10	<10	<10	<10	<10

Table 7. Statistical summary of data on water-quality constituents and properties in stream-watersamples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Sampling- site		Number	V	alue at ir	dicated	percentil	e
number		of	 10th	25th	50th	75th	90th
(fig. 2)	Site name	analyses	1001		median)		20011
<u></u>	Nickel, dissolved, in r	nicrograms	per lite	r (01065)			
3	Platte River near Duncan, Nebr.	40	<1	1	2	4	5
5	Dismal River near Thedford, Nebr.	24		<1	1	2	
14	Cedar River near Fullerton, Nebr.	17		<1	2	4	
15	Loup River Power Canal at diversion near Genoa, Nebr.	23		<1	1	4	
22	Elkhorn River at Waterloo, Nebr.	40	1	2	3	6	11
36	Platte River at Louisville, Nebr.	36	<1	1	2	4	6
	<u>Selenium, total, in m</u>	licrograms	<u>per liter</u>	(01147)			
1	Platte River near Overton, Nebr.	31	<2	<3	3	8	16
2	Platte River near Grand Island, Nebr.	10		2	2	2	
22	Elkhorn River at Waterloo, Nebr.	36	3	4	5	7	11
34	Salt Creek below Stevens Creek near Waverly, Nebr.	33	1	1	2	2	3
35	Salt Creek at Greenwood, Nebr.	45	1	2	2	3	28
36	Platte River at Louisville, Nebr.	31	<2	<2	<3	4	11
	<u>Selenium, dissolved, in</u>	microgram	<u>is per lit</u>	er (01145	<u>5)</u>		
3	Platte River near Duncan, Nebr.	40	1	2	2	2	3
5	Dismal River near Thedford, Nebr.	27		<1	<1	<1	
14	Cedar River near Fullerton, Nebr.	17		<1	1	1	
15	Loup River Power Canal at diversion near Genoa, Nebr.	23		1	1	1	
22	Elkhorn River at Waterloo, Nebr.	42	2	3	4	6	7
36	Platte River at Louisville, Nebr.	36	1	1	2	2	3
	<u>Silver, total, in mic</u>	rograms pe	<u>r liter (0</u>	1077)			
1	Platte River near Overton, Nebr.	31	<1	<1	<1	<1	<2
2	Platte River near Grand Island, Nebr.	10		<1	<1	<1	
22	Elkhorn River at Waterloo, Nebr.	35	<1	<1	<1	<1	1
34	Salt Creek below Stevens Creek near Waverly, Nebr.	41	<1	<1	<1	1	1
35	Salt Creek at Greenwood, Nebr.	47	<1	<1	<1	<1	1
36	Platte River at Louisville, Nebr.	3 0	<1	<1	<1	<1	1

Table 7. Statistical summary of data on water-quality constituents and properties in stream-water	
samples collected from selected sites within Central Nebraska Basins, 1981-90Continued	

Sampling-		Number	V	alue at in	dicated 1	percentil	e
site		Number	1041	OFAL	FOIL	7541	0.041
number	Site - and	of	10th	25th	50th median)	75th	9 0th
(fig. 2)	Site name	analyses		(median)		· · · · · · · · · · · · · · · · · · ·
	<u>Silver, dissolved, in r</u>	nicrograms	per liter	<u>r (01075)</u>			
3	Platte River near Duncan, Nebr.	37	<1	<1	<1	<1	<1
5	Dismal River near Thedford, Nebr.	26		<1	<1	<1	
14	Cedar River near Fullerton, Nebr.	17	~~	<1	<1	<1	
15	Loup River Power Canal at diversion near Genoa, Nebr.	20		<1	<1	<1	
22	Elkhorn River at Waterloo, Nebr.	36	<1	<1	<1	<1	1
36	Platte River at Louisville, Nebr.	34	<1	· <1	<1	<1	2
	Strontium, dissolved, in	n microgran	ns per li	ter (0108	<u>0)</u>		
3	Platte River near Duncan, Nebr.	32	550	660	720	76 0	810
5	Dismal River near Thedford, Nebr.	27		110	120	120	
14	Cedar River near Fullerton, Nebr.	17		210	230	240	
15	Loup River Power Canal at diversion near Genoa, Nebr.	15		200	200	210	
22	Elkhorn River at Waterloo, Nebr.	32	280	330	370	40 0	410
36	Platte River at Louisville, Nebr.	30	310	370	430	47 0	540
	<u>Vanadium, dissolved, ir</u>	<u>n microgran</u>	ns per lit	ter (0108	<u>5)</u>		
3	Platte River near Duncan, Nebr.	32	<6	<6	<6	6	10
5	Dismal River near Thedford, Nebr.	27		9	10	10	
14	Cedar River near Fullerton, Nebr.	17		<6	<6	9	
15	Loup River Power Canal at diversion near Genoa, Nebr.	15		8	9	13	
22	Elkhorn River at Waterloo, Nebr.	32	<6	<6	<6	7	9
36	Platte River at Louisville, Nebr.	30	<6	<6	<6	9.3	11
	Zinc, total, in micr	ograms per	liter (0	<u>1092)</u>			
1	Platte River near Overton, Nebr.	32	<30	<30	<30	4 0	50
$\frac{1}{2}$	Platte River near Grand Island, Nebr.	10		20	30	40	
22^{-}	Elkhorn River at Waterloo, Nebr.	41	<30	<30	40	70	240
34	Salt Creek below Stevens Creek near Waverly, Nebr.	47	20	20	30	50	1 40
35	Salt Creek at Greenwood, Nebr.	48	<30	<30	40	6 0	120
36	Platte River at Louisville, Nebr.	34	<30	<30	4 0	80	180

Sampling-		NT1	Va	due at in	dicated j	percentil	e
site		Number	10.2	0513	F011	BE J	0.0.11
number	C 14	of	10th	25th	50th	75th	90th
(fig. 2)	Site name	analyses	<u></u>	(median)		
	Zinc, dissolved, in m	icrograms j	per liter ((01090)			
3	Platte River near Duncan, Nebr.	40	3	6	9	20	34
5	Dismal River near Thedford, Nebr.	27		<3	6	10	
14	Cedar River near Fullerton, Nebr.	17		5	7	18	
15	Loup River Power Canal at diversion near Genoa, Nebr.	23		5	9	15	
22	Elkhorn River at Waterloo, Nebr.	41	3	7	13	2 2	34
36	Platte River at Louisville, Nebr.	36	<3	4	8	14	19 ΄
	<u>Carbon, organic, total, i</u>	in milligran	ns per lit	er (0068)	<u>))</u>		
1	Platte River near Overton, Nebr.	112	3.6	4.2	5.0	7.2	9 .6
2	Platte River near Grand Island, Nebr.	116	3.6	4.4	5.4	8.3	11
4	Middle Loup River north of Dunning, Nebr.	90	1.2	1.4	1.8	2.6	3.9
6	Dismal River at Dunning, Nebr.	67	1.1	1.3	1.7	2.3	3.3
7	Middle Loup River at Sargent, Nebr.	9 2	1.4	1.6	2.0	2.6	3.7
8	Mud Creek near Sweetwater, Nebr.	102	3.5	4.2	5.8	11	17
9	South Loup River at St. Michael, Nebr.	95	2.7	3.3	4.4	6.2	8.7
11	North Loup River at Taylor, Nebr.	94	1.7	2.4	2.9	4.0	6.7
12	Calamus River near Burwell, Nebr.	71	2.0	2.6	3. 9	5.4	5.9
13	North Loup River near St. Paul, Nebr.	107	2.2	2.6	3.4	5.1	7.0
14	Cedar River near Fullerton, Nebr.	59	2.0	2.5	3.7	5.4	7.5
16	Beaver Creek at Genoa, Nebr.	97	3.6	4.8	7.5	12	18
17	Platte River at North Bend, Nebr.	102	3.4	4.3	6.4	11	16
18	Elkhorn River near Atkinson, Nebr.	78	2.7	3.4	4.4	12	17
19	Elkhorn River at Norfolk, Nebr.	96	3.8	4.4	7.0	12	20
20	Elkhorn River at West Point, Nebr.	102	3.7	5.1	7.8	13	19
21	Logan Creek at Pender, Nebr.	99	2.7	3.3	4.7	8.2	17
22	Elkhorn River at Waterloo, Nebr.	109	4.0	5.9	9.2	15	24
34	Salt Creek below Stevens Creek near Waverly, Nebr.	102	6.1	7.2	8.8	13	26
35	Salt Creek at Greenwood, Nebr.	101	5.4	6.4	7.9	12	20
36	Platte River at Louisville, Nebr.	111	3.5	5.5	7.2	12	27

Sampling- site		Number	Value at indicated percentile					
number (fig. 2)	Site name	of analyses	10th	25th	50th (median)	75th	90th	
	Sediment, suspended,	in milligran	ns per lit	ter (8015	<u>4)</u>			
3	Platte River near Duncan, Nebr.	54	74	110	210	320	720	
5	Dismal River near Thedford, Nebr.	27		390	580	690		
14	Cedar River near Fullerton, Nebr.	24	-	280	370	890		
15	Loup River Power Canal at diversion near Genoa, Nebr.	17		150	210	320		
22	Elkhorn River at Waterloo, Nebr.	55	120	180	510	1,100	2,800	
36	Platte River at Louisville, Nebr.	4 6	160	240	400	1,300	2,700	
	Sediment, suspended, finer tha	in 0.062 mil	<u>limeter,</u>	in perce	nt (7033)	<u>L)</u>		
3	Platte River near Duncan, Nebr.	30	14	37	60	82	89	
5	Dismal River near Thedford, Nebr.	20		16	18	20		
14	Cedar River near Fullerton, Nebr.	19		41	56	72		
15	Loup River Power Canal at diversion near Genoa, Nebr.	10		81	93	97		
22	Elkhorn River at Waterloo, Nebr.	30	53	62	74	84	92	
36	Platte River at Louisville, Nebr.	17		42	68	78		

[Number in parentheses following constituent or property name is parameter code used in U.S. Environmental Protection Agency's Storage and Retrieval System and U.S. Geological Survey's National Water Information System; <, less than; --, value not determined for fewer than 30 analyses]

Sampling-		NT 1	Value at indicated percentile						
site number (fig. 2)	Site name	Number of analyses	10th	2 5th	50th (median)	75th	90th		
	Color. in 1	platinum cobs	alt scale u	units (008	<u>00)</u>				
23	Olive Creek Lake, Nebr.	14		15	3 0	72			
24	Bluestem Lake, Nebr.	14		19	32	62			
25	Wagon Train Lake, Nebr.	12		21	32	39			
26	Stagecoach Lake, Nebr.	14		15	25	31			
27	Yankee Hill Lake, Nebr.	21		15	30	52	••		
28	Conestoga Lake, Nebr.	14		15	18	41			
29	Pawnee Lake, Nebr.	14		10	18	50			
31	East Twin Lake, Nebr.	13		18	20	30			
32	Holmes Lake, Nebr.	21		15	30	78			
33	Branched Oak Lake, Nebr.	21		10	15	25	••		
	<u>Turbidity, in</u>	nephelometr	ic turbidi	<u>ty units ((</u>	00076)				
23	Olive Creek Lake, Nebr.	74	0	12	28	41	72		
24	Bluestem Lake, Nebr.	74	0	6	17	34	9 8		
25	Wagon Train Lake, Nebr.	85	0	5	12	20	38		
26	Stagecoach Lake, Nebr.	72	0	6	10	17	27		
27	Yankee Hill Lake, Nebr.	125	0	8	14	20	83		
28	Conestoga Lake, Nebr.	84	0	5	14	20	31		
29	Pawnee Lake, Nebr.	85	0	7	13	20	28		
30	West Twin Lake, Nebr.	32	0	4	14	27	39		
31	East Twin Lake, Nebr.	71	0	4	10	15	22		
32	Holmes Lake, Nebr.	126	0	11	20	30	81		
33	Branched Oak Lake, Nebr.	125	0	6	10	14	19		
	Hardness, total	as CaCO ₃ , in	milligran	ns per lite	er (00900)				
23	Olive Creek Lake, Nebr.	78	100	110	130	140	160		
24	Bluestem Lake, Nebr.	78	100	120	150	160	180		
25	Wagon Train Lake, Nebr.	89	110	120	140	160	180		
26	Stagecoach Lake, Nebr.	76	110	130	140	180	200		
27	Yankee Hill Lake, Nebr.	132	100	120	140	170	190		
28	Conestoga Lake, Nebr.	88	150	170	180	220	240		
29	Pawnee Lake, Nebr.	88	140	160	180	200	210		

Sampling-				Value at i	ndicated p	ercentile	
site		Number	10th	0541	50th	75th	90th
number (fig. 2)	Site name	of analyses	10th	25th	(median)	75111	90th
	Hardness, total as Ca	CO ₃ , in millig	rams per	liter (009	<u>00)</u> Conti	nued	
30	West Twin Lake, Nebr.	34	160	180	200	240	280
31	East Twin Lake, Nebr.	54 74	120	130	150	180	2 10
32	Holmes Lake, Nebr.	131	80	95	110	140	150
33	Branched Oak Lake, Nebr.	131	160	170	180	190	210
	<u>Calcium, t</u>	otal, in millig	rams per	<u>: liter (009</u>	<u>16)</u>		
23	Olive Creek Lake, Nebr.	35	28	34	40	46	50
24	Bluestem Lake, Nebr.	35	26	34	40	45	50
25	Wagon Train Lake, Nebr.	39	23	29	32	38	40
26	Stagecoach Lake, Nebr.	35	24	28	36	43	56
27	Yankee Hill Lake, Nebr.	57	21	25	31	42	50
28	Conestoga Lake, Nebr.	39	37	40	47	54	57
29	Pawnee Lake, Nebr.	39	37	40	44	48	52
3 0	West Twin Lake, Nebr.	16	**	46	56	64	
31	East Twin Lake, Nebr.	33	29	32	40	49	59
32	Holmes Lake, Nebr.	59	23	25	31	37	41
33	Branched Oak Lake, Nebr.	58	35	4 1	44	48	54
	<u>Magnesium,</u>	total, in mill	igrams pe	er liter (00	<u>)927)</u>		
23	Olive Creek Lake, Nebr.	35	6	7	8	9	10
24	Bluestem Lake, Nebr.	35	7	10	11	13	14
25	Wagon Train Lake, Nebr.	39	10	14	15	16	16
26	Stagecoach Lake, Nebr.	35	11	13	15	15	16
27	Yankee Hill Lake, Nebr.	58	8	11	13	15	17
28	Conestoga Lake, Nebr.	39	12	16	20	22	23
29	Pawnee Lake, Nebr.	39	13	14	17	19	2 0
30	West Twin Lake, Nebr.	16	**	15	18	22	
31	East Twin Lake, Nebr.	34	11	13	15	17	19
32	Holmes Lake, Nebr.	58	7	7	9	11	14
3 3	Branched Oak Lake, Nebr.	57	15	16	18	19	21
	<u>Alkalinity, onsite, to</u>	tal as CaCO ₃	<u>, in millig</u>	<u>grams per</u>	<u>liter (0041</u>	<u>.0)</u>	
23	Olive Creek Lake, Nebr.	80	110	130	140	150	180
24	Bluestem Lake, Nebr.	80	100	130	150	170	190
25	Wagon Train Lake, Nebr.	91	130	160	180	200	220

Sampling-				Value at	indicated pe	ercentile	
site		Number					
number		of	10th	25th	50th	75th	90th
(fig. 2)	Site name	analyses			(median)		
	Alkalinity, onsite, total as	CaCO ₃ , in m	illigrams	per liter	<u>(00410)</u> Co	ntinued	
26	Stagecoach Lake, Nebr.	78	120	140	160	170	190
27	Yankee Hill Lake, Nebr.	135	110	140	160	170	190
2 8	Conestoga Lake, Nebr.	90	140	150	170	190	210
29	Pawnee Lake, Nebr.	90	160	170	190	200	220
30	West Twin Lake, Nebr.	35	150	170	190	200	230
31	East Twin Lake, Nebr.	76	130	150	160	180	190
32	Holmes Lake, Nebr.	135	85	100	130	150	160
33	Branched Oak Lake, Nebr.	134	170	170	180	200	210
	Sulfate, diss	olved, in mill	igrams p	erliter (O	0945)		
23	Olive Creek Lake, Nebr.	62	13	17	21	26	73
20	Bluestem Lake, Nebr.	62	18	21	27	33	72
25	Wagon Train Lake, Nebr.	69	25	30	43	57	72
26	Stagecoach Lake, Nebr.	60	17	26	34	54	67
20 27	Yankee Hill Lake, Nebr.	101	28	33	43	56	85
28	Conestoga Lake, Nebr.	68	37	45	70	89	105
28 29	Pawnee Lake, Nebr.	08 70	24	43 26	70 34	89 51	6 8
29 30	West Twin Lake, Nebr.	28		20 38	54 60	51 74	
30 31	East Twin Lake, Nebr.	28 58	 19	2 3	35	49	 79
31 32	•	102	19 17				
52	Holmes Lake, Nebr.	102	17	22	32	48	86
33	Branched Oak Lake, Nebr.	101	32	34	40	44	56
	Chloride, dis	solved, in mil	ligrams p	er liter ((00940)		
23	Olive Creek Lake, Nebr.	43	3	4	5	6	9
24	Bluestem Lake, Nebr.	43	6	6	8	10	11
25	Wagon Train Lake, Nebr.	45	5	7	9	10	11
2 6	Stagecoach Lake, Nebr.	41	8	12	16	18	21
27	Yankee Hill Lake, Nebr.	67	3	6	7	10	11
28	Conestoga Lake, Nebr.	45	8	10	13	15	16
29	Pawnee Lake, Nebr.	46	5	6	10	8	9
30	West Twin Lake, Nebr.	20		5	10	12	
31	East Twin Lake, Nebr.	39	4	5	10	9	10
32	Holmes Lake, Nebr.	6 8	6	8	13	15	18
3 3	Branched Oak Lake, Nebr.	68	4	5	6	7	8

Sampling-		Number of	Value at indicated percentile					
site number			10th	25th	50th	75th	90th	
(fig. 2)	Site name	analyses	2000		(median)			
	Nitrogen, ammoni	a, total as N,	in millig	rams per	liter (0061)	0)		
23	Olive Creek Lake, Nebr.	80	<0.02	0.02	0.05	0.13	0.42	
24	Bluestem Lake, Nebr.	80	<.02	<.02	.04	.12	.20	
25	Wagon Train Lake, Nebr.	91	<.02	.02	.05	.10	.22	
26	Stagecoach Lake, Nebr.	78	<.02	.02	.06	.16	.49	
27	Yankee Hill Lake, Nebr.	131	<.02	<.02	.03	.09	.20	
28	Conestoga Lake, Nebr.	91	<.02	. <.02	.07	.17	.29	
29	Pawnee Lake, Nebr.	9 0	<.02	<.02	.03	.07	.17	
30	West Twin Lake, Nebr.	35	<.02	.02	.07	.17	.42	
31	East Twin Lake, Nebr.	76	<.02	.03	.08	.17	.27	
32	Holmes Lake, Nebr.	135	<.02	<.02	.03	.07	.14	
33	Branched Oak Lake, Nebr.	134	<.02	<.02	.06	.11	.19	
	Nitrite, tota	l as N, in mil	ligrams p	er liter ((00615)			
23	Olive Creek Lake, Nebr.	45	<.01	<.01	<.01	<.01	<.01	
24	Bluestem Lake, Nebr.	45	<.01	<.01	<.01	<.01	<.01	
25	Wagon Train Lake, Nebr.	56	<.01	<.01	<.01	<.01	.01	
26	Stagecoach Lake, Nebr.	42	<.01	<.01	<.01	<.01	.01	
27	Yankee Hill Lake, Nebr.	79	<.01	<.01	<.01	<.01	.01	
28	Conestoga Lake, Nebr.	56	<.01	<.01	<.01	<.01	.01	
29	Pawnee Lake, Nebr.	56	<.01	<.01	<.01	<.01	<.01	
30	West Twin Lake, Nebr.	17		<.01	<.01	<.01		
31	East Twin Lake, Nebr.	42	<.01	<.01	<.01	<.01	<.01	
32	Holmes Lake, Nebr.	82	<.01	<.01	<.01	<.01	<.01	
3 3	Branched Oak Lake, Nebr.	82	<.01	<.01	<.01	<.01	<.01	
	Ammonia, un-ior	nized as N, ir	n milligra	ms per lit	e <u>r (00619)</u>			
23	Olive Creek Lake, Nebr.	80	<.01	<.01	<.01	.01	.03	
24	Bluestem Lake, Nebr.	78	<.01	<.01	<.01	.01	.01	
25	Wagon Train Lake, Nebr.	89	<.01	<.01	<.01	<.01	.01	
26	Stagecoach Lake, Nebr.	78	<.01	<.01	<.01	.01	.02	
27	Yankee Hill Lake, Nebr.	131	<.01	<.01	<.01	<.01	.01	
28	Conestoga Lake, Nebr.	91	<.01	<.01	<.01	.01	.02	
29	Pawnee Lake, Nebr.	9 0	<.01	<.01	<.01	<.01	.01	
30	West Twin Lake, Nebr.	35	<.01	<.01	<.01	.01	.03	

Table 8.	Statistical	summary of	data on wat	er-quality	v constituents	and prop	erties in lake-water
sampl	les collected	from selected	l sites withi	n Central	Nebraska Bo	asins, 1981	1-90Continued

Sampling-			Value at indicated percentile						
site		Number of	10+1	25th	50th	75.1	90th		
number (fig. 2)	Site name	analyses	10th	20th	(median)	75th			
	Ammonia, un-ionized	as N, in milli	igrams pe	r liter (00	<u>619)</u> Contir	nued			
31	East Twin Lake, Nebr.	75	<0.01	<0.01	<0.01	0.01	0.02		
32	Holmes Lake, Nebr.	134	<.01	<.01	<.01	.01	.01		
33	Branched Oak Lake, Nebr.	134	<.01	<.01	<.01	.01	.01		
	Nitrate, tota	l as N, in mi	lligrams r	oer liter ((00620)				
23	Olive Creek Lake, Nebr.	77	.02	.10	.34	.88	1.3		
24	Bluestem Lake, Nebr.	76	<.01	.03	.17	.81	1.2		
25	Wagon Train Lake, Nebr.	87	<.01	.02	.08	.27	.63		
26	Stagecoach Lake, Nebr.	74	<.01	.02	.08	.50	1.7		
27	Yankee Hill Lake, Nebr.	127	<.01	.02	.18	.43	.80		
28	Conestoga Lake, Nebr.	87	<.01	.01	.07	.27	.61		
29	Pawnee Lake, Nebr.	87	<.01	.01	.05	.23	.65		
30	West Twin Lake, Nebr.	33	<.01	.02	.05	.18	.88		
3 1	East Twin Lake, Nebr.	72	<.01	.01	.06	.25	.55		
32	Holmes Lake, Nebr.	129	<.01	.01	.05	.34	.84		
33	Branched Oak Lake, Nebr.	13 0	.01	.05	.15	.31	.59		
	Nitrogen, total ammonia	plus organic	as N, in 1	nilligram	s per liter (0 <u>0625)</u>			
23	Olive Creek Lake, Nebr.	65	.6	.7	.9	1.2	1 .5		
24	Bluestem Lake, Nebr.	65	.5	.7	.8	1.0	1.2		
25	Wagon Train Lake, Nebr.	76	.5	.6	.8	1.0	1.4		
26	Stagecoach Lake, Nebr.	63	.4	.6	.9	1.3	1.8		
27	Yankee Hill Lake, Nebr.	109	.5	.6	.8	1.0	1.2		
28	Conestoga Lake, Nebr.	76	.5	.6	.9	1.2	1.5		
29	Pawnee Lake, Nebr.	73	.4	.6	.8 ·	1.0	1.1		
30	West Twin Lake, Nebr.	27		.9	1.1	1.4			
31	East Twin Lake, Nebr.	62	.5	.7	.9	1.4	1.7		
32	Holmes Lake, Nebr.	113	.4	.6	.9	1.1	1.4		
33	Branched Oak Lake, Nebr.	112	.4	.5	.7	.9	1.1		
	Phosphorus, to	otal as P. in n	nilligrams	per liter	(00665)				
2 3	Olive Creek Lake, Nebr.	78	.06	.10	.13	.17	.27		
24	Bluestem Lake, Nebr.	78	.05	.08	.12	.15	.30		
25	Wagon Train Lake, Nebr.	89	.07	.09	.14	.19	.28		

Sampling-				Value at	indicated p	ercentile	
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th
	Phosphorus, total as	P. in milligr	ams per l	iter (0066	<u> 35)</u> Continu	ed	
26	Stagecoach Lake, Nebr.	76	0.04	0.08	0.13	0.19	0.28
27	Yankee Hill Lake, Nebr.	130	.05	.06	.09	.12	.27
28	Conestoga Lake, Nebr.	89	.04	.08	.09	.11	.18
29	Pawnee Lake, Nebr.	88	.03	.06	.09	.12	.16
30	West Twin Lake, Nebr.	34	.07	.11	.16	.22	.28
31	East Twin Lake, Nebr.	75	.05	.08	.10	.13	.20
32	Holmes Lake, Nebr.	132	.06	.08	.12	.19	.25
33	Branched Oak Lake, Nebr.	131	.04	.05	.07	.09	.12
	Phosphorus, tota	l ortho as P. i	n milligra	ams per li	ter (70507)		
23	Olive Creek Lake, Nebr.	72	.02	.03	.05	.07	.12
24	Bluestem Lake, Nebr.	72	.01	.03	.04	.08	.14
25	Wagon Train Lake, Nebr.	83	.01	.04	.06	.11	.16
26	Stagecoach Lake, Nebr.	70	.01	.02	.04	.07	.09
27	Yankee Hill Lake, Nebr.	122	<.01	.01	.02	.05	.08
28	Conestoga Lake, Nebr.	81	<.01	.01	.02	.04	.08
29	Pawnee Lake, Nebr.	81	<.01	.01	.02	.03	.05
30	West Twin Lake, Nebr.	30	.01	.02	.04	.07	.08
31	East Twin Lake, Nebr.	68	<.01	.01	.02	.03	.09
32	Holmes Lake, Nebr.	122	<.01	.01	.03	.06	.10
33	Branched Oak Lake, Nebr.	121	<.01	.01	.02	.03	.05
	Antimony, t	otal, in micro	ograms po	er liter (O	<u>1097)</u>		
23	Olive Creek Lake, Nebr.	20		<2	<3	<5	••
24	Bluestem Lake, Nebr.	20		<2	<4	<5	
25	Wagon Train Lake, Nebr.	24		<2	<2	<5	**
26	Stagecoach Lake, Nebr.	20		<2	<3	<5	
27	Yankee Hill Lake, Nebr.	36	<2	<2	<2	<5	<10
28	Conestoga Lake, Nebr.	24		<2	<2	<5	
29	Pawnee Lake, Nebr.	23		<2	<2	<5	
31	East Twin Lake, Nebr.	19		<2	<3	<5	
32	Holmes Lake, Nebr.	36	<2	<2	<2	<5	<10
33	Branched Oak Lake, Nebr.	36	<2	<2	<3	<5	<20

Sampling-	,	NT		Value at :	indicated pe	ercentile	
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th
	Arsenic, to	otal, in micros	rams per	r liter (01(<u>)02)</u>		
23	Olive Creek Lake, Nebr.	30	<2	2	3	4	9
24	Bluestem Lake, Nebr.	30	<2	<2	3	5	11
25	Wagon Train Lake, Nebr.	34	2	4	5	9	12
26	Stagecoach Lake, Nebr.	28		<2	3	6	
27	Yankee Hill Lake, Nebr.	51	<2	2	4	5	7
28	Conestoga Lake, Nebr.	34	<2	2	3	5	6
2 9	Pawnee Lake, Nebr.	33	<2	<2	3	3	6
30	West Twin Lake, Nebr.	11		5	5	8	
31	East Twin Lake, Nebr.	27		<2	3	5	
32	Holmes Lake, Nebr.	51	<2	<2	3	5	6
33	Branched Oak Lake, Nebr.	51	<2	<2	2	3	4
	Barium, to	tal, in microg	rams per	liter (01	007)		
23	Olive Creek Lake, Nebr.	20		130	140	170	
24	Bluestem Lake, Nebr.	2 0		120	140	150	
25	Wagon Train Lake, Nebr.	24		80	9 0	100	
26	Stagecoach Lake, Nebr.	20		140	150	170	
27	Yankee Hill Lake, Nebr.	36	70	100	130	130	1 40
28	Conestoga Lake, Nebr.	24		120	130	160	
29	Pawnee Lake, Nebr.	23		120	170	180	
31	East Twin Lake, Nebr.	19		80	120	170	
32	Holmes Lake, Nebr.	36	80	120	130	140	160
33	Branched Oak Lake, Nebr.	36	80	140	150	160	170
	<u>Beryllium, t</u>	<u>otal, in micro</u>	grams pe	r liter (0	<u>1012)</u>		
23	Olive Creek Lake, Nebr.	20		<2	<2	<5	
24	Bluestem Lake, Nebr.	20		<2	<2	<5	
25	Wagon Train Lake, Nebr.	24		<2	<2	<5	
26	Stagecoach Lake, Nebr.	20		<2	<2	<5	
27	Yankee Hill Lake, Nebr.	36	<2	<2	<2	<5	<5
28	Conestoga Lake, Nebr.	24		<2	<2	<5	
29	Pawnee Lake, Nebr.	23		<2	<2	<5	
31	East Twin Lake, Nebr.	19		2	2	5	
32	Holmes Lake, Nebr.	36	<2	<2	<2	<5	<5
33	Branched Oak Lake, Nebr.	36	<2	<2	<2	<5	<5

.

.

Table 8. Statistical summary of data on water-quality constituents and p	properties in lake-water
samples collected from selected sites within Central Nebraska Basins, i	<i>1981-90</i> Continued

Sampling-		N 7 N		Value at	indicated pe	ercentile	
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th
	Boron, to	tal, in microg	rams per	liter (010	<u>)22)</u>		
23	Olive Creek Lake, Nebr.	20		29	40	78	
24	Bluestem Lake, Nebr.	20		32	50	62	
25	Wagon Train Lake, Nebr.	24		50	64	75	
26	Stagecoach Lake, Nebr.	20		42	54	71	
27	Yankee Hill Lake, Nebr.	36	33	39	52	72	99
28	Conestoga Lake, Nebr.	24		52	56	78	
29	Pawnee Lake, Nebr.	23		43	58	70	
31	East Twin Lake, Nebr.	19		37	61	71	
32	Holmes Lake, Nebr.	36	35	38	43	62	100
33	Branched Oak Lake, Nebr.	36	26	42	56	61	120
	<u>Cadmium, t</u>	otal, in micro	ograms pe	erliter (O	1027)		
23	Olive Creek Lake, Nebr.	29		<.2	<.4	<.5	
24	Bluestem Lake, Nebr.	29		<.2	<.4	<.5	
25	Wagon Train Lake, Nebr.	33	<.2	<.2	<.3	<.5	1
26	Stagecoach Lake, Nebr.	27		<.2	<.5	<.5	
27	Yankee Hill Lake, Nebr.	49	<.2	<.2	<.4	<.5	1
28	Conestoga Lake, Nebr.	33	<.2	<.2	<.3	<.5	<3
29	Pawnee Lake, Nebr.	32	<.2	<.2	<.2	<.5	1
30	West Twin Lake, Nebr.	12		<.5	.5	.9	
31	East Twin Lake, Nebr.	28		<.2	<.4	<.5	
32	Holmes Lake, Nebr.	50	<.2	<.2	<.3	<.5	<2
33	Branched Oak Lake, Nebr.	48	<.2	<.2	<.3	<.5	<2
	Chromium,	total, in micr	ograms p	er liter (O	1034)		
23	Olive Creek Lake, Nebr.	20		<5	<5	7	••
24	Bluestem Lake, Nebr.	20		<5	<5	7	
25	Wagon Train Lake, Nebr.	24		<5	<5	<5	
26	Stagecoach Lake, Nebr.	20		<5	<5	<5	
27	Yankee Hill Lake, Nebr.	36	<3	<5	<5	<5	<7
28	Conestoga Lake, Nebr.	24		<5	<5	<5	
29	Pawnee Lake, Nebr.	23		<5	<5	<5	
31	East Twin Lake, Nebr.	19		<5	<5	<5	
32	Holmes Lake, Nebr.	36	<3	<5	<5	<5	<5
33	Branched Oak Lake, Nebr.	36	<3	<5	<5	<5	<5

Sampling-			Value at indicated percentile							
site		Number	1041	0541	EOH	7541	0041			
number (fig. 2)	Site name	of analyses	10th	25th	50th (median)	7 5th	90th			
(IIG. 2)				<u></u>	(methan)					
	Copper, to	tal, in micro	grams pe	r liter (010	<u>)42)</u>					
23	Olive Creek Lake, Nebr.	3 2	<4	<5	<5	7	10			
24	Bluestem Lake, Nebr.	32	<5	<5	6	11	21			
25	Wagon Train Lake, Nebr.	36	<3	<5	<5	8	25			
26	Stagecoach Lake, Nebr.	30	<3	<5	<5	6	9			
27	Yankee Hill Lake, Nebr.	54	<5	<5	<5	5	9			
28	Conestoga Lake, Nebr.	36	. <5	<5	<5	5	7			
29	Pawnee Lake, Nebr.	34	<5	<5	<5	5	6			
30	West Twin Lake, Nebr.	12		5	6	9				
31	East Twin Lake, Nebr.	29		<5	<5	5				
32	Holmes Lake, Nebr.	55	<5	<5	<5	7	15			
33	Branched Oak Lake, Nebr.	55	<3	<5	<5	<5	7			
	Iron, total a	<u>s Fe, in micr</u>	ograms g	oer liter (O)	<u>1045)</u>					
23	Olive Creek Lake, Nebr.	39	950	1,600	2,000	2,800	4,300			
24	Bluestem Lake, Nebr.	39	430	1,100	1,500	2,900	4,400			
25	Wagon Train Lake, Nebr.	45	310	590	850	1,800	4,100			
26	Stagecoach Lake, Nebr.	37	530	630	9 60	1,200	2,700			
27	Yankee Hill Lake, Nebr.	67	600	840	1,100	1,800	7,700			
2 8	Conestoga Lake, Nebr.	45	64 0	740	9 70	1,600	2,300			
29	Pawnee Lake, Nebr.	44	520	6 80	9 80	1,900	2,400			
30	West Twin Lake, Nebr.	16		96 0	1,400	2,800				
31	East Twin Lake, Nebr.	38	190	360	570	1,100	1,700			
32	Holmes Lake, Nebr.	67	640	920	1,6 00	4,500	6,400			
33	Branched Oak Lake, Nebr.	66	3 30	49 0	670	1,10 0	1,400			
	Lead, tota	al, in microgr	ams per	<u>liter (0105</u>	51)					
23	Olive Creek Lake, Nebr.	20		<1	4	7				
24	Bluestem Lake, Nebr.	20		<5	5	8				
25	Wagon Train Lake, Nebr.	24		<2	6	11				
26	Stagecoach Lake, Nebr.	20		<3	<5	8				
27	Yankee Hill Lake, Nebr.	36	<.5	2	5	10	13			
2 8	Conestoga Lake, Nebr.	24		<1	<5	7				
29	Pawnee Lake, Nebr.	23		<.5	5	9				
31	East Twin Lake, Nebr.	19		<.5	5	20				
32	Holmes Lake, Nebr.	36	<.5	<3	<5	9	14			
33	Branched Oak Lake, Nebr.	35	<.5	<2	4	6	14			

Sampling-				Value at	indicated p	Value at indicated percentile						
site		Number of	10th	25th	50th	75th	9 0th					
number (fig. 2)	Site name	analyses	IUth	25th	(median)	75th	9011					
	Manganese.	total, in mici	rograms p	er liter ((01055)							
23	Olive Creek Lake, Nebr.	39	70	100	140	290	44 0					
24	Bluestem Lake, Nebr.	39	60	90	130	180	230					
25	Wagon Train Lake, Nebr.	45	90	120	150	250	44 0					
26	Stagecoach Lake, Nebr.	37	70	180	270	360	450					
27	Yankee Hill Lake, Nebr.	67	6 0	100	130	170	280					
28	Conestoga Lake, Nebr.	45	90	110	140	180	270					
29	Pawnee Lake, Nebr.	44	90	100	130	19 0	240					
30	West Twin Lake, Nebr.	15		29 0	470	560						
31	East Twin Lake, Nebr.	38	120	190	260	320	470					
32	Holmes Lake, Nebr.	68	90	120	180	230	280					
33	Branched Oak Lake, Nebr.	66	50	60	110	140	200					
	Mercury, t	otal, in micro	ograms pe	er liter(71	<u>900)</u>							
23	Olive Creek Lake, Nebr.	80	<.2	<.2	<.2	.2	.3					
24	Bluestem Lake, Nebr.	80	<.2	<.2	<.2	.2						
25	Wagon Train Lake, Nebr.	90	<.2	<.2	<.2	<.3						
26	Stagecoach Lake, Nebr.	78	<.2	<.2	<.2	.2	.4					
27	Yankee Hill Lake, Nebr.	133	<.2	<.2	<.2	.2	.3					
28	Conestoga Lake, Nebr.	91	<.2	<.2	<.2	.2	.3					
29	Pawnee Lake, Nebr.	9 0	<.2	<.2	<.2	.2	.4					
30	West Twin Lake, Nebr.	35	<.2	<.2	<.2	.2	.4					
31	East Twin Lake, Nebr.	75	<.2	<.2	<.2	<.3	<.5					
32	Holmes Lake, Nebr.	135	<.2	<.2	<.2	<.2	.4					
33	Branched Oak Lake, Nebr.	132	<.2	<.2	<.2	.2	.4					
	Nickel, tot	al, in microg	rams per	<u>liter (010</u>	<u>67)</u>							
23	Olive Creek Lake, Nebr.	29		<5	5	12						
24	Bluestem Lake, Nebr.	29		<5	<6	<8						
25	Wagon Train Lake, Nebr.	35	<5	<5	<5	<10	26					
26	Stagecoach Lake, Nebr.	29		<5	<5	<10						
27	Yankee Hill Lake, Nebr.	52	<5	<5	<6	<14	<20					
28	Conestoga Lake, Nebr.	35	<5	<5	<5	13	18					
29	Pawnee Lake, Nebr.	35	<5	<5	<5	<10	15					
30	West Twin Lake, Nebr.	12		<5	<7	<12						

Sampling-		NT	Value at indicated percentile					
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th	
	Nickel, total, in	micrograms	per liter ((<u>01067)</u> C	Continued			
31	East Twin Lake, Nebr.	26		<5	<5	<10		
32	Holmes Lake, Nebr.	53	<5	<5	<6	<10	22	
33	Branched Oak Lake, Nebr.	51	<5	<5	<5	<8	<10	
	Selenium, t	total, in micro	ograms pe	er liter (01	<u>.147)</u>			
2 3	Olive Creek Lake, Nebr.	20		. <2	<2	<2		
24	Bluestem Lake, Nebr.	20		<2	<2	<2		
25	Wagon Train Lake, Nebr.	24		<2	<2	<2		
26	Stagecoach Lake, Nebr.	20		<2	<2	<2		
27	Yankee Hill Lake, Nebr.	36	<2	<2	<2	<2	<5	
28	Conestoga Lake, Nebr.	24		<2	<2	<2		
29	Pawnee Lake, Nebr.	23		<2	<2	<2		
31	East Twin Lake, Nebr.	19		<2	<2	<5		
32	Holmes Lake, Nebr.	36	<2	<2	<2	<2	<4	
33	Branched Oak Lake, Nebr.	35	<2	<2	<2	2	3	
	Silver, tot	al, in microg	rams per	liter (0107	<u>77)</u>			
23	Olive Creek Lake, Nebr.	20		<.2	<.2	<.5		
24	Bluestem Lake, Nebr.	20	**	<.2	<.2	<.5		
25	Wagon Train Lake, Nebr.	24		<.2	<.2	<.5		
26	Stagecoach Lake, Nebr.	20		<.2	<.2	<.5		
27	Yankee Hill Lake, Nebr.	36	<.2	<.2	<.2	<.5	<.5	
28	Conestoga Lake, Nebr.	24		<.2	<.2	<.5		
29	Pawnee Lake, Nebr.	23		<.2	<.2	<.5		
31	East Twin Lake, Nebr.	20	**	<.2	<.2	<.5		
32	Holmes Lake, Nebr.	36	<.2	<.2	<.2	<.5	<.5	
33	Branched Oak Lake, Nebr.	36	<.2	<.2	<.2	<.5	1	
	Zinc. tota	al, in microgra	ams per li	iter (0109)	<u>2)</u>			
23	Olive Creek Lake, Nebr.	34	<2	5	10	15	52	
24	Bluestem Lake, Nebr.	35	<2	5	7	13	58	
25	Wagon Train Lake, Nebr.	39	<2	4	6	12	36	
26	Stagecoach Lake, Nebr.	33	<2	4	6	12	40	
27	Yankee Hill Lake, Nebr.	58	<2	3	7	12	41	
28	Conestoga Lake, Nebr.	39	<2	4	8	10	21	
29	Pawnee Lake, Nebr.	3 8	<2	<2	6	11	22	

site number		NT	Value at indicated percentile						
(fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th		
	Zinc, total, in n	nicrograms pe	er liter (O	<u>1092)</u> Co	ntinued		<u></u>		
30	West Twin Lake, Nebr.	14		4	9	17			
31	East Twin Lake, Nebr.	32	<2	3	6	10	17		
32	Holmes Lake, Nebr.	59	<2	4	8	18	35		
33	Branched Oak Lake, Nebr.	58	<2	2	5	11	23		
	<u>Cyanide, total</u>	as CN, in mi	lligrams p	per liter (00720)				
23	Olive Creek Lake, Nebr.	30	<.01	<.01	<.01	<.01	<.02		
	Bluestem Lake, Nebr.	30	<.01	<.01	<.01	<.01	<.02		
	Wagon Train Lake, Nebr.	34	<.01	<.01	<.01	<.01	<.02		
	Stagecoach Lake, Nebr.	28		<.01	<.01	<.01			
	Yankee Hill Lake, Nebr.	51	<.01	<.01	<.01	<.01	<.02		
28	Conestoga Lake, Nebr.	34	<.01	<.01	<.01	<.01	<.02		
	Pawnee Lake, Nebr.	33	<.01	<.01	<.01	<.01	<.02		
	West Twin Lake, Nebr.	11		<.01	<.01	<.02			
	East Twin Lake, Nebr.	28		<.01	<.01	<.01			
	Holmes Lake, Nebr.	51	<.01	<.01	<.01	<.01	<.02		
33	Branched Oak Lake, Nebr.	51	<.01	<.01	<.01	<.01	<.02		
	Polychlorinated bipl	nenyls, total,	<u>in microg</u>	rams per	<u>liter (39516</u>	<u>3)</u>			
23	Olive Creek Lake, Nebr.	28		<.1	<.1	<1			
	Bluestem Lake, Nebr.	27		<.1	<.1	<1			
	Wagon Train Lake, Nebr.	32	<.1	<.1	<.1	<1	<1		
	Stagecoach Lake, Nebr.	26		<.1	<.1	<1'			
	Yankee Hill Lake, Nebr.	48	<.1	<.1	<.1	<1	<1		
28	Conestoga Lake, Nebr.	34	<.1	<.1	<.1	<1	<1		
	Pawnee Lake, Nebr.	34 32	<.1 <.1	<.1 <.1	<.1 <.1	<1 <1	<1 <1		
		32 10	<.1 	<.1 <.1		<1 <1			
	West Twin Lake, Nebr.				<.1				
	East Twin Lake, Nebr.	26	 - 1	<.1	<.1	<1			
32	Holmes Lake, Nebr.	48	<.1	<.1	<.1	<1	<1		
3 3 D	Branched Oak Lake, Nebr.	48	<.1	<.1	<.1	<1	<1		

Sampling-		NT N	Value at indicated percentile						
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th		
	Benzene hexachlo	oride, total, in	microgra	i <u>ms per li</u> i	<u>ter (81283)</u>				
23	Olive Creek Lake, Nebr.	24		<0.02	<0.02	<0.02			
24	Bluestem Lake, Nebr.	24		<.02	<.02	<.02			
25	Wagon Train Lake, Nebr.	26		<.02	<.02	<.02			
26	Stagecoach Lake, Nebr.	22		<.02	<.02	<.02			
27	Yankee Hill Lake, Nebr.	39	<0.02	<.02	<.02	<.02	0.03		
28	Conestoga Lake, Nebr.	27		<.02	<.02	<.02			
29	Pawnee Lake, Nebr.	26		<.02	<.02	<.02			
30	West Twin Lake, Nebr.	10		<.02	<.02	<.02			
31	East Twin Lake, Nebr.	22		<.02	<.02	<.02			
32	Holmes Lake, Nebr.	40	<.02	<.02	<.02	<.02	.03		
3 3	Branched Oak Lake, Nebr.	39	<.02	<.02	<.02	<.02	<.02		
	<u>Bis (2-ethylhexyl) ph</u>	ithalate, total	l, in micro	grams pe	<u>r liter (391(</u>	<u>)0)</u>			
27	Yankee Hill Lake, Nebr.	12		<2	<2	<2			
32	Holmes Lake, Nebr.	$12^{}$		<2	<2	<2			
33	Branched Oak Lake, Nebr.	12		<2	<2	<2			
	<u>N-butyl benzyl pht</u>	<u>halate, total,</u>	in microg	rams per	<u>liter (34292</u>)			
27	Yankee Hill Lake, Nebr.	12		<.34	<.34	<.34			
32	Holmes Lake, Nebr.	12		<.34	<.34	<.34			
33	Branched Oak Lake, Nebr.	12		<.34	<.34	<.34			
	<u>Di-n-butyl phtha</u>	<u>late, total, in</u>	microgra	<u>ms per lit</u>	<u>er (39110)</u>				
27	Yankee Hill Lake, Nebr.	12		<.36	<.36	<.36			
32	Holmes Lake, Nebr.	12		<.36	<.36	<.36			
33	Branched Oak Lake, Nebr.	12		<.36	<.36	<.36			
	Diethyl phthala	ite, total, in n	nicrogram	<u>s per liter</u>	<u>r (34336)</u>				
27	Yankee Hill Lake, Nebr.	12		<.49	<.49	<.49			
32	Holmes Lake, Nebr.	12		<.49	<.49	<.49			
33	Branched Oak Lake, Nebr.	12		<.49	<.49	<.49			

			ercentile	entile			
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th
	Dimethyl phthal	ate, total, in	microgra	ms per lit	<u>er (34341)</u>		
27	Yankee Hill Lake, Nebr.	12		<0.29	<0.29	<0.29	
32	Holmes Lake, Nebr.	12		<.29	<.29	<.29	
33	Branched Oak Lake, Nebr.	12		<.29	<.29	<.29	
	Di-n-octyl phthal	ate, total, in	microgra	<u>ms per lit</u>	<u>er (34596)</u>		
27	Yankee Hill Lake, Nebr.	12		<3	<3	<3	
32	Holmes Lake, Nebr.	12		<3	<3	<3	
33	Branched Oak Lake, Nebr.	12		<3	<3	<3	
	<u>Alachlor, total re</u>	coverable, in	microgra	<u>ms per lit</u>	er (77825)		
23	Olive Creek Lake, Nebr.	18		<.1	<.1	.1	
24	Bluestem Lake, Nebr.	18		<.1	<.1	.1	
25	Wagon Train Lake, Nebr.	20		<.1	<.1	.1	
26	Stagecoach Lake, Nebr.	14		<.1	<.1	<.1	
27	Yankee Hill Lake, Nebr.	30	<0.1	<.1	<.1	.1	0.5
28	Conestoga Lake, Nebr.	20		<.1	<.1	<.1	
29	Pawnee Lake, Nebr.	19	-	<.1	<.1	.2	
31	East Twin Lake, Nebr.	14		<.1	<.1	.5	
32	Holmes Lake, Nebr.	30	<.1	<.1	<.1	<.1	.2
33	Branched Oak Lake, Nebr.	30	<.1	<.1	<.1	<.1	.4
	<u>Aldrin, tot</u>	al, in microg	rams per	<u>liter (393</u>	<u>30)</u>		
23	Olive Creek Lake, Nebr.	28		<.01	<.01	<.01	
24	Bluestem Lake, Nebr.	27		<.01	<.01	<.01	
25	Wagon Train Lake, Nebr.	32	<.01	<.01	<.01	<.01	<.01
2 6	Stagecoach Lake, Nebr.	2 6		<.01	<.01	<.01	
27	Yankee Hill Lake, Nebr.	45	<.01	<.01	<.01	<.01	<.01
28	Conestoga Lake, Nebr.	33	<.01	<.01	<.01	<.01	<.01
29	Pawnee Lake, Nebr.	32	<.01	<.01	<.01	<.01	<.01
30	West Twin Lake, Nebr.	10		<.01	<.01	<.01	
31	East Twin Lake, Nebr.	26		<.01	<.01	<.01	
32	Holmes Lake, Nebr.	48	<.01	<.01	<.01	<.01	<.01
	Branched Oak Lake, Nebr.	48	<.01	<.01	<.01	<.01	<.01

Sampling-				Value at	indicated pe	ercentile	
site		Number of	10th	25th	50th	75th	90th
number (fig. 2)	Site name	analyses	IUIN	20th	(median)	7500	90tii
(11g. 2)				···•	(incului)		
	Atrazine, t	otal, in micro	grams pe	r liter (39	033)		
23	Olive Creek Lake, Nebr.	20		0.8	2.2	5.8	
24	Bluestem Lake, Nebr.	20		.7	2.1	4.8	
2 5	Wagon Train Lake, Nebr.	24		.7	1.3	3.6	
26	Stagecoach Lake, Nebr.	18	**	.6	2.3	5.4	
27	Yankee Hill Lake, Nebr.	3 6	<0.1	1.4	2.7	4.1	7.8
28	Conestoga Lake, Nebr.	20		<.1	. 1.1	1.4	
29	Pawnee Lake, Nebr.	21	***	.4	1.0	1.4	
31	East Twin Lake, Nebr.	17		.5	1.1	3.4	
32	Holmes Lake, Nebr.	34	<.1	.2	.6	1.4	3.4
33	Branched Oak Lake, Nebr.	33	<.1	<.1	.9	1.6	2.8
	Chlordane,	total. in micr	ograms pe	er liter (3	<u>9350)</u>		
23	Olive Creek Lake, Nebr.	28		<.04	<.04	<.04	
23 24	Bluestem Lake, Nebr.	20 27		<.0 4	<.04 <.04	<.04 <.04	
25	Wagon Train Lake, Nebr.	32	<.04	<.04 <.04	<.0 4	<.0 4 <.04	 <.04
26	Stagecoach Lake, Nebr.	26	<.0 4	<.04 <.04	<.04 <.04	<.04 <.04	<.04
20	Yankee Hill Lake, Nebr.	4 5	<.04	<.04 <.04	<.04 <.04	<.04 <.04	<.04
•			• •	• ·		• •	-
28	Conestoga Lake, Nebr.	33	<.04	<.04	<.04	<.04	.04
29	Pawnee Lake, Nebr.	32	<.04	<.04	<.04	<.04	<.04
30	West Twin Lake, Nebr.	10	**	<.04	<.04	<.04	
31	East Twin Lake, Nebr.	26		<.04	<.04	<.04	••
32	Holmes Lake, Nebr.	48	<.04	<.04	<.04	<.04	<.04
3 3	Branched Oak Lake, Nebr.	48	<.04	<.04	<.04	<.04	<.04
	<u>o, p' DDD, t</u>	otal. in micro	grams pe	r liter (39	<u>315)</u>		
24	Bluestem Lake, Nebr.	13		<.03	<.03	<.03	
3 3	Branched Oak Lake, Nebr.	21		<.03	<.03	<.03	
28	Conestoga Lake, Nebr.	15		<.03	<.03	<.03	
31	East Twin Lake, Nebr.	14		<.03	<.03	<.03	
32	Holmes Lake, Nebr.	21	**	<.03	<.03	<.03	
23	Olive Creek Lake, Nebr.	14		<.03	<.03	<.03	
29	Pawnee Lake, Nebr.	15	**	<.03	<.03	<.03	
26	Stagecoach Lake, Nebr.	13		<.03	<.03	<.03	
2 5	Wagon Train Lake, Nebr.	14		<.03	<.03	<.03	
20 27	Yankee Hill Lake, Nebr.	14	-	<.03	<.03	<.03	

Sampling-		NT 1	Value at indicated percentile						
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th		
	DDE, tot	al, in microgr	ams per]	liter (3936	<u>5)</u>				
23	Olive Creek Lake, Nebr.	28		<0.03	<0.03	<0.03			
24	Bluestem Lake, Nebr.	27		<.03	<.03	<.03			
25	Wagon Train Lake, Nebr.	32	< 0.03	<.03	<.03	<.03	<0.03		
26	Stagecoach Lake, Nebr.	26		<.03	<.03	<.03			
27	Yankee Hill Lake, Nebr.	45	<.03	<.03	<.03	<.03	<.03		
28	Conestoga Lake, Nebr.	33	<.03	<.03	<.03	<.03	<.03		
29	Pawnee Lake, Nebr.	32	<.03	<.03	<.03	<.03	<.03		
30	West Twin Lake, Nebr.	10		<.03	<.03	<.03			
31	East Twin Lake, Nebr.	26		<.03	<.03	<.03			
32	Holmes Lake, Nebr.	48	<.03	<.03	<.03	<.03	<.03		
33	Branched Oak Lake, Nebr.	48	<.03	<.03	<.03	<.03	<.03		
	DDT, tot	al. in microgr	ams per l	iter (3937)	<u>0)</u>				
23	Olive Creek Lake, Nebr.	28		<.03	<.03	<.03			
24	Bluestem Lake, Nebr.	27		<.03	<.03	<.03			
25	Wagon Train Lake, Nebr.	32	<.03	<.03	<.03	<.03	.03		
26	Stagecoach Lake, Nebr.	26		<.03	<.03	<.03			
27	Yankee Hill Lake, Nebr.	45	<.03	<.03	<.03	<.03	<.03		
28	Conestoga Lake, Nebr.	33	<.03	<.03	<.03	<.03	<.03		
29	Pawnee Lake, Nebr.	32	<.03	<.03	<.03	<.03	<.03		
30	West Twin Lake, Nebr.	10		<.03	<.03	<.03			
31	East Twin Lake, Nebr.	26		<.03	<.03	<.03			
32	Holmes Lake, Nebr.	48	<.03	<.03	<.03	<.03	<.03		
33	Branched Oak Lake, Nebr.	48	<.03	<.03	<.03	<.03	<.03		
	<u>Dieldrin, t</u>	otal, in micro	grams per	<u>: liter (393</u>	80)				
23	Olive Creek Lake, Nebr.	28		<.02	<.02	<.02			
24	Bluestem Lake, Nebr.	28		<.02	<.02	<.02			
25	Wagon Train Lake, Nebr.	32	<.02	<.02	<.02	<.02	<.02		
26	Stagecoach Lake, Nebr.	26		<.02	<.02	<.02			
27	Yankee Hill Lake, Nebr.	45	<.02	<.02	<.02	<.02	<.02		
28	Conestoga Lake, Nebr.	33	<.02	<.02	<.02	<.02	<.02		
29	Pawnee Lake, Nebr.	32	<.02	<.02	<.02	<.02	<.02		
30	West Twin Lake, Nebr.	10		<.02	<.02	<.02			

Sampling-			Value at indicated percentile						
site number (fig. 2)	Site name	Number of analyses	10th	25th	50th (median)	75th	90th		
<u>,,</u>	Dieldrin, total, in	n micrograms	per liter	<u>(39380</u>)(Continued				
31	East Twin Lake, Nebr.	26		< 0.02	<0.02	< 0.02			
32	Holmes Lake, Nebr.	48	< 0.02	<.02	<.02	<.02	< 0.02		
33	Branched Oak Lake, Nebr.	48	<.02	<.02	<.02	<.02	<.02		
	Endosulfan,	total, in micr	<u>ograms p</u>	er liter (3	<u>9388)</u>				
23	Olive Creek Lake, Nebr.	28		<.02	<.02	<.02			
23 24	Bluestem Lake, Nebr.	28 27		<.02 <.02	<.02	<.02 <.02			
24 25	Wagon Train Lake, Nebr.	32	<.02	<.02 <.02	<.02	<.02 <.02	 <.02		
25 26	Stagecoach Lake, Nebr.	26		<.02 <.02	<.02 <.02	<.02 <.02	<.02		
$\frac{26}{27}$	Yankee Hill Lake, Nebr.	20 45	 <.02	<.02 <.02	<.02 <.02	<.02 <.02	 <.02		
21	Tankee fill Lake, Nebr.	40	<.02	<.02	<.02	<.02	<.02		
28	Conestoga Lake, Nebr.	33	<.02	<.02	<.02	<.02	<.02		
29	Pawnee Lake, Nebr.	32	<.02	<.02	<.02	<.02	<.02		
30	West Twin Lake, Nebr.	10		<.02	<.02	<.02			
31	East Twin Lake, Nebr.	26		<.02	<.02	<.02			
32	Holmes Lake, Nebr.	48	<.02	<.02	<.02	<.02	<.02		
33	Branched Oak Lake, Nebr.	48	<.02	<.02	<.02	<.02	<.02		
	Endrin, to	tal, in microg	<u>rams per</u>	<u>liter (393</u>	90)				
23	Olive Creek Lake, Nebr.	28		<.03	<.03	<.03			
23	Bluestem Lake, Nebr.	20	••	<.03	<.03	<.03			
25	Wagon Train Lake, Nebr.	32	<.03	<.03	<.03	<.03	 <.03		
26	Stagecoach Lake, Nebr.	26	<.00 	<.03	<.03	<.03	<.03 		
20	Yankee Hill Lake, Nebr.	4 5	<.03	<.03	<.03	<.03	<.03		
2.	Tunkee Inn Dake, Nebi.	40	2.00	\. 00	2.00	2.00	\. 00		
28	Conestoga Lake, Nebr.	33	<.03	<.03	<.03	<.03	<.03		
29	Pawnee Lake, Nebr.	32	<.03	<.03	<.03	<.03	<.03		
30	West Twin Lake, Nebr.	10		<.03	<.03	<.03			
	East Twin Lake, Nebr.	26		<.03	<.03	<.03			
	Holmes Lake, Nebr.	48	<.03	<.03	<.03	<.03	<.03		
33	Branched Oak Lake, Nebr.	48	<.03	<.03	<.03	<.03	<.03		
	Lindane, to	otal, in micros	rams per	liter (397	782)				
23	Olive Creek Lake, Nebr.	28		<.01	<.01	<.01			
	Bluestem Lake, Nebr.	20 27		<.01 <.01	<.01 <.01	<.01			
24						111			

Sampling			<u></u>	Value at	indicated p	ercentile	
site		Number					
number		of	10th	25th	50th	75th	9 0th
(fig. 2)	Site name	analyses			(median)		
	Lindane, total, in	n micrograms	s per liter	(39782)(Continued		
26	Stagecoach Lake, Nebr.	26		< 0.01	<0.01	<0.01	
27	Yankee Hill Lake, Nebr.	45	< 0.01	<.01	<.01	<.01	<0.01
28	Conestoga Lake, Nebr.	33	<.01	<.01	<.01	<.01	<.01
29	Pawnee Lake, Nebr.	32	<.01	<.01	<.01	<.01	<.01
30	West Twin Lake, Nebr.	10		<.01	<.01	<.01	
. 31	East Twin Lake, Nebr.	26	 .	<.01	<.01	<.01	
32	Holmes Lake, Nebr.	4 8	<.01	<.01	<.01	<.01	<.01
33	Branched Oak Lake, Nebr.	48	<.01	<.01	<.01	<.01	<.01
	Methoxychlor	<u>, total, in mi</u>	crograms	<u>per liter (</u>	<u>39480)</u>		
23	Olive Creek Lake, Nebr.	28		<.04	<.04	<.04	
24	Bluestem Lake, Nebr.	27		<.04	<.04	<.04	
25	Wagon Train Lake, Nebr.	32	<.04	<.04	<.04	<.04	<.04
26	Stagecoach Lake, Nebr.	26		<.04	<.04	<.04	
27	Yankee Hill Lake, Nebr.	45	<.04	<.04	<.04	<.04	<.04
28	Conestoga Lake, Nebr.	33	<.04	<.04	<.04	<.04	<.04
29	Pawnee Lake, Nebr.	32	<.04	<.04	<.04	<.04	<.04
30	West Twin Lake, Nebr.	10		<.04	<.04	<.04	
31	East Twin Lake, Nebr.	26		<.04	<.04	<.04	
32	Holmes Lake, Nebr.	48	<.04	<.04	<.04	<.04	<.04
33	Branched Oak Lake, Nebr.	48	<.04	<.04	<.04	<.04	<.04
	Metolachlor in whole-	water sampl	<u>e, in micr</u>	ograms pe	er liter (393	<u>56)</u>	
2 3	Olive Creek Lake, Nebr.	16		<.1	<.1	<.1	
24	Bluestem Lake, Nebr.	16		<.1	<.1	<.1	
25	Wagon Train Lake, Nebr.	20		<.1	<.1	<.1	
26	Stagecoach Lake, Nebr.	14		<.1	<.1	.3	
27	Yankee Hill Lake, Nebr.	32	<.1	<.1	<.1	.7	1.2
28	Conestoga Lake, Nebr.	20		<.1	<.1	<.1	
29	Pawnee Lake, Nebr.	19		<.1	<.1	.2	
31	East Twin Lake, Nebr.	14		<.1	<.1	<.1	
32	Holmes Lake, Nebr.	30	<.1	<.1	<.1	.1	.2
33	Branched Oak Lake, Nebr.	30	<.1	<.1	<.1	<.1	<.1

Sampling-		N7 L		Value at	indicated p	ercentile	
site number		Number of	10th	25th	50th	75th	9 0th
(fig. 2)	Site name	analyses	10011	2011	(median)	7001	Join
	Metribuzin in whole-	water sample	, in micro	ograms pe	er liter (814(<u>)8)</u>	
23	Olive Creek Lake, Nebr.	12		<0.1	<0.1	<0.1	
24	Bluestem Lake, Nebr.	14		<.1	<.1	<.1	
25	Wagon Train Lake, Nebr.	18	**	<.1	<.1	<.1	
26	Stagecoach Lake, Nebr.	12		<.1	<.1	<.1	
27	Yankee Hill Lake, Nebr.	27		<.1	<.1	<.1	
28	Conestoga Lake, Nebr.	18		<.1	<.1	<.1	
29	Pawnee Lake, Nebr.	17		<.1	<.1	<.1	
31	East Twin Lake, Nebr.	10		<.1	<.1	<.1	
32	Holmes Lake, Nebr.	27		<.1	<.1	<.1	
33	Branched Oak Lake, Nebr.	27		<.1	<.1	<.1	
	Propachlor in whole-	water sample	, in micro	ograms pe	er liter (7772	<u>29)</u>	
23	Olive Creek Lake, Nebr.	12		<.1	<.1	<.1	
24	Bluestem Lake, Nebr.	14		<.1	<.1	<.1	
25	Wagon Train Lake, Nebr.	18		<.1	<.1	<.1	
26	Stagecoach Lake, Nebr.	12		<.1	<.1	<.1	
27	Yankee Hill Lake, Nebr.	27		<.1	<.1	<.1	
28	Conestoga Lake, Nebr.	18		<.1	<.1	<.1	
29	Pawnee Lake, Nebr.	17		<.1	<.1	<.1	
31	East Twin Lake, Nebr.	10		<.1	<.1	<.1	
32	Holmes Lake, Nebr.	27		<.1	<.1	<.1	
33	Branched Oak Lake, Nebr.	27		<.1	<.1	<.1	
	<u>Simazine, t</u>	otal, in micro	<u>grams pe</u>	r liter (39	055)		
23	Olive Creek Lake, Nebr.	16		<.1	<.1	<.1	
24	Bluestem Lake, Nebr.	16		<.1	<.1	<.1	
25	Wagon Train Lake, Nebr.	20		<.1	<.1	<.1	
26	Stagecoach Lake, Nebr.	14		<.1	<.1	<.1	
27	Yankee Hill Lake, Nebr.	30	<0.1	<.1	<.1	<.1	<0.2
28	Conestoga Lake, Nebr.	20		<.1	<.1	<.1	
29	Pawnee Lake, Nebr.	19		<.1	<.1	<.1	
31	East Twin Lake, Nebr.	14		<.1	<.1	<.1	
32	Holmes Lake, Nebr.	30	<.1	<.1	<.1	<.1	<.1
33	Branched Oak Lake, Nebr.	30	<.1	<.1	<.1	<.1	<.1

Sampling site		Number		Value at indicated percentile					
number (fig. 2)	Site name	of analyses	10th	25th	50th (median)	75th	90th		
	Strobane, t	otal, in micro	ograms pe	r liter (39	026)				
23	Olive Creek Lake, Nebr.	28		<0.1	<0.1	<0.8			
24	Bluestem Lake, Nebr.	27		<.1	<.1	<.8			
25	Wagon Train Lake, Nebr.	32	<0.1	<.1	<.1	<.8	<.08		
26	Stagecoach Lake, Nebr.	26		<.1	<.1	<.8			
27	Yankee Hill Lake, Nebr.	45	<.1	<.1	<.1	<.8	<.8		
28	Conestoga Lake, Nebr.	33	<.1	<.1	<.1	<.8	<.8		
29	Pawnee Lake, Nebr.	32	<.1	<.1	<.1	<.8	<.8		
30	West Twin Lake, Nebr.	10		<.1	<.1	<.8			
31	East Twin Lake, Nebr.	26		<.1	<.1	<.8			
32	Holmes Lake, Nebr.	48	<.1	<.1	<.1	<.8	<.8		
33	Branched Oak Lake, Nebr.	48	<.1	<.1	<.1	<.8	<.8		
	<u>Toxaphene</u> ,	total. in mic	rgrams pe	r liter (39	<u>400)</u>				
23	Olive Creek Lake, Nebr.	28		<.1	<.1	<.8			
24	Bluestem Lake, Nebr.	27		<.1	<.1	<.8			
25	Wagon Train Lake, Nebr.	32	<.1	<.1	<.1	<.8	<.8		
26	Stagecoach Lake, Nebr.	26		<.1	<.1	<.8			
27	Yankee Hill Lake, Nebr.	45	<.1	<.1	<.1	<.8	<.8		
28	Conestoga Lake, Nebr.	33	<.1	<.1	<.1	<.8	<.8		
29	Pawnee Lake, Nebr.	32	<.1	<.1	<.1	<.8	<.8		
30	West Twin Lake, Nebr.	10		<.1	<.1	<.8			
31	East Twin Lake, Nebr.	26		<.1	<.1	<.8			
32	Holmes Lake, Nebr.	48	<.1	<.1	<.1	<.8	<.8		
33	Branched Oak Lake, Nebr.	4 8	<.1	<.1	<.1	<.8	<.8		

Table 9. Statistical summary of data on water-quality constituents in streambed-sediment samplescollected from subunits of Central Nebraska Basins, 1979

[Arsenic and selenium determined by atomic absorption; uranium-FL by fluorometry; uranium-NT by neutron activation; and remaining elements by plasma-source emission spectrometry; <, less than]

	Number		Value	at indicated	percentile	
Subunit	of analyses	10th	25th	50th (median)	75th	90th
	Calcium.	in grams p	<u>er kilogram</u>			
Sandhills	54	8.9	9.6	10	11	12
Loess Hills	674	7.9	8.8	9.7	11	13
Glaciated Area	548	6.0	6.8	8.1	10	13
Platte Valley	93	7.5	8.7	10	12	16
	Magnesiur	<u>n, in grams</u>	per kilogra	m		
Sandhills	54	1.1	1.4	2.0	3.6	4.4
Loess Hills	674	4.0	4.8	5.5	6.2	7.0
Glaciated Area	548	4.2	4.7	5.4	6.0	6.7
Platte Valley	93	3.4	4.4	5.0	6.0	7.3
	<u>Sodium,</u>	in grams pe	er kilogram			
Sandhills	54	9.4	11	12	13	13
Loess Hills	674	8.3	9.1	9.9	11	12
Glaciated Area	548	7.3	7.8	8.5	9.2	9.7
Platte Valley	93	7.9	8. 9	9.9	11	12
	Potassium	<u>, in grams</u>	per kilogran	1		
Sandhills	54	12	13	15	16	16
Loess Hills	674	15	16	16	17	18
Glaciated Area	548	13	14	15	16	16
Platte Valley	93	14	15	16	17	18
	Phosphorus	<u>, in microgr</u>	ams per gra	ım		
Sandhills	54	150	210	30 0	450	64 0
Loess Hills	674	450	520	600	6 90	790
Glaciated Area	548	480	550	650	760	910
Platte Valley	93	380	49 0	59 0	700	9 20
	Aluminum	i, in grams j	per kilogran	<u>1</u>		
Sandhills	54	42	44	46	48	51
Loess Hills	674	48	50	53	5 6	59
Glaciated Area	548	47	51	54	56	59
Platte Valley	93	44	48	51	54	58
	Arsenic, ii	n microgran	ns per gram			
Sandhills	54	<.1	<.1	.4	1.1	2.1
Loess Hills	674	.9	1.4	2.1	2.9	3.7
Glaciated Area	548	2.2	2.9	4.1	5.5	7.2
Platte Valley	93	.6	1.1	1.7	2.5	3.5

	NT 1		Value	at indicated	percentile	
Subunit	Number of analyses	10th	25th	50th (median)	75th	90th
	<u>Barium, i</u>	n microgra	ims per grai	<u>n</u>		
Sandhills	54	780	810	840	880	90 0
Loess Hills	674	820	850	870	91 0	95 0
Glaciated Area	548	800	840	880	9 20	9 80
Platte Valley	93	750	780	840	880	900
	<u>Beryllium,</u>	in microgr	ams per gra	<u>im</u>		
Sandhills	54	1	1	1	. 1	1
Loess Hills	674	1	1	1	1	2
Glaciated Area	548	1	1	1	1	1
Platte Valley	9 3	1	1	1	2	2
	<u>Boron, in</u>	microgram	ns per gran	1		
Sandhills	54	<10	<10	11	15	24
Loess Hills	674	15	19	23	26	29
Glaciated Area	548	18	22	26	29	33
Platte Valley	93	12	16	20	24	28
	<u>Cerium, ii</u>	n microgra	ms per gran	<u>n</u>		
Sandhills	54	41	50	56	67	84
Loess Hills	674	53	57	62	67	73
Glaciated Area	548	59	63	67	74	81
Platte Valley	93	4 8	54	59	66	78
	<u>Chromium.</u>	in microgr	rams per gra	<u>am</u>		
Sandhills	54	12	15	20	27	32
Loess Hills	674	25	30	34	38	41
Glaciated Area	54 8	35	37	41	44	47
Platte Valley	9 3	24	26	31	. 36	39
	<u>Cobalt, in</u>	microgra	ms per gram	1		
Sandhills	54	<4	<4	<4	4	5
Loess Hills	674	<4	4	5	7	8
Glaciated Area	548	7	8	10	12	15
Platte Valley	93	<4	4	5	6	7
	<u>Copper, in</u>	microgra	ms per gran	1		
Sandhills	54	4	6	7	11	14
Loess Hills	674	10	12	14	17	20
Haciated Area	548	14	16	19	21	24

 Table 9. Statistical summary of data on water-quality constituents in streambed-sediment samples collected from subunits of Central Nebraska Basins, 1979--Continued

			Value	at indicate	d percentile	•
Subunit	Number of analyses	10th	25th	50th (median)	75th	90th
	Hafnium,	in microgra	<u>ms per grar</u>	<u>n</u>		
Sandhills	54	<15	<15	<15	<15	54
Loess Hills	673	<3	<15	<15	<15	40
Glaciated Area	548	<15	<15	<15	15	45
Platte Valley	93	<3	<3	<7	<15	19
	<u>Iron, in</u>	grams per	kilogram			
Sandhills	54	5.2	6.6	8.5	12	16
Loess Hills	674	14	16	18	20	22
Glaciated Area	54 8	17	19	21	24	26
Platte Valley	93	13	16	17	21	24
	<u>Lanthanum</u>	<u>, in microgr</u>	ams per gra	ım		
Sandhills	54	62	66	76	86	120
Loess Hills	673	65	70	76	82	92
Glaciated Area	548	62	66	71	78	84
Platte Valley	93	63	72	79	85	93
	Lead, in	microgram	s per gram			
Sandhills	54	<10	10	16	22	26
Loess Hills	613	<10	<10	17	23	29
Glaciated Area	548	11	16	21	27	33
Platte Valley	72	<2	<7	13	22	29
	<u>Lithium, i</u>	<u>n microgra</u> i	ns per gram	1		
Sandhills	54	8	10	12	15	19
Loess Hills	674	16	19	21	23	26
Glaciated Area	548	18	20	22	25	27
Platte Valley	93	13	16	20	23	27
	Manganese,	in microgra	ams per gra	m		
Sandhills	54	120	150	22 0	290	34 0
Loess Hills	674	260	290	330	410	520
Flaciated Area	548	440	570	740	1,000	1,400
Platte Valley	93	230	2 80	330	440	1,000
	Molybdenum	<u>, in microg</u>	ams per gra	am		
andhills	54	<4	<4	<4	<4	<4
Loess Hills	674	<4	<4	<4	<4	4
Blaciated Area	548	<4	<4	<4	<4	4
Platte Valley	9 3	<4	<4	<4	<4	<4

 Table 9. Statistical summary of data on water-quality constituents in streambed-sediment samples collected from subunits of Central Nebraska Basins, 1979--Continued

	Number		Value	at indicated	percentile	
Subunit	of analyses	10th	25th	50th (median)	75th	90th
	<u>Nickel, ir</u>	<u>microgran</u>	ns per gram	L		
Sandhills	54	<2	4	9	14	18
Loess Hills	674	8	12	15	19	24
Glaciated Area	548	15	19	24	29	35
Platte Valley	93	9	11	14	18	23
	<u>Niobium, i</u>	n microgra	ms per grai	<u>m</u>		
Sandhills	54	<4	4	5	7	10
Loess Hills	674	5	6	7	8	9
Glaciated Area	548	<4	5	6	7	8
Platte Valley	93	5	6	7	8	9
	Scandium,	in microgra	ums per gra	m		
Sandhills	54	2	2	3	4	5
Loess Hills	674	4	5	5	6	6
Glaciated Area	548	5	5	6	6	7
Platte Valley	93	4	4	5	6	7
	<u>Selenium, i</u>	in microgra	ms per gra	m		
Sandhills	54	<.1	<.1	<.1	.3	.5
Loess Hills	674	<.1	<.1	.3	.4	1
Glaciated Area	548	<.1	.3	.5	.9	1
Platte Valley	93	<.1	.2	.4	.6	1
	<u>Silver, in</u>	microgram	<u>s per gram</u>			
Sandhills	54	<2	<2	<2	<2	<2
Loess Hills	674	<2	<2	<2	<2	<2
Glaciated Area	548	<2	<2	<2	<2	<2
Platte Valley	9 3	<2	<2	<2	<2	<2
	<u>Strontium,</u>	in microgra	ims per gra	m		
Sandhills	54	2 10	2 60	300	330	350
Loess Hills	674	170	180	200	2 30	250
Glaciated Area	54 8	140	150	160	170	180
Platte Valley	93	180	190	210	230	24 0
	<u>Thorium, i</u>	n microgra	<u>ms per grar</u>	n		
Sandhills	54	<2	3	5	8	12
Loess Hills	674	2	5	7	10	13
Glaciated Area	548	<2	4	7	9	12
Platte Valley	93	2	6	9	11	14

 Table 9. Statistical summary of data on water-quality constituents in streambed-sediment samples collected from subunits of Central Nebraska Basins, 1979--Continued

	NT 1		Value a	at indicated	percentile	
Subunit	Number of analyses	10th	25th	50th (median)	75th	90th
	Titanium	. in grams r	er kilogram			
Sandhills	54	1.2	1.4	1.7	2.0	2.4
Loess Hills	674	1.9	2.1	2.2	2.4	2.5
Glaciated Area	548	2.2	2.3	2.4	2.5	2.7
Platte Valley	93	1.8	2.1	2.3	2.4	2.8
	<u>Vanadium,</u>	in microgra	ams per grat	<u>n</u>		
Sandhills	54	17	21	29	40	60
Loess Hills	674	45	53	62	70	79
Glaciated Area	548	64	73	80	89	96
Platte Valley	93	42	48	58	6 8	76
	<u>Yttrium, i</u>	n micrograi	<u>ms per gram</u>			
Sandhills	54	8	9	11	13	14
Loess Hills	674	13	14	15	17	18
Glaciated Area	548	14	14	15	16	17
Platte Valley	93	12	14	16	17	19
	Zinc. in	micrograms	s per gram			
Sandhills	54	16	23	35	48	64
Loess Hills	674	43	51	58	66	76
Glaciated Area	548	50	58	66	75	85
Platte Valley	9 3	39	48	62	74	86
	Zirconium,	in microgra	ams per gran	<u>n</u>		
Sandhills	54	36	47	58	6 8	80
Loess Hills	674	70	77	83	90	96
Glaciated Area	548	71	75	80	87	94
Platte Valley	93	62	76	88	97	100
	<u>Uranium-FL</u>	, in microg	rams per gra	m		
Sandhills	54	.7	1.0	1.1	1.6	1.9
Loess Hills	674	1.5	1.8	2.1	2.4	2.9
Glaciated Area	548	1.6	1.8	2.1	2.4	2.7
Platte Valley	93	1.4	1.9	2.4	3.5	4.6
	<u>Uranium-NT</u>	<u>, in microg</u>	rams per gra	m		
Sandhills	53	1.7	1.9	2.1	2.6	3.3
Loess Hills	672	2.5	2.7	2.9	3.1	3.4
Glaciated Area	546	2.7	2.9	3.1	3.3	3. 6
Platte Valley	92	2.7	2.9	3.2	4.1	5.7

 Table 9. Statistical summary of data on water-quality constituents in streambed-sediment samples collected from subunits of Central Nebraska Basins, 1979--Continued

[Number in parentheses is parameter code used in U.S. Environmental Protection Agency's Storage and Retrieval System and U.S. Geological Survey's National Water Information System; concentrations are in wet-weight units; values are reported only for summary groups that had two or more analyses; --, 10th- and 90th-percentile values not determined for fewer than 30 analyses, 25th- and 75th-percentile values not determined for fewer than 10 analyses. Species group: Bottom, bottom dweller. Subunit: Glaciated, Glaciated Area; Integrated, integrates multiple subunits; <, less than]

	Summa	ry gr oup			Value of indicated percentile						
		XXX	N	lumber			······································	• • • • • • • • • • • • • • • • • • •			
Anaton ical	n- Spe- cies	Water-	Sub-	of anal-	10th	2 5th	50th	75th	90th		
part	group	body type	unit	yses	10111	2011	(median)	7501	9011		
<u> </u>											
	·			Percen	t lipids (39	<u>9105)</u>					
Edible	Bottom	Streams	Glaciated	3			2.9				
Edible	Bottom	Streams	Integrated	3			3.7				
Edible	Predator	Lakes	Glaciated	7			.5				
Filet	Bottom	Lakes	Glaciated	4			3.2				
Filet	Bottom	Streams	Integrated	3			3.3				
Whole	Bottom	Streams	Glaciated	11		3.1	4.8	6.1			
Whole	Bottom	Streams	Integrated	4 0	2.7	3.4	5.1	7.0	8.2		
			Magnesium	ı, in milli	grams per	kilogram	<u>(81656)</u>				
Whole	Bottom	Streams	Glaciated	6			430				
	Bottom		Integrated			370	410	500			
			<u>Sodium, i</u>	in milligr	ams per k	ilogram (7	<u>9020)</u>				
Whole	Bottom	Streams	Glaciated	4			1,400				
	Bottom		Integrated				1,400				
			Aluminum	<u>, in milli</u>	grams per	<u>kilogram (</u>	(81666)				
Whole	Bottom	Streams	Glaciated	2			33				
	Bottom		Integrated			29	66	180			
			Arsenic, i	n milligr	ams per k	<u>ilogram (0</u>	<u>1004)</u>				
7 diblo	Predator	Lakas	Glaciated	7			< .05				
	Bottom	Lakes	Glaciated	7 4	*=	**	< .05 < .05	••			
	Bottom	Streams	Glaciated	4 10		< .05		 1 /			
			Integrated		 < .05	< .05 < .05	< .08 < .08	.14 .11	.14		
11016	JULUUIII	Jucains	-					. 11	.14		
			<u>Antimony.</u>	<u>in millig</u>	rams per l	kilogram (<u>01099)</u>				
1 171	Bottom	Streams	Glaciated	8			< .3				
Nhole	Doctom	oucams	Graciated	0			<				

	Summa	ary group				Value	e of indicated	percentile	
			N	lumber					
	n- Spe-	Water-	~ •	of					
ical	cies	body	Sub-	anal-	10th	25th	50th	75th	90tl
part	group	type	unit	yses			(median)		
			<u>Barium, j</u>	in millig	<u>rams per ki</u>	ilogram (8)	<u>1658)</u>		
Whole	Bottom	Streams	Glaciated	8			4.2		
Whole	Bottom	Streams	Integrated	26		3.9	5.8	11	
			<u>Beryllium,</u>	in milli	grams per l	<u>cilogram (</u>	<u>34252)</u>		
Whole	Bottom	Streams	Glaciated	6	·		< .05		
Whole	Bottom	Streams	Integrated	20		< .05	< .05	< .05	
			<u>Cadmium,</u>	in milli	grams per k	<u> vilogram ('</u>	7 194 0)		
Edible	Predator	Lakes	Glaciated	7			.02		
Filet	Bottom	Lakes	Glaciated	4			< .01		
			Glaciated	12		.06	.07	.12	
Whole	Bottom	Streams	Integrated	42	< 0.03	< .05	.06	.10	0.1
			Chromium.	<u>in milli</u>	igrams per l	kilogram (<u>71939)</u>		
Edible	Predator	Lakes	Glaciated	7			< .10		
Filet	Bottom	Lakes	Glaciated	4			< .10		
			Glaciated	8			.36		
Vhole	Bottom	Streams	Integrated	26		.31	.38	.52	
			<u>Cobalt, ir</u>	n milligr	<u>ams per kil</u>	ogram (81	<u>659)</u>		
Whole	Bottom	Streams	Glaciated	8			< .10		
Whole	Bottom	Streams	Integrated	24		< .10	< .10	.19	
			<u>Copper, i</u>	n milligr	ams per kil	logram (71	<u>937)</u>		
Edible	Predator		Glaciated	7			.23		
Filet	Bottom	Lakes	Glaciated	4			.24		
Vhole	Bottom		Glaciated	8			1.1		
Vhole	Bottom	Streams	Integrated	32	.59	.75	.88	1.0	1.4

--

Whole Bottom Streams Glaciated 6

Whole Bottom Streams Integrated 20

Table 10. Statistical summary of data on water-quality constituents in fish-tissue samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

--

-- 34

55

77

--

260

--

--

	Summa	ary group	_			Value	e of indicated	percentile	
Anatom ical	- Spe- cies	Water- body	I Sub-	Number of anal-	 10th	25th	50th		90th
part	group	type	unit	yses			(median)		
			Lead, ir	n milligra	ums per kile	ogram (71	<u>936)</u>		
Edible	Predator	Lakes	Glaciated	7			0.10		
Filet	Bottom	Lakes	Glaciated	4			.10		
Whole	Bottom	Streams	Glaciated	4			< .10		
Whole	Bottom	Streams	Integrated	l 18		< 0.10	< .12	0.25	
			Manganese	e, in milli	grams per	<u>kilogram (</u>	<u>(81741)</u>		
Vhole	Bottom	Streams	Glaciated	6			7.7		
Vhole	Bottom	Streams	Integrated	2 0		4.9	10	30	
		Me	rcury, in mi	lligrams	<u>per kilogra</u>	m (71930 ;	and 71935)		
Edible	Predator	Lakes	Glaciated	7			.07		
lilet	Bottom	Lakes	Glaciated	4			.04		
Vhole	Bottom	Streams	Glaciated	12		.02	.06	.14	
Vhole	Bottom	Streams	Integrated	42	0.02	.03	.04	.08	0.13
]	Molybdenur	m <u>, in mill</u>	ligrams per	· kilogram	(81662)		
Vhole	Bottom	Streams	Glaciated	8			< .10		
Vhole	Bottom	Streams	Integrated	24		< .10	< .10	.17	
			<u>Nickel, i</u>	n milligra	ams per kil	<u>ogram (01</u>	<u>069)</u>		
dible	Predator	Lakes	Glaciated	7			< .20		
'ilet 🛛	Bottom	Lakes	Glaciated	4			< .20		
Vhole [Bottom		Glaciated	8			< .20		
Vhole	Bottom	Streams	Integrated	26		< .20	.22	.41	
			<u>Thallium,</u>	in millig	<u>rams per k</u>	<u>ilogram (0</u>	<u>1073)</u>		
Vhole 1	Bottom	Streams	Glaciated	4			< .05		
Vhole 1	Bottom	Streams	Integrated	. 8			< .05		
			<u>Selenium,</u>	in millig	<u>rams per k</u>	ilogram (O	1149)		
Vhole 1	Bottom	Streams	Glaciated	6			.82		
	Bottom	Streams	Integrated	26		.60	.72	.90	

	Summa	ary group		. .		Value	of indicated	percentile	
Anatom	- Spe-	Water-	N	lumber of					
ical part	cies group	body type	Sub- unit	a nal- yses	10th	2 5th	50th (median)	75th	90th
		Si	lver, in milli	igrams r	oer kilogram	(34474 ar	nd 81742)		
Whole	Bottom	Streams	Glaciated	6			< 0.10		
Whole	Bottom	Streams	Integrated	12		< 0.05	< .05	< 0.05	
			<u>Titanium,</u>	in milli	<u>grams per k</u>	ilogram (8	<u>1664)</u>		
Whole	Bottom	Streams	Integrated	4	·		< .05		
			<u>Vanadium</u>	in milli	<u>grams per k</u>	ilogram (8	<u>31665)</u>		
Whole	Bottom		Glaciated	8			.21		
Whole	Bottom	Streams	Integrated	24		.14	< .18	.68	
			<u>Zinc, in</u>	milligra	ims per kilo	gram (719	<u>38)</u>		
	Predator		Glaciated	7			8.1		
	Bottom	Lakes	Glaciated	4			6.5		
	Bottom Bottom		Glaciated Integrated	8 32	 15	 17	46 19	 57	 63
whole .	Dottom	Direams	-		rams per ki			0.	00
			<u>Indenter (</u>				<u></u>		
	Predator		Glaciated	7			< .013		
	Bottom	Lakes	Glaciated	4			< .013		
	Bottom		Integrated	2			< .013		
	Bottom		Glaciated	10		< .008	< .013	< .013	
N noie	Bottom	Streams	Integrated	24		< .008	< .013	< .013	
			<u>Aldrin, ir</u>	n milligr	ams per kild	ogram (34)	<u> 580)</u>		
Edible 1	Predator	Lakes	Glaciated	7			< .004		
Filet 1	Bottom	Lakes	Glaciated	4			< .004		
Filet 1	Bottom	Streams	Integrated	2			< .004		
Whole 1	Bottom	\mathbf{S} treams	Glaciated	12		< .004	< .004	< .004	
Whole 1	Bottom	Streams	Integrated	38	< .004	< .004	< .004	< .018	<.02
			<u>Atrazine, i</u>	in millig	<u>rams per ki</u>	logram (82	<u>2404)</u>		
	Predator		Glaciated	7			< .3		
	Bottom	Lakes	Glaciated	4			< .3		
Whole 1			Glaciated	12	 -	< .3	< .3	< .3	
Nhole 1	Bottom	Streams	Integrated	34	< .3	< .3	< .3	< 4	< 4

	Summa	ary group				Value	of indicated	l percentile	
Anator ical part	n- Spe- cies group	Water- body type	Sub- unit	Number of anal- yses	 10th	25th	50th (median)	75th	9 0th
		Az	zinphos-me	ethyl, in m	illigrams r	er kilogran	<u>n (81802)</u>		
Whole	Bottom	Streams	Glaciated	l 2			< 40		
Whole	Bottom	Streams	Integrate	d 12		< 40	< 4 0	< 40	
		<u>α-Ber</u>	izene hexa	<u>chloride, i</u> i	n milligran	ns per kilog	<u>ram (39074</u>)	
	Predator		Glaciated				< .002	 '	
Filet	Bottom	Lakes	Glaciated				< .002		
Filet	Bottom	Streams	Integrate	d 2			< .002		
Whole	Bottom	Streams	Glaciated			< .002	< .002	< .002	
Whole	Bottom	Streams	Integrate	d 42	<0.002	< .002	< .002	< .008	< 0.01
		<u>β-Ben</u>	izene hexa	chloride, ir	n milligran	n <mark>s per kilo</mark> g	<u>ram (34258</u>	2	
Edible	Predator	Lakes	Glaciated	1 7			< .003		
Filet	Bottom	Lakes	Glaciated	l 4			< .003		
Filet	Bottom	Streams	Integrate	d 2			< .003		
Whole	Bottom	Streams	Glaciated	10		< .003	< .003	< .003	
Whole	Bottom	Streams	Integrate	d 36	< .003	< .003	< .003	< .004	< .02
	<u> y-Benz</u>	ene hexac	hloride (L	indane), in	milligram	is per kilog	ram (39781	<u>and 39785)</u>	
Edible	Predator	Lakes	Glaciated	7			< .002		
Filet	Bottom	Lakes	Glaciated	4			< .002		
Filet	Bottom	Streams	Integrate	d 2			< .002		
Whole	Bottom	Streams	Glaciated	12		< .002	< .005	< .01	
Whole	Bottom	Streams	Integrate	d 42	< .002	< .002	< .002	< .006	< .01
		<u>δ-Ben</u>	zene hexa	chloride, ir	n milligran	n <mark>s per kilog</mark>	<u>ram (34263</u>)	
Edible	Predator	Lakes	Glaciated	7			< .002		
Filet	Bottom	Lakes	Glaciated	4			< .002		
Whole	Bottom	Streams	Glaciated	10		< .002	< .002	< .004	
Whole	Bottom	Streams	Integrate	d 27		< .002	< .002	< .008	
		C	<u>is-Chlorda</u>	ne, in mill	igrams pe	r kilogram	(39063)		
Edible	Bottom	Streams	Glaciated	3			0.02		
Edible	Bottom	Streams	Integrate				.004		
Edible	Predator		Glaciated				< .002		
Filet	Bottom	Lakes	Glaciated	4			< .003		
Filet	Bottom	Streams	Integrate	d 3			.008		
Vhole	Bottom	-	Glaciated			.01	.03	.03	
171 1	Bottom	Streame	Integrate	d 42	< .003	< .006	< .01	< .03	< .04

124 WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

	Summa	ary group				Value	of indicated	percentile	
Anaton ical part	n- Spe- cies group	Water- body type	Sub- unit	lumber of anal- yses	 10th	25th	50th (median)	75th	9 0th
		tr	ans-Chlorda	ine, in m	illigrams pe	r kilograr	n (39066)		
Edible	Bottom	Streams	Glaciated	3			0.01		
Edible	Bottom	Streams	Integrated	3			.003		
Edible	Predator	Lakes	Glaciated	7			< .002		
Filet	Bottom	Lakes	Glaciated	4			.002		
Filet	Bottom	Streams	Integrated	3			.006		
Whole	Bottom	Streams	Glaciated	12		0.00 9	.02	0.03	
Whole	Bottom	Streams	Integrated	42	< 0.002	< .005	< .01	< .02	< 0.04
			<u>a-Chlorden</u>	e, in mill	igrams per l	kilogram ((78457)		
Edible	Bottom	Streams	Glaciated	3			.004		
	Bottom		Integrated				< .003		
Filet	Bottom		Integrated				< .003		
	Bottom		Integrated				< .003		
			β-Chlorden	e, in mill:	igrams per l	<u> kilogram (</u>	78458)		
Edible	Bottom	Streeme	Glaciated	3			< .003		
	Bottom		Integrated				< .003		••
Filet	Bottom		Integrated				< .003		
	Bottom		Integrated	2			< .003		
			-	_	igrams per l	rilogram (
			<u>r omoracine</u>				104007		
Edible	Bottom	Streams	Glaciated	3			.006		
Edible	Bottom		Integrated	3			< .003		
	Bottom		Integrated	2			< .003		
Whole	Bottom	Streams	Integrated	2			< .003		
		:	Chlorpyrifo	s, in mill	igrams per l	<u> cilogram (</u>	81807)		
Whole	Bottom	Streams	Glaciated	2			< .2		
			Integrated			< .04	< .07	< .2	
			Cyanazine.	in millig	<u>rams per k</u>	ilogram (8	<u>80886)</u>		
Editi-	Dundata	Labor	Glaciated	7			. 1		
	Predator Bottom	Lakes	Glaciated	7 4			<.1		
			Glaciated	4 4			< .1 < .1		
			Integrated		••	 <.1	<.1 <.1	 <.1	
AA HOIE	LOUIDIN	Sucams	integrated	10		۲.۲	۲. ۲	۲. ۲	

	Summa	iry group				Value	of indicated	percentile	Value of indicated percentile					
Anaton	- Spe-	Water-	N	umber of			21							
ical	cies	body	Sub-	anal-	10th	25th	50th	75th	9 0th					
part	group	type	unit	yses			(median)							
		D	CPA (Dactha	al), in m	illigrams pe	er kilogran	n (82004)							
Whole	Bottom	Streams	Integrated	6			< 0.01							
			<u>o.p'-DDD, </u>	in millig	<u>rams per k</u>	ilogram (3	<u>9325)</u>							
Edible	Predator	Lakes	Glaciated	7			< .008							
Filet	Bottom	Lakes	Glaciated	4			< .008		·					
Whole	Bottom	Streams	Glaciated	10		< 0.004	< .008	< 0.02						
Whole	Bottom	Streams	Integrated	30	< 0 .004	< .004	< .008	< .04	< 0 .04					
			<u>p.p'-DDD.</u>	in millig	<u>grams per k</u>	ilogram (3	<u>9312)</u>							
Edible	Bottom	Streams	Integrated	2			< .007							
Edible	Predator	Lakes	Glaciated	7			< .005							
	Bottom	Lakes	Glaciated	4			< .005							
	Bottom		Integrated	2			< .01	••						
	Bottom		Glaciated	10		< .01	< .02	< .03						
Whole	Bottom	Streams	Integrated	41	< .005	< .005	< .01	< .02	< .03					
			<u>o.p'-DDE, i</u>	n millig	rams per ki	ilogram (39	<u>9329)</u>							
Edible	Predator	Lakes	Glaciated	7			< .02							
Filet	Bottom	Lakes	Glaciated	4			< .02							
Whole	Bottom	Streams	Glaciated	10		< .02	< .04	< .04						
Whole	Bottom	Streams	Integrated	30	<.02	< .02	< .02	< .04	< .08					
			<u>p,p'-DDE, i</u>	n millig	rams per k	ilogram (39	9322)							
Edible	Bottom	Streams	Integrated	2			.02							
Edible	Predator	Lakes	Glaciated	7			< .004							
Filet	Bottom	Lakes	Glaciated	4			< .004							
Filet	Bottom		Integrated	2			.05							
Whole	Bottom		Glaciated	12		.03	.06	.11						
Whole	Bottom	Streams	Integrated	42	< .02	< .02	< .04	.05	.06					
			<u>o,p'-DDT, i</u>	n millig	<u>rams per ki</u>	logram (39	<u>9307)</u>							
Edible	Predator	Lakes	Glaciated	7			< .01							
Filet	Bottom	Lakes	Glaciated	4			< .01							
Whole	Bottom	Streams	Glaciated	10		< .004	< .01	< .02						
Whole	Bottom	Streams	Integrated	30	< .004	< .004	< .01	< .02	< .05					

Table 10. Statistical summary of data on water-quality constituents in fish-tissue samples	collected
from selected sites within Central Nebraska Basins, 1981-90Continued	

	Summa	ary group				Value	e of indicated	percentile	
	~~~~~		I	Number					
Anator	n- Spe- cies	Water- body	Sub-	of anal-	10th	25th	50th	75th	<b>9</b> 0th
part		type	unit	yses	IUII	2011	(median)	75011	30011
	group	type		yses		<u> </u>	(methan)		
			<u>p.p'-DDT.</u>	in millig	rams per ki	ilogram (3	<u>9302)</u>		
Edible	Bottom	Streams	Integrated	2			< 0.009		
Edible	Predator		Glaciated	7			< .009		
Filet	Bottom	Lakes	Glaciated	4			< .009		
Filet	Bottom	Streams	Integrated	2			.01		
	Bottom		Glaciated	9			< .009		
	Bottom		Integrated	-	< 0.009	< 0.009	< .009	0.01	0.03
			Demeton.	in millig	rams per ki	ilogram (8	2401)		
1	-	~		_					
	Bottom		Glaciated	2			< 4		
whole	Bottom	Streams	Integrated	12		< 4	< 4	< 4	
		Die	ldrin, in mi	lligrams	per kilogra	<u>m (34684 a</u>	and 39404)		
Edible	Bottom	Streams	Glaciated	2			.01	<b></b> .	
Edible	Bottom	Streams	Integrated	2			.02		
	Predator	Lakes	Glaciated	7			< .007		
Filet	Bottom	Lakes	Glaciated	4			< .007		
Filet	Bottom	Streams	Integrated	3			.02		
Whole	Bottom	Streams	Glaciated	12		.01	.02	< .04	
Whole	Bottom	Streams	Integrated	42	< .01	< .02	.02	< .04	.06
		2	x-Endosulfa	n, in mill	ligrams per	kilogram	(34365)		
Fdible	Predator	Lakaa	Glaciated	7			< .003		
Filet	Bottom	Lakes	Glaciated	4					
Filet	Bottom		Integrated	-		~~	< .003		
			0				< .003		
			Glaciated Integrated	12 36	 < .003	< .003 < .003	< .003 < .003	< .01 < .02	 < .02
W HOLE	Dottom		-					₹.02	< .02
		-	<u> 3-Endosulfa</u>	<u>11, 111 11111</u>	igrams per	KIIOgrain	(34300)		
	Predator		Glaciated	7			< .005		
Filet		Lakes	Glaciated	4			< .005		
			Glaciated	10		< .005	< .005	< .01	
Whole	Bottom	Streams	Integrated	30	< .005	< .005	< .005	< .02	< .03
		End	losulfan sul	fate, in n	<u>nilligrams p</u>	er kilogra	m (34355)		
Edible	Predator	Lakes	Glaciated	7			< .01		
		Lakes	Glaciated	4			< .01		
			Glaciated	10		< .01	< .01	< .02	
			Integrated		< .01	< .01	< .01 < .01	< .02 < .05	 < .08
**11010		Sucams	megrateu	00	10.2	<b>1</b> 0. <b>&gt;</b>	<t< td=""><td>&lt;.U0</td><td>₹.00</td></t<>	<.U0	₹.00

	Summa	ary group				Value	of indicated	percentile	
			N	lumber					
Anatom	- Spe-	Water-		of					i Timeta
ical	cies	body	Sub-	anal-	10th	25th	50th	75th	90th
part	group	type	unit	yses			(median)		
			<u>Endrin, i</u>	n milligi	rams per ki	logram (34	<u>685)</u>		
Edible	Predator	Lakes	Glaciated	7			< 0.005		
Filet	Bottom	Lakes	Glaciated	4			< .005		
Filet	Bottom	Streams	Integrated	2			< .005		
Whole	Bottom	Streams	Glaciated	12		< 0.005	< .005	< 0.005	
Whole	Bottom	Streams	Integrated	32	< 0.005	< .005	< .005	< .005	< 0.0
		Er	ndrin aldehy	vde, in m	ulligrams p	er kilogran	<u>n (34370)</u>		
Edible	Predator	Lakes	Glaciated	7			< .008		
	Bottom	Lakes	Glaciated	4			< .008		
	Bottom		Glaciated	10		< .008	< .008	< .02	
	Bottom		Integrated	30	< .008	< .008	< .008	< .04	< .0
	200000		Endrin ketor						
		_							
	Predator		Glaciated	7			< .007		
	Bottom	Lakes	Glaciated	4			< .007		
	Bottom		Glaciated	4			< .007		
Whole	Bottom	Streams	Integrated	10		< .007	< .007	< .007	
			<u>Fonofos, i</u>	n millig	rams per ki	logram (82	<u>407)</u>		
Whole [	Bottom	Streams	Glaciated	2			< 4		
Whole	Bottom	Streams	Integrated	12		< 4	< 4	< 4	
		Her	tachlor epo:	xide, in 1	milligrams	per kilogra	<u>m (34686)</u>		
Edible I	Bottom	Streams	Glaciated	3			.003		
	Bottom		Integrated	3		••	.003		
	Predator		Glaciated	7			< .002		
	Bottom	Lakes	Glaciated	4			< .002		
	Bottom		Integrated	3			.002		
	Bottom		Glaciated	12		< .002	.005 < .006	< .009	
	Bottom		Integrated	31	< .002	< .002	< .000	< .009	 < .0
viioie i	Dottom	Sucams	-					< .008	٥. >
			Heptachlor,		grams per i	ulogram (3	<u>94007)</u>		
Edible 1		Streams		3			< .002		
Edible 1			Integrated	3			< .002		
	Predator		Glaciated	7			< .002		
	Bottom	Lakes	Glaciated	4			< .002		
Filet I	Bottom	Strooma	Integrated	3			< .002		

	Summa	ary group		<b>T</b> 1		Value	e of indicated	percentile	
Anatom ical part	- Spe- cies group	Water- body type	Sub- unit	Number of anal- yses		25th	50th (median)	75th	<b>9</b> 0th
		Hept	achlor, in m	illigrams	per kilogra	am (34687	)Continued		
	Bottom Bottom		Glaciated Integrated	12 42	 < 0.002	< 0.002 < .002	< 0.002 < .002	< 0.004 < .01	 < 0.02
		Hez	<u>kachloroben</u>	zene, in 1	nilligrams	per kilogra	am (34688)		
	Bottom · Bottom		Glaciated Integrated	2 6			.002 < .001		 
			Malathion	. in millig	rams per k	<u>tilogram (3</u>	<u>39534)</u>		
	Bottom Bottom		Glaciated Integrated	2 12		 < .10	< .25 < .18	 < .25	 
		Metho	xychlor, in :	milligran	ns per kilog	<u>ram (3948</u>	2 and 81644	)	
Filet Whole	Predator Bottom Bottom Bottom	Lakes Streams	Glaciated Glaciated Glaciated Integrated Metolachlor		   < .01 grams per	  < .01 < .01	< .02 < .02 < .02 < .02 < .02	  < .03 < .08	   < .2
Tdible	Predator	Lakas	Glaciated	7	<u>9</u> <u>7</u> -		< .05	_	
		Lakes	Glaciated	4			< .05 < .05		
	Bottom		Glaciated	8			< .05		
Vhole	Bottom	Streams	Integrated			< .05	< .05	< .05	
			<u>Metribuzin</u>	, in milli	<u>grams per l</u>	<u> xilogram (8</u>	<u>32405)</u>		
	Bottom Bottom		Glaciated Integrated	2 12		 < 4	< 4 < 4	 < 4	
			<u>Mirex, ir</u>	n milligra	ims per kild	ogram (816	<u>345)</u>		
Vhole	Bottom	Streams	Glaciated	2			< .04		
Whole (	Bottom	Streams	Integrated	18		< .01	< .04	< .1	
		<u>c</u>	<u>is-Nonachlo</u>	or, in mill	igrams per	kilogram (	<u>(39069)</u>		
		Streams	Glaciated	3			.004		
			Integrated	3			< .002		
_dible _	Predator	Lakes	Glaciated	7			< .002		

	Summa	ary group				Value	of indicated	percentile	
	~~~~~	••••	]	Number					
	n- Spe-	Water-	0.1	of	1041	0741	Foul		0041
ical	cies	body	Sub-	anal-	10th	25th	50th	75th	9 0th
part	group	type	unit	yses	·······		(median)		
		<u>cis-No</u>	nachlor, in	milligran	ns per kilog	ram (39069	<u>9)</u> Continue	d	
Filet	Bottom	Lakes	Glaciated	4			< 0.002		
Filet	Bottom	Streams	Integrated	13			< .002		
Whole	Bottom		Glaciated	10		< 0.002	< .004	0.008	
Whole	Bottom	Streams	Integrated	40	< 0.002	< .003	< .009	< .02	< 0.02
		tr	ans-Nonacl	1lor, in m	illigrams pe	er kilogram	<u>n (39072)</u>		
Edible	Bottom	Streams	Glaciated	3			.01		
	Bottom		Integrated			*-	.006		
	Predator		Glaciated	. 3			< .002		
Filet	Bottom	Lakes	Glaciated	4			< .003		
Filet	Bottom		Integrated	-			.01		
	Bottom		Glaciated	12		< .01	.02	.03	
	Bottom		Integrated		< .005	< .008	<.02	< .03	< .04
		Ω	Dxychlorda	ne, in mil	ligrams per	kilogram	(82029)		
Edible	Bottom	Streams	Glaciated	2			<.003		
Edible	Bottom	Streams	Integrated	3			<.002		
Edible	Predator		Glaciated	7			<.002		
Filet	Bottom	Lakes	Glaciated	4			<.002		
	Bottom	Streams	Integrated	3			<.002		
Filet	Dattom		Glaciated	10		<.002	<.002	<.006	
Filet Whole	Doctom	Streams	Ulaciateu						
Whole	Bottom		Integrated		<.002	<.002	<.002	<.006	<.01
Whole			Integrated	30	<.002 grams per k	<.002	<.002		<.01
Whole Whole	Bottom	Streams	Integrated Parathion	30 . in millig		<.002	<.002 <u>1810)</u>	<.006	<.01
Whole Whole Whole		Streams	Integrated	30 <u>, in millig</u> 2		<.002	<.002		<.01
Whole Whole Whole	Bottom	Streams Streams Streams	Integrated Parathion Glaciated Integrated	30 <u>in millig</u> 2 12		<.002 <u>ilogram (8</u> < .04	<.002 <u>1810)</u> < .08 < .06	<.006	<.01
Whole Whole Whole Whole	Bottom Bottom	Streams Streams Streams <u>P</u>	Integrated Parathion Glaciated Integrated endimetha	30 <u>in millig</u> 2 12 lin, in mi	grams per k 	<.002 <u>ilogram (8</u> < .04	<.002 <u>1810)</u> < .08 < .06 (82411)	<.006	<.01
Whole Whole Whole Whole	Bottom Bottom Bottom	Streams Streams <u>P</u> Streams	Integrated Parathion Glaciated Integrated endimethal Glaciated	30 <u>in millig</u> 12 lin, in mi 2	grams per k 	<.002 <u>ilogram (8</u> < .04	<.002 <u>1810)</u> < .08 < .06 <u>(82411)</u> < 4	<.006 < .08	<.01
Whole Whole Whole Whole	Bottom Bottom	Streams Streams <u>P</u> Streams Streams	Integrated Parathion Glaciated Integrated endimethal Glaciated Integrated	30 <u>in millig</u> 12 <u>lin, in mi</u> 2 12	grams per k lligrams per 	<.002 <u>ilogram (8</u> < .04 <u>r kilogram</u> < 4	<.002 <u>1810)</u> < .08 < .06 <u>(82411)</u> < 4 < 4 < 4	<.006	<.01
Whole Whole Whole Whole Whole	Bottom Bottom Bottom Bottom	Streams Streams <u>P</u> Streams Streams <u>Pen</u>	Integrated Parathion Glaciated Integrated Glaciated Integrated tachloroan	30 <u>in millig</u> 12 <u>in, in mi</u> 2 12 isole, in r	grams per k 	<.002 <u>ilogram (8</u> < .04 <u>r kilogram</u> < 4	<.002 <u>1810)</u> <.08 <.06 (82411) <4 <4 m (81823)	<.006 < .08	<.01
Whole Whole Whole Whole Whole Whole	Bottom Bottom Bottom	Streams Streams P Streams Streams Pen Streams	Integrated Parathion Glaciated Integrated endimethal Glaciated Integrated	30 <u>in millig</u> 12 <u>in, in mi</u> 12 isole, in r	grams per k lligrams per 	<.002 <u>ilogram (8</u> < .04 <u>r kilogram</u> < 4	<.002 <u>1810)</u> < .08 < .06 <u>(82411)</u> < 4 < 4 < 4	<.006 < .08	<.01

	Summa	ary group				Value	of indicated	l percentile	
Anatom ical part	- Spe- cies group	Water- body type	Sub- unit	Number of anal- yses	 10th	25th	50th (median)	75th	90th
part	group	type		yses			(meuran)		
		Per	ntachloroph	nenol, in n	nilligram	s per kilogra	<u>ım (39060)</u>		
	Predator	Lakes	Glaciated				< 0.1		
		Lakes	Glaciated				< .1		
	Bottom		Glaciated				< 8		
Whole	Bottom	Streams	Integrated	ł 25		< 2	< 6	< 10	
		C	is-Permeth	rin, in mi	lligrams I	per kilogram	(82419)	•	
Whole	Bottom	Streams	Glaciated	2			< 4		
Whole	Bottom	Streams	Integrated	ł 12		< 4	< 4	< 4	
		<u>tra</u>	ns-Permet	hrin, in m	illigrams	per kilogra	m (82422)		
Whole	Bottom	Streams	Glaciated	2			< 4		
	Bottom		Integrated			< 4	< 4	< 4	
			Prometon	<u>, in millig</u>	<u>rams per</u>	kilogram (8	2403)		
Whole	Bottom	Streams	Glaciated	2			< 4		
Whole	Bottom	Streams	Integrated	1 12		< 4	< 4	< 4	
			<u>Propazine</u>	e, in millig	rams per	kilogram (8	<u>2533)</u>		
Whole	Bottom	Streams	Glaciated	2			< 4		
	Bottom	Streams	Integrated	1 12		< 4	< 4	< 4	
			Simazine	in millig	rams per	kilogram (8	<u>2406)</u>		
Whole	Bottom	Streams	Glaciated	2			< 4		
			Integrated			< 4	< 4	< 4	
			Trichlorfor	<u>n, in millig</u>	rams per	r kilogram (8	<u>32413)</u>		
Whole	Bottom	Streams	Glaciated	2			< 1		
			Integrated				<1		
			Trifluralin	<u>, in millig</u>	<u>rams per</u>	kilogram (8	1652)		
Cdible '	Predator	Lakes	Glaciated	7	•-		< .005		<i>c</i> =
		Lakes	Glaciated	4			< .005 < .005		
			Integrated				< .005		
			Glaciated	4			< .005		
			Integrated	-		< .005	< .005	< .005	

	Summa	ry group				Value	e of indicated	percentile	
Anatom- ical part	Spe- cies group	Water- body type	Sub- unit	Number of anal- yses	 10th	25th	50th (median)	75th	90th
			Toxaphen	e, in milli	grams per	r kilogram (<u>34691)</u>		
Edible H	Predator	Lakes	Glaciated	2			< 0.04		
	Bottom		Integrate				< .04		
	Bottom		Glaciated				< .04		
Whole H	Bottom	Streams	Integrate	d 28		< 0.04	< .04	< 0.2	
		ł	Acenaphth	<u>ylene, mill</u>	ligrams p	er kilogram	(34204)		
Whole H	Bottom	Streams	Glaciated	2			< .4		
Whole H	Bottom	Streams	Integrate	d 12		< .2	< .4	< .4	
			<u>Acenaphtl</u>	nene, milli	grams pe	<u>r kilogram (</u>	34209)		
Whole E	Bottom	Streams	Glaciated	2			< .6		
Whole H	Bottom	Streams	Integrate	d 12		< .2	< .5	< .6	
			<u>Acrolei</u>	n, milligra	<u>ms per k</u>	ilogram (34	<u>214)</u>		
Whole E	Bottom	Streams	Glaciated	2			<.1		
Whole E	Bottom		Integrate			< .01	<.1	< .1	
			<u>Acrylonit</u>	rile, millig	rams per	kilogram (3	<u>34219)</u>		
Whole E	Bottom	Streams	Glaciated	2			< .2		
Whole E	Bottom	Streams	Integrate	d 12		< .02	< .1	< .2	
			Anthrace	ne, millig	rams per	kilogram (3	<u>4224)</u>		
Whole E	Bottom	Streams	Glaciated	2			< 1		
Whole E	Bottom	Streams	Integrate	d 10		< .6	< 1	< 1	
			<u>Benzen</u>	e, milligra	<u>ms per k</u>	ilogram (34:	<u>238)</u>		
	Predator		Glaciated				< .05		
		Lakes	Glaciated				< .05		
			Glaciated			< .04	< .05	< .05	
whole H	sottom	Streams	Integrated	1 11		< .01	< .02	< .02	
			<u>Benzidir</u>	ne, milligra	ams per k	tilogram (34	241)		
Whole E			Glaciated	2			< 8		
	lattom	Streams	Integrated	19			< 8		

Value of indicated percentile Summary group Number of Anatom- Spe-Water-75th anal-10th 25th 50th 90th ical cies body Sub-(median) part group type unit vses Benzo(a)anthracene, milligrams per kilogram (34530) Whole Bottom Streams Glaciated 2 < 2 ---< 1 Whole Bottom Streams Integrated 10 --< 2 < 2 --Benzo(b)fluoranthene, milligrams per kilogram (34234) Whole Bottom Streams Glaciated 2 < 4 Whole Bottom Streams Integrated 12 < 2 < 4 < 4 Benzo(k)fluoranthene, milligrams per kilogram (34246) Whole Bottom Streams Glaciated 2 < 4 Whole Bottom Streams Integrated < 2 10 < 4 < 4 ----Benzo(ghi)perylene, milligrams per kilogram (34525) Whole Bottom Streams Glaciated 2 < 2 Whole Bottom Streams Integrated 12 < 1 < 2 < .4 Benzo(a)pyrene, milligrams per kilogram (34251) Whole Bottom Streams Glaciated 2 < 2 ---Whole Bottom Streams Integrated 12 --< .6 < 2 < 2 Bromoform, milligrams per kilogram (34291) Edible Predator Lakes 7 Glaciated < .01 Filet Bottom Lakes Glaciated 4 < .01 __ ---Whole Bottom Streams Glaciated 8 < .01 ------Whole Bottom Streams Integrated 5 < .005 ------Bromomethane, milligrams per kilogram (34417) Whole Bottom Streams Glaciated 2 < .2 Whole Bottom Streams Integrated < .02 < .2 12 --< .1 ---4-Bromophenyl phenyl ether, milligrams per kilogram (34640) Whole Bottom Streams Glaciated 2 < 2 --Whole Bottom Streams Integrated 12 < 2 --<.8 < 1

	Summa	ary group				Value	of indicated	percentile	
Anator ical part	n- Spe- cies group	Water- body type	Sub- unit	Number of anal- yses	10th	25th	50th (median)	75th	90th
		<u>N-Bu</u>	tyl benzyl j	ohthalate	. milligram	s per kilog	<u>ram (34296)</u>		
	Bottom Bottom		Glaciated Integrated	2 1 12	 	 < 0.3	< 1 < .8	 < 1	
		Ca	rbon tetrac	<u>hloride, n</u>	hilligrams p	oer kilogra	<u>m (34300)</u>		
Filet Whole	Predator Bottom Bottom Bottom	Lakes Streams	Glaciated Glaciated Glaciated Integrated	7 4 10 1 31	 < 0.004	 < .01 < .01	< .01 < .01 < .01 < .01	 < .01 < .01	 < 0.02
			Chlorobenz	ene, milli	grams per	kilogram ((3430 5)		
Filet Whole	Predator Bottom Bottom Bottom	Lakes Streams	Glaciated Glaciated Glaciated Integrated	7 4 8 1 6	 	 	< .05 < .05 < .05 < .002	 	
		<u>Chlo</u>	rodibromor	nethane,	milligrams	per kilogr	am (34310)		
	Bottom Bottom		Glaciated Integrated	2 1 12		 < .004	< .01 < .007	 < .01	
			Chloroetha	ane, millig	<u>rams per l</u>	<u> xilogram (3</u>	<u>34315)</u>		
	Bottom Bottom		Glaciated Integrated	2 12		 < .01	< .1 < .06	 < .1	
		<u>bis(2-C)</u>	hloroethoxy	<u>y) methan</u>	e, milligrai	ms per kilo	ogram (34282	<u>2)</u>	
	Bottom Bottom		Glaciated Integrated	2 12		 < .2	6. > < .6	 < .6	
		<u>bis(2</u>	-Chloroeth	yl) ether,	milligrams	per kilogr	am (34277)		
	Bottom Bottom		Glaciated Integrated	2 12	 	 < .4	<.8 <.8	 < .8	
		<u>2-Chl</u>	<u>oroethyl vi</u>	nyl ether,	milligrams	s per kilog	<u>ram (34580)</u>		
	Bottom Bottom		Glaciated Integrated	2 12		 < .02	< .2 < .1	 < .2	

:

Summary group					Value of indicated percentile				
Anatom ical part	- Spe- cies group	Water- body type	Sub- unit	Number of anal- yses	10th	25th	50th (median)	75th	90th
			Chlorofor	<u>m, millig</u>	rams per ki	ilogram (3	<u> 4319)</u>		
Edible	Predator	Lakes	Glaciated	7			< 0.01	••	
Filet	Bottom	Lakes	Glaciated	4	••		< .01		
Whole	Bottom	Streams	Glaciated	10		< 0.01	< .01	< 0.01	••
Whole	Bottom	Streams	Integrated	30	< 0.002	< .01	< .01	< .01	< 0.02
		<u>bis(2-0</u>	Chloroisopro	opyl) ethe	r, milligran	ns per kile	ogram (3428	7)	•
Whole	Bottom	Streams	Glaciated	2			< .6		
Whole	Bottom	Streams	Integrated	12		< .3	< .6	< .6	••
		9	Chlorometh	ane, mill	igrams per	<u>kilogram</u>	(34422)		
Edible	Predator	Lakes	Glaciated	7			< .1		
Filet	Bottom	Lakes	Glaciated	4			< .1		
Whole	Bottom	Streams	Glaciated	8		••	< .1	••	••
Whole	Bottom	Streams	Integrated	25		< .06	< .1	< 200	
		<u>2-C</u>	hloronapht	<u>halene, n</u>	<u>nilligrams p</u>	oer kilogra	am (34585)		
Whole	Bottom	Streams	Glaciated	2			< .6		
Whole	Bottom	Streams	Integrated	12		< .3	< .5	< .6	
			2-Chlorophe	enol. mill	igrams per	kilogram	<u>(34590)</u>		
Whole	Bottom	Streams	Glaciated	2			< .8		
Whole	Bottom	Streams	Integrated	12		< .4	< .6	< .8	
		4-Chlor	rophenyl ph	enyl ethe	er, milligrar	<u>ns per kil</u>	ogram (3464	<u>5)</u>	
Whole [Bottom	Streams	Glaciated	2			< 10		••
Whole 2	Bottom	Streams	Integrated	12		< 1	< 6	< 10	
			Chrysene	e, milligra	ams per kil	ogram (34	324)		
Whole 1	Bottom	Streams	Glaciated	2			< 2		••
Whole 1	Bottom	Streams	Integrated	12		< 1	< 2	< 2	
		1,2,5,	6-Dibenzan	thracene.	milligrams	s per kilog	ram (34560)	2	
Whole 1	Bottom	Streams	Glaciated	2		••	< 3		
	Bottom	Strooms	Integrated			< 1	< 2	< 3	

Table 10.	Statistical summary of data on water-quality constituents in fish-tissue samples collected	
	from selected sites within Central Nebraska Basins, 1981-90Continued	

	Summa	ary group				Value of indicated percentile				
Anatom	Sne-	Water-	N	lumber of						
ical	cies	body	Sub-	anal-	10th	25th	50th	75th	9 0th	
part	group	type	unit	yses			(median)			
					·					
		<u>Di-</u>	N-butyl pht	<u>halate, r</u>	nilligrams j	per kilogra	<u>m (34683)</u>			
	Bottom		Glaciated	2			<1			
Whole	Bottom	Streams	Integrated	12		< 0.5	< .8	< 1		
		1,	2-Dichloroe	thane, m	illigrams p	er kilogran	<u>n (34535)</u>			
Edible	Predator	Lakes	Glaciated	7			< .01	·		
Filet	Bottom	Lakes	Glaciated	4			< .01			
Whole			Glaciated	10		< .01	< .01	< .01		
Whole	Bottom	Streams	Integrated	31	< 0.003	< .01	< .01	< .01	< 0.02	
		<u>trans-</u>	1.2-Dichloro	oethylen	e, milligran	ns per kilog	<u>gram (34550)</u>	2		
Edible	Predator	Lakes	Glaciated	7			< .01			
	Bottom	Lakes	Glaciated	4			< .01			
Whole	Bottom	Streams	Glaciated	8			< .01			
Whole	Bottom	Streams	Integrated	25		< .007	< .01	< .01		
		<u>1.2</u>	-Dichlorobe	nzene, n	nilligrams p	er kilograi	<u>m (34540)</u>			
Edible	Predator	Lakes	Glaciated	7			< .1			
	Bottom	Lakes	Glaciated	4			< .1			
Whole	Bottom	Streams	Glaciated	8			< 1			
Whole	Bottom	Streams	Integrated	24		< .1	<.1	< 2		
		<u>1.3</u>	-Dichlorobe	nzene, n	<u>nilligrams p</u>	<u>er kilogra</u> ı	<u>m (34570)</u>			
Whole	Bottom	Streams	Glaciated	6			< 2			
Whole			Integrated	20		< .1	<.1	< 2		
		1,4	-Dichlorobe	nzene, n	<u>nilligrams p</u>	<u>er kilogra</u> ı	<u>m (34575)</u>			
Edible	Predator	Lakas	Glaciated	7			<.1			
		Lakes	Glaciated	4			<.1			
	Bottom		Glaciated	6			<.1			
			Integrated			< .1	<.1	< 2		
		<u>3,3'</u> -	Dichlorober	nzidine, 1	milligrams	per kilogra	<u>um (34635)</u>			
	Datters	Charles and		0			. 0			
Whole :			Glaciated	2 12			< 8			
whole .	DOLIOIII	Streams	Integrated	12		< 4	< 6	< 8	••	

	Summa	ary group				Value	of indicated	percentile	
Anator ical part	n- Spe- cies group	Water- body type	Sub- unit	Number of anal- yses	10th	25th	50th (median)	75th	90th
		Dick	lorobrom	omethane.	milligrams	s per kilogr	am (34331)		
	Bottom Bottom		Glaciated Integrate			 < 0.002	< 0.01 < .006	 < 0.01	
		Dich	lorodifluor	omethane.	<u>milligram</u>	<u>s per kilog</u>	ram (34335)		
Whole	Bottom	Streams	Integrate	ed 2			< .02		 ·
		1.	1-Dichloro	ethane, m	<u>illigrams p</u>	er kilogran	<u>n (34500)</u>		
	Bottom Bottom		Glaciated Integrate			 < .003	< .01 < .006	 < .01	
		<u>1,1</u>	-Dichloroe	thylene, m	hilligrams j	oer kilogra	<u>m (34505)</u>		
Filet Whole	Predator Bottom Bottom Bottom	Lakes Streams	Glaciated Glaciated Glaciated Integrate	l 4 l 10	 < 0.002	 < .01 < .01	< .01 < .01 < .01 < .01	 < .01 < .01	 < 0.02
		<u>2.</u>	4-Dichloro	phenol, mi	illigrams p	er kilogran	<u>1 (34605)</u>		
	Bottom Bottom		Glaciated Integrate			 < 1	< 2 < 2	 < 2	
		<u>1,2</u>	-Dichlorog	propane, m	illigrams p	er kilogran	n (34545)		
	Bottom Bottom		Glaciated Integrate			 < .002	< .01 < .006	 < .01	
		<u>cis-1</u>	<u>.3-Dichlor</u>	opropene,	milligrams	per kilogra	<u>am (34703)</u>		
	Bottom Bottom		Glaciated Integrate			 < .003	< .02 < .01	 < .02	
		<u>trans-</u>	1,3-Dichlo	ropropene	, milligram	s per kilog	<u>ram (34698)</u>		
	Bottom Bottom		Glaciated Integrate			 < .004	< .02 < .01	 < .02	

 Table 10. Statistical summary of data on water-quality constituents in fish-tissue samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Su	mmary group				Valu	e of indicated	l percentile	
Anatom- Sp ical ci part gro	es body	Sub- unit	Number of anal- yses	 10th	25th	50th (median)	75th	90th
	I	Diethyl phth	alate, mi	lligrams j	per kilograi	n (343 40)		
Whole Bott Whole Bott		Glaciated Integrated	2 12		< 0.2	< 0.6 < .4	< 0.6	
	<u>2,4</u>	4-Dimethylr	ohenol, m	illigrams	per kilogra	um (34610)		
Whole Bott Whole Bott		Glaciated Integrated	2 12		 < .6	< 1 < .8	 < 1	·
	Di	methyl phtl	<u>halate, m</u>	illigrams	per kilogra	m (34 345)		
Whole Bott Whole Bott	om ouroumo	Glaciated Integrated	2 12		 < .2	< .4 < .3	 < .4	
	4,6-]	Dinitro-orth	o-cresol.	milligran	ns per kilog	<u>ram (34661)</u>		
Whole Bott Whole Bott		Glaciated Integrated	2 12		< 2	< 6 < 5	 < 6	
	<u>2</u>	4-Dinitroph	nenol, mi	lligrams I	ber kilograr	<u>n (34620)</u>		
Whole Bott Whole Bott		Glaciated Integrated	2 12		 < 3	< 10 < 8	< 10	
	<u>2</u> ,	4-Dinitrotol	luene, mi	<u>lligrams</u>	per kilograi	n (34615)		
Whole Bott Whole Bott		Glaciated Integrated	2 12		 < .8	< 2 < 1	 < 2	
	<u>2</u> ,	6-Dinitrotol	luene, mi	lligrams j	per kilograi	n (346 30)		
Whole Bott Whole Bott		Glaciated Integrated	2 12		 < .8	< 2 < 1	 < 2	
	<u>Di-</u>	N-octyl pht	halate, m	lilligrams	per kilogra	um (34600)		
Whole Bott Whole Bott		Glaciated Integrated	2 12		 < .2	< .8 < .7	 < .8	
	<u>1,2-</u>]	Diphenylhy	drazine, 1	milligram	<u>s per kilog</u> i	<u>ram (34350)</u>		
Whole Botte Whole Botte		Glaciated Integrated	2 12	 	 < .5	<1 <1	 <1	

	Summa	iry group				Value	e of indicated	percentile	
			1	Number					
	n- Spe-	Water-	a 1	of	1013	0513	5013	ar i	00/1
ical part	cies	body type	Sub- unit	anal-	10th	25th	50th (median)	75th	90th
part	group	type		yses			(median)		· · · · · · · · · · · · · · · · · · ·
			Ethylbenz	ene, milli	grams pe	r kilogram ((34375)		
Edible	Predator	Lakes	Glaciated	7			< 0.5		
Filet	Bottom	Lakes	Glaciated	4			< .5		
Whole	Bottom	Streams	Glaciated	8			< .5		
Whole	Bottom	Streams	Integrated	25		< 0.03	< .5	< 0.5	
		<u>bis(2-</u>]	<u>Ethylhexyl)</u>	phthalat	e, milligra	ims per kild	gram (39099	2	
Whole	Bottom	Streams	Glaciated	2			< 2		
Whole	Bottom		Integrated			< .8	< 2	< 2	
			Fluoranthe	ene, milli	grams pe	r kilogram ((34380)		
Whole	Bottom	Streams	Glaciated	2			< .8		
Whole	Bottom		Integrated			< .4	< .8	< .8	
			Fluorene	e, milligra	ams per k	ilogram (34	.385)		
Whole	Bottom	Streams	Glaciated	2			< .6		
	Bottom		Integrated			< .3	< .5	< .6	
		Hexac	<u>hlorocyclop</u>	entadien	e, milligra	ums per kild	ogram (34390)	
Whole	Bottom	Streams	Glaciated	2			< 1		
	Bottom		Integrated			< .6	< .8	< 1	
			achlorobut		nilligrams				
	.	~	<u> </u>		-	-			
	Bottom		Glaciated	2			< .8		
whole	Bottom	Streams	Integrated	12		< .4	< .6	< .8	
		H	<u>exachloroet</u>	<u>hane, mi</u>	lligrams j	oer kilogran	<u>n (34400)</u>		
Whole	Bottom	Streams	Glaciated	2			< .8		
Whole	Bottom	Streams	Integrated			< .4	< .6	< .8	
		Inde	<u>no(1,2,3-cd</u>)pyrene. 1	milligram	s per kilogr	<u>am (34407)</u>		
Whole	Bottom	Streams	Glaciated	2			< 2		
			Integrated			<.6	< 1	< 2	

 Table 10. Statistical summary of data on water-quality constituents in fish-tissue samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Table 10.	Statistical summary of data on water-quality constituents in fish-tissue samples collected
	from selected sites within Central Nebraska Basins, 1981-90Continued

75th < 2 	90th
	90th
< 2 	
 < 2 	
 < 2 	
< 2 	
 < .6	
 - 9	
~ 2	
<1	
	••
< 4	
< .6	
< 8	
< .4	

	Summa	ary group			Value of indicated percentile				
A +		Watar	<u> </u>	Number					
Anator ical	n- Spe- cies	Water- body	Sub-	of anal-	10th	25th	50th	75th	90th
part		type	unit	yses	IUII	20011	(median)	1001	50011
		-J F -		,			(,		
			PCB 12	21, milligr	ams per k	ilogram (34	<u>4664)</u>		
Whole	Bottom	Streams	Glaciated	4			< 0.2		
	Bottom		Integrate			< 0.06	< .1	< 0.3	
			-		ams per k	ilogram (34	1 667)		
			<u></u>	-	-				
	Bottom		Glaciated			·	< .1		
Whole	Bottom	Streams	Integrate	d 12		< .03	< .05	< .1	
			<u>PCB 124</u>	2. milligr	ams per ki	logram (3	<u>4689)</u>		
Edible	Predator	Lakes	Glaciated	7			< .07		
Filet	Bottom	Lakes	Glaciated				< .07		
Whole	Bottom	Streams	Glaciated			< .07	< .07	< .1	
Whole	Bottom	Streams	Integrate	d 30	<0.07	< .07	< .07	< .08	< 0.4
			PCB 124	<u>48, milligr</u>	ams per k	ilogram (34	<u>1669)</u>		
Edible	Predator	Lakes	Glaciated	7			< .07		
Filet	Bottom	Lakes	Glaciated	4			< .07		
Whole	Bottom		Glaciated	8			< .07		
Whole	Bottom	Streams	Integrate	d 26		< .07	< .07	< .08	
			PCB 125	4, milligra	ams per ki	logram (34	<u>4690)</u>		
	Predator	Tahaa		7			- 00		
Filet	Bottom	Lakes Lakes	Glaciated Glaciated	7 4			< .08 < .08		
Filet	Bottom		Integrated	-			< .08 < .08		
	Bottom		Glaciated	9			< .08		
	Bottom		Integrated			< .08	<.08	<.1	
			-		ams per ki	logram (34		•••	
	Predator		Glaciated	7			< .02		
Filet	Bottom	Lakes	Glaciated	4			< .02		
Filet	Bottom		Integrated				< .02		
	Bottom		Glaciated	10		< .02	< .03	.07	1
vnole	Bottom	Streams	Integrated	1 35	< .02	< .02	< .02	< .1	< .1
		Par	achloromet	tacresol, n	nilligrams	per kilogra	am (34456)		
Vhole	Bottom	Streams	Glaciated	2			< 2		

 Table 10. Statistical summary of data on water-quality constituents in fish-tissue samples collected from selected sites within Central Nebraska Basins, 1981-90--Continued

Number of ical cies part group typeWater- unit unit ysesOf of median)Phenanthrene, milligrams per kilogram (34465)Whole Bottom Streams Glaciated 2 Phenol, milligrams per kilogram (34465)Whole Bottom Streams Glaciated 2 Phenol, milligrams per kilogram (34468)Whole Bottom Streams Glaciated 2 Phenol, milligrams per kilogram (34468)Whole Bottom Streams Glaciated 2 Pyrene, milligrams per kilogram (34463)Whole Bottom Streams Glaciated 2 Pyrene, milligrams per kilogram (34473)Whole Bottom Streams Glaciated 2 Pyrene, milligrams per kilogram (34473)Whole Bottom Streams Glaciated 2 Styrene, milligrams per kilogram (76164)Whole Bottom Streams Glaciated 2 Styrene, milligrams per kilogram (76164)Whole Bottom Streams Glaciated 2 Styrene, milligrams per kilogram (34679 and 34754, units c Styrene Streams Glaciated 2 Styrene Streams Integrated 11 Streams Integrated 10 Streams Integrated 24 Streams Integrated 24 Streams Integrated 24 Streams Integrated 24 Streams Streams Integrated 24 Streams Integrated 24 Streams Streams Integrated 31 Streams Streams Integ	e	percentile	e of indicated	Value				ary group	Summa		
icalciesbodySub- unitanal- yses10th25th50th (median)75thPhenanthrene. milligrams per kilogram (34465)Whole BottomStreamsGlaciated2<1Whole BottomStreamsGlaciated2<1Whole BottomStreamsGlaciated2<.8Whole BottomStreamsGlaciated2<.8Whole BottomStreamsGlaciated2<.8Whole BottomStreamsGlaciated2<.8Whole BottomStreamsGlaciated2<.8Whole BottomStreamsGlaciated2<.8Whole BottomStreamsGlaciated2<.8Whole BottomStreamsGlaciated2<.4<.8<.8Styrene. milligrams per kilogram(34679 and 34754. units orWhole BottomStreamsGlaciated2<.12.3.7.8-Tetrachlorodibenzo-p-dioxin. milligrams per kilogram(34679 and 34754. units orWhole BottomStreamsGlaciated2<.1-1 <th></th> <th></th> <th><u> </u></th> <th></th> <th></th> <th></th> <th> N</th> <th>Water-</th> <th>n- Spe-</th> <th>Anaton</th>			<u> </u>				N	Water-	n- Spe-	Anaton	
Whole BottomStreamsGlaciated2<1Whole BottomStreamsIntegrated12<0.6	90th	75th		25th	10th	anal-		body	cies	ical	
Whole BottomStreamsIntegrated12< 0.6< 1< 1Phenol, milligrams per kilogram (34468)Whole BottomStreamsGlaciated2< .8			(34465)	kilogram (grams per l	ene, milli	Phenanthre				
Whole BottomStreamsIntegrated12< 0.6< 1< 1Phenol, milligrams per kilogram (34468)Whole BottomStreamsGlaciated2< .8			<1			2	Glaciated	Streams	Bottom	Whole	
Whole BottomStreamsGlaciated2<.8Whole BottomStreamsIntegrated12<.4		< 1	<1	< 0.6							
Whole BottomStreamsIntegrated12<.4<.6<.8Pyrene, milligrams per kilogram (34473)WholeBottomStreamsGlaciated2<.8			.68)	<u>gram (344</u>	ms per kilo	milligra	Phenol.				
Pyrene, milligrams per kilogram (34473) Whole Bottom Streams Glaciated 2 <.8			< .8		 '	2	Glaciated	Streams	Bottom	Whole	
Whole BottomStreamsGlaciated2<.8Whole BottomStreamsIntegrated12<.4		< .8	< .6	< .4		12	Integrated	Streams	Bottom	Whole	
Whole BottomStreams Integrated12<.4<.8<.8Styrene, milligrams per kilogram (76164)Whole BottomStreams Glaciated2<.02			.73)	<u>ram (344</u>	ms per kilo	milligra	<u>Pyrene</u> ,				
Styrene, milligrams per kilogram (76164)Whole Bottom Streams Glaciated 2 $<.02$ Whole Bottom Streams Integrated 6 $<.02$ 2.3.7.8-Tetrachlorodibenzo-p-dioxin, milligrams per kilogram (34679 and 34754, units cWhole Bottom Streams Glaciated 2 $<.1$ Whole Bottom Streams Glaciated 2 $<.1$ Whole Bottom Streams Integrated 11 $<.04$ $<.1$ $<.1$ Lill 22-Tetrachloroethane, milligrams per kilogram (34520)Edible Predator Lakes Glaciated 7 $<.01$ $<.01$ $<.02$ Whole Bottom Streams Glaciated 10 $<.01$ $<.01$ $<.02$ Whole Bottom Streams Glaciated 10 $<.01$ $<.01$ $<.01$ Tetrachloroethylene, milligrams per kilogram (34479)Edible Predator Lakes Glaciated 7 $<.01$ $<.01$ $<.01$ Tetrachloroethylene, milligrams per kilogram (34479)Edible Predator Lakes Glaciated 7 $<.01$ $<.01$ $<.01$ Whole Bottom Streams Glaciated 10 $<.01$ $<.01$ $<.01$ Whole Bottom Streams Glaciated 10 $<.01$ $<.01$ $<.01$ Whole Bottom Streams Glaciated 10 $$ $<.01$ $<.01$ $<.01$ Whole Bottom Streams Glaciated 10 $$ $<.01$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Glaciated</td><td>Streams</td><td>Bottom</td><td>Whole</td></t<>							Glaciated	Streams	Bottom	Whole	
Whole BottomStreams Glaciated2< 0.02 Whole BottomStreams Integrated6< 0.02 2.3.7.8-Tetrachlorodibenzo-p-dioxin, milligrams per kilogram (34679 and 34754, units cWhole BottomStreams Glaciated2< 1 Whole BottomStreams Integrated11< $.04$ < 1 < $.1$ Lil.2.2-Tetrachloroethane, milligrams per kilogram (34520)Edible Predator LakesGlaciated7< $.01$ Whole BottomStreams Glaciated7< $.01$ Whole BottomStreams Glaciated10< $.01$ < $.02$ Whole BottomStreams Glaciated10Vision LakesGlaciated7Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3"Colspan="		< .8	< .8	< .4		12	Integrated	Streams	Bottom	Whole	
Whole BottomStreamsIntegrated6< 0.02 2.3.7.8-Tetrachlorodibenzo-p-dioxin, milligrams per kilogram (34679 and 34754, units cWholeBottomStreamsGlaciated2<			<u>164)</u>	gram (761	<u>ms per kilo</u>	milligra	<u>Styrene</u> ,				
2.3.7.8-Tetrachlorodibenzo-p-dioxin, milligrams per kilogram (34679 and 34754, units cWhole BottomStreamsGlaciated2<.1	<td></td>										
WholeBottomStreamsGlaciated2<.1WholeBottomStreamsIntegrated11<.04			< .02			6	Integrated	Streams	Bottom	Whole	
WholeBottomStreamsIntegrated11< $.04$ < $.1$ < $.1$ I.1.2.2-Tetrachloroethane, milligrams per kilogram (34520)EdiblePredator LakesGlaciated7< $.01$ FiletBottomLakesGlaciated4< $.01$ WholeBottomStreamsGlaciated10< $.01$ < $.02$ WholeBottomStreamsIntegrated24< $.01$ < $.01$ < $.01$ Tetrachloroethylene, milligrams per kilogram (34479)EdiblePredator LakesGlaciated7< $.01$ FiletBottomLakesGlaciated7< $.01$ WholeBottomLakesGlaciated7< $.01$ WholeBottomStreamsGlaciated7< $.01$ WholeBottomStreamsGlaciated10< $.01$ < $.01$ < $.01$ WholeBottomStreamsIntegrated31< 0.004 < $.01$ < $.01$ < $.01$	<u>nverted</u>)	<u>4, units con</u>	79 and 3475	gram (346	<u>ms per kilo</u>	milligra	zo-p-dioxin,	lorodiben	.8-Tetrach	<u>2,3,7</u>	
I.1.2.2-Tetrachloroethane, milligrams per kilogram (34520)EdiblePredatorLakesGlaciated7<.01											
EdiblePredatorLakesGlaciated7< .01FiletBottomLakesGlaciated4< .01		< .1	<.1	< .04		11	Integrated	Streams	Bottom	Whole	
FiletBottomLakesGlaciated4< .01WholeBottomStreamsGlaciated10< .01			<u>ram (34520)</u>	s per kilog	milligrams	roethane,	2-Tetrachlor	1,1,2,1			
Whole BottomStreams Glaciated10< .01< .01< .02Whole BottomStreams Integrated24< .01						7					
Whole BottomStreams Integrated24< .01< .01< .01Tetrachloroethylene, milligrams per kilogram (34479)Edible Predator LakesGlaciated7< .01						-					
Tetrachloroethylene, milligrams per kilogram (34479)Edible Predator LakesGlaciated7< .01											
Edible Predator LakesGlaciated7<.01FiletBottomLakesGlaciated4<.01		< .01	-		 illigrams p		-		Dottom	WHOle	
FiletBottomLakesGlaciated4<.01WholeBottomStreamsGlaciated10<.01			<u>III (54475)</u>	EL KHUgi al		lytene, m	<u>, aciiioi oetii</u>				
Whole BottomStreams Glaciated10<.01<.01<.01Whole BottomStreams Integrated31<0.004											
Whole Bottom Streams Integrated 31 < 0.004 < .01 < .01 < .01						_					
5											
Toluene, milligrams per kilogram (34484)	< 0.02	< .01			-		U	Streams	Bottom	Whole	
ALL WALL AND THE WALL BOX MALON AND (U & SU & A			84)	gram (344	ms per kilo	milligra	<u>Toluene.</u>				
Edible Predator Lakes Glaciated 7 <.05			< .05			7	Glaciated	Lakes	Predator	Edible	
Filet Bottom Lakes Glaciated 4 <.05			< .05			4	Glaciated	Lakes	Bottom	Filet	
Whole Bottom Streams Glaciated 8 <.05											
Whole Bottom Streams Integrated 25 <.03 <.05 <.05		< .05	< .05	< .03		25	Integrated	Streams	Bottom	Whole	

Table 10.	Statistical summary of data	on water-quality constitue	ents in fish-tissue samples collected
	from selected sites within	Central Nebraska Basins,	1981-90Continued

	Summa	ary group				Value of indicated percentile			
Anatom ical part	n- Spe- cies group	Water- body type	Sub- unit	Number of anal- yses	 10th	25th	50th (median)	75th	90th
		1,2,	4-Trichloro	benzene,	milligrams	per kilogr	<u>am (34555)</u>		
	Bottom Bottom		Glaciated Integrated	2 1 12		 < 0.3	< 1 < .7	 <1	
		1.1	1-Trichloro	ethane, n	nilligrams j	per kilogra	<u>um (34510)</u>		
Filet Whole	Predator Bottom Bottom Bottom	Lakes Streams	Glaciated Glaciated Glaciated Integrated	7 4 8 1 25	 	 < .008	< .01 < .01 < .01 < .01	 < .01	
		T	richloroeth	<u>ylene, mi</u>	lligrams pe	<u>r kilogram</u>	<u>a (34692)</u>		
Filet Whole	Predator Bottom Bottom Bottom	Lakes Streams Streams	Glaciated Glaciated Glaciated Integrated		 <0 .003	 < .01 < .01	< .01 < .01 < .01 < .01	 < .01 < .01	 < 0.02
		Tric	hlorofluoroi	nethane,	milligrams	per kilogr	<u>am (34492)</u>		
Whole	Bottom		Integrated				< .003		
		2,4	<u>6-Trichlorc</u>	phenol, n	nilligrams I	per kilogra	<u>m (34625)</u>		
Whole Whole			Glaciated Integrated	2 12		< 1	< 2 < 2	< 2	
			Vinyl chlor	ide, milli	<u>grams per l</u>	kilogram (<u>34693)</u>		
Whole Whole		Streams	Glaciated Integrated			 < .01	< .1 < .07	 < .1	
		7	<u>'inyl trichlo</u>	oride, mill	igrams per	kilogram	(34515)		
Whole Whole			Glaciated Integrated	8 26		 < .008	< .01 < .01	 < .01	

Table 11. Statistical summary of habitat data from aquatic-ecological surveys within CentralNebraska Basins, 1981-90

[Number in parentheses following property name is parameter code used in U.S. Environmental Protection Agency's Storage and Retrieval System and U.S. Geological Survey's National Water Information System; values are reported only for summary groups that had 10 or more sites where a specific habitat characteristic was determined; --, value not computed for summary groups that had fewer than 30 determinations]

	nary group	Number		Value	at indicated pe	ercentile	
Stream order or lake class	Sub- unit	of de- termin- ations	10th	25th	50th (median)	75th	9 0th
		Stream wid	th, in mete	ers (00004, u	nits converted)		
1st - 3rd	Sandhills	28		2.8	5.6	13	
1st - 3rd	Loess Hills	24		3.2	. 5.0	23	
1st - 3rd	Glaciated Area	37	1.5	2.4	4.0	6.6	9.4
1st - 3rd	Platte Valley	14		2.1	4.1	7.5	
	<u>Depth of</u>	stream or l	<u>ake, mean</u>	in meters (<u>00064, units co</u>	<u>nverted)</u>	
Lakes	Loess Hills	10		. 9 1	1.8	3.2	
Lakes	Glaciated Area	30	.64	.91	1.2	3.7	4.3
1st - 3rd	Sandhills	27		.18	.30	.40	
1st - 3rd	Loess Hills	24		.19	.27	.30	
1st - 3rd	Glaciated Area	37	.09	.12	.21	.34	.54
1st - 3rd	Platte Valley	13		.15	.24	.30	
		Substrate, h	oedrock, so	lid rock, in p	ercent (83516)		
1st - 3rd	Glaciated Area	27		20	50	70	
	Su	<u>bstrate, gra</u>	vel 16-2 m	<u>illimeters, i</u>	n percent (8354	<u>4)</u>	
1st - 3rd	Glaciated Area	14		10	10	20	
	Subs	strate, sand	2.0-0.062	<u>millimeters,</u>	in percent (835	<u>545)</u>	
1st - 3rd	Sandhills	26		90	100	100	
1st - 3rd	Loess Hills	23		80	9 0	100	
1st - 3rd	Glaciated Area	25		15	30	85	
1st - 3rd	Platte Valley	14		48	65	92	
	Subs	trate, silt 0	.062-0.004	<u>millimeters.</u>	in percent (83	<u>546)</u>	
Lakes	Glaciated Area	24		100	100	100	
1st - 3rd	Sandhills	10		5	10	10	
1st - 3rd	Loess Hills	12		10	10	29	
1st - 3rd	Glaciated Area		10	10	30	6 0	99
Substrate	e, clay and fine p	articulate c	organic ma	terial 0.004-	0.00024 millim	<u>eters, in perc</u>	<u>ent (83547)</u>
Lakes	Loess Hills	10		40	55	90	

Summary	group			Frequency of occurrence,
Stream order or lake class	Subunit	Number of sites sampled	Scientific name of taxon	as number of sites where identified
		FISH	TAXA	
1st - 3rd	Sandhills	31	Lepomis cyanellus	24
			Notropis stramineus	21
			Catostomus commersoni	19
			Pimephales promelas	19
			Fundulus sciadicus	18
			Cyprinella lutrensis	17
			Semotilus atromaculatus	17
			Hybognathus hankinsoni	15
			Rhinichthys cataractae	15
			Notropis dorsalis	13
1st - 3rd	Loess Hills	27	Cyprinella lutrensis	23
			Cyprinus carpio	20
			Lepomis cyanellus	20
			Notropis stramineus	20
			Pimephales promelas	18
			Carpiodes carpio	15
			Ictalurus punctatus	14
			Micropterus salmoides	13
			Hybognathus hankinsoni	11
			Ictalurus melas	11
			Lepomis macrochirus	11
			Moxostoma macrolepidotum	11
1st - 3rd	Glaciated Area	38	Pimephales promelas	34
			Notropis stramineus	31
			Cyprinella lutrensis	25
			Semotilus atromaculatus	22
			Lepomis cyanellus	20
			Ictalurus melas	18
			Notropis dorsalis	16
			Hybognathus hankinsoni	15
			Carpiodes carpio	11
			Ictalurus punctatus	9

[Values are reported only for taxa that were identified at two or more sites in a summary group and occurred at 1 of the 10 highest frequencies within a summary group]

SUMMARY OF FISH AND MACROINVERTEBRATE TAXA IDENTIFIED DURING AQUATIC-ECOLOGICAL SURVEYS, 1981-90 145

Summary	group			Frequency of
Stream order or lake class	or of sites		Scientific name of taxon	occurrence, as number of sites where identified
		FISH TAXA	Continued	
1st - 3rd	Platte Valley	15	Notropis stramineus	11
			Pimephales promelas	11
			Lepomis cyanellus	10
			Cyprinella lutrensis	9
			Semotilus atromaculatus	8
			Hybognathus hankinsoni	7
			Cyprinus carpio	6
			Fundulus sciadicus	6
			Notropis dorsalis	5
			Campostoma anomalum	4
			Catostomus commersoni	4
			Ictalurus punctatus	4
			Lepomis macrochirus	4
			Moxostoma macrolepidotum	4
4th - 6th	Glaciated Area	3	Cyprinus carpio	3
			Ictalurus punctatus	3
			Lepomis cyanellus	3
			Notropis stramineus	3
			Carpiodes carpio	2
			Carpiodes cyprinus	2
			Dorosoma cepedianum	2
			Lepisosteus platostomus	2
			Cyprinella lutrensis	2
			Pylodictis olivaris	2
1 th - 6th	Platte Valley	7	Cyprinus carpio	5
			Ictalurus punctatus	5
			Cyprinella lutrensis	5
			Carpiodes carpio	4
			Lepomis cyanellus	4
			Moxostoma macrolepidotum	4
			Notropis stramineus	4
			Aplodinotus grunniens	3
			Carpiodes cyprinus	3
			Hybognathus placitus	3
			Notropis blennius	3

Table 12. Summary of most frequently occurring fish and macroinvertebrate taxa identified during
aquatic-ecological surveys within Central Nebraska Basins, 1981-90Continued

Summary	group			Frequency of occurrence,	
Stream order or lake class	Subunit	Number of sites sampled	Scientific name of taxon	as number o sites where identified	
	М	ACROINVERT	EBRATE TAXA		
Lakes	Sandhills	4	Cryptochironomus	4	
			Chironomus	3	
			Tubificidae	3	
			Cladotanytarsus	2	
			Dicrotendipes	2	
			Erpobdella punctata	2	
			Helobdella stagnalis	2	
			Hyalella azteca	2	
			Nais	2	
			Simuliidae	2	
Lakes	Loess Hills	12	Chironomus	7	
			Procladius	7	
			Tubificidae	7	
			Enchytraeidae	3	
			Limnodrilus hoffmeisteri	3	
			Caenis	2	
			Cryptochironomus	2	
			Hexagenia limbata	2	
			Hyalella azteca	2	
			Limnodrilus claparedianus	2	
			Parakiefferiella	2	
			Pisidium compressum	2	
			Pseudochironomus	2	
Lakes	Glaciated Area	32	Tubificidae	23	
			Procladius	20	
			Chironomus	19	
			Limnodrilus hoffmeisteri	18	
			Ceratopogonidae	13	
			Chaoborus punctipennis	12	
			Hyalella azteca	11	
			Ilyodrilus templetoni	11	
			Coelotanypus	8	
			Nais	8	
			Physa	8	

Summary	group			Frequency of
Stream order or		Number of sites Scientific name		occurrence, as number of sites where
lake class	Subunit	sampled	of taxon	identified
	MACR	OINVERTEBRA	TE TAXAContinued	
Lakes	Platte Valley	4	Chironomus	4
			Tubificidae	3
			Cladotanytarsus	2
			Cryptochironomus	2
			Hyalella azteca	2
			Limnodrilus hoffmeisteri	2
			Microtendipes	2
			Nematoda	2
			Parakiefferiella	2
			Procladius	2
			Pseudochironomus	2
1st - 3rd	Sandhills	28	Baetis	14
			Hyalella azteca	13
			Tricorythodes	12
			Corixidae	11
			Heptagenia	11
			Physa	10
			Caenis	9
			Elmidae	9
			Hydropsyche simulans	9
			Isonychia	9
			Simuliidae	9
			Thienemannimyia	9
1st - 3rd	Loess Hills	26	Baetis	18
			Heptagenia	17
			Hyalella azteca	17
			Caenis	15
			Hydropsyche simulans	15
			Hetaerina	14
			Polypedilum convictum	13
			Simuliidae	13
			Cheumatopsyche	12
			Cricotopus bicinctus	12
			Thienemannimyia	12

Summary	group			Frequency of occurrence,
Stream order or lake class	Subunit	Number of sites sampled	Scientific name of taxon	as number of sites where identified
	MACRO	DINVERTEBRA	TE TAXAContinued	
1st - 3rd	Glaciated Area	41	Physa	17
			Baetis	16
			Cheumatopsyche	15
			Simuliidae	15
			Corixidae	14
			Heptagenia	14
			Thienemannimyia	14
			Caenis	13
			Cricotopus bicinctus	13
			Hyalella azteca	13
			Polypedilum convictum	13
lst - 3rd	Platte Valley	14	Baetis	7
			Physa	7
			Corixidae	6
			Caenis	5
			Cheumatopsyche	5
			Chironomus	5
			Heptagenia	5
			Tubificidae	5
			Cricotopus bicinctus	4
			Dugesia tigrina	4
			Hyalella azteca	4
			Isonychia	4
			Thienemannimyia	4
			Tricorythodes	4
th - 6th	Loess Hills	2	Baetis	2
			Caenis	2
			Corixidae	2
			Heptagenia	2
			Hetaerina	2
			Polypedilum convictum	2
			Rheotanytarsus	2
			Simuliidae	2

Summary	group			Frequency of occurrence,
Stream	·····	Number		as number of
order or		of sites	Scientific name	sites where
lake class	Subunit	sampled	of taxon	identified
	MACR	OINVERTEBRA	TE TAXAContinued	
4th - 6th	Glaciated Area	5	Polypedilum convictum	5
			Thienemannimyia	5
			Caenis	4
			Cheumatopsyche	4
			Chironomus	4
			Hydropsyche simulans	4
			Simuliidae	4
			Stenonema integrum	4
			Tubificidae	4
			Argia	3
			Baetis	3
				а З
			Brachycercus Corixidae	3 3
				კ ე
			Dero digitata	3
			Glyptotendipes	3
			Hemerodromia	3
			Heptagenia	3
			Hyalella azteca	3
			Isonychia	3
			Larsia	3
			Nais	3
			Nais bretscheri	3
			Potamyia flava	3
			Rheotanytarsus	3
			Stenelmis	3
			—	•
			Tanytarsus	3
			Tricorythodes	3
4th - 6th	Platte Valley	7	Baeti	6
			Tanytarsus	6
			Argia	5
			Caenis	5
			Cheumatopsyche	5
			Heptagenia	5
			Hydropsyche simulans	5
			Rheotanytarsus	5
			Simuliidae	5
			Stenonema integrum	5
			This and the second second	_
			Thienemannimyia Tricorythodoo	5 5
			Tricorythodes	Ð

Table 13. Statistical summary of relative abundance of selected fish and macroinvertebrate taxaidentified during aquatic-ecological surveys within Central Nebraska Basins, 1981-90

[Common name of fish taxon is enclosed in parentheses; values are reported only for summary groups that had 10 or more determinations; --, value not determined for fewer than 30 determinations]

Summary group Number of sites					ndance, in perc indicated percer		ple,
Stream order or lake class	Sub- unit	where identified (number of de- terminations)	10th	25th	50th (median)	75th	90th
			FISH T	AXA			
		<u>Ameiuri</u>	<i>ıs melas</i> (t	olack bullhea	<u>d)</u>		
1st - 3rd	Sandhills	12		0.5	2	5	
1st - 3rd	Loess Hills	11		.6	.8	4	·
1st - 3rd	Glaciated A	rea 18		.7	2	6	
		<u>Carpiodes</u>	<u>s carpio (r</u>	iver carpsuck	er)		
1st - 3rd	Loess Hills	15		4	6	10	
1st - 3rd	Glaciated A	rea 11		2	4	5	
		<u>Catostomus</u>	commers	oni (white su	<u>cker)</u>		
1st - 3rd	Sandhills	19		6	13	23	
		<u>Cyprine</u>	<u>lla lutrens</u>	sis (red shine)	<u>r)</u>		
1st - 3rd	Sandhills	17		2	6	15	
1st - 3rd	Loess Hills	23		14	34	50	
1st - 3rd	Glaciated Ar	rea 25		3	12	44	
		Cyr	orinus car	pio (carp)			
1st - 3rd	Sandhills	12		1	2	6	
1st - 3rd	Loess Hills	20		.9	1	6	
		<u>Fundulus so</u>	<u>ciadicus (p</u>	lains topmin	now)		
1st - 3rd	Sandhills	18		1	4	11	
		<u>Hybognathus</u>	hankinso	<i>ni</i> (brassy mi	nnow)		
1st - 3rd	Sandhills	15		2	4	9	
1st - 3rd	Loess Hills	11		2	5	19	
1st - 3rd	Glaciated Ar			.3	2	10	

Summar	y group	Number of sites			ndance, in perc ndicated percer		ole,
Stream order or lake class	Sub- unit	where identified (number of de- terminations)	10th	25th	50th (median)	75th	90th
		FIS	Н ТАХА(Continued			
		<u>Ictalurus p</u>	<u>ounctatus</u>	(channel catf	<u>ish)</u>		
1st - 3rd	Loess Hills	14		2	5	9	
		<u>Lepomis</u>	<u>cyanellus</u>	(green sunfis	<u>h)</u>		
1st - 3rd	Sandhills	24		1	4	6	
1st - 3rd	Loess Hills	20		1	3	9	
1st - 3rd	Glaciated A			.8	3	9	
1st - 3rd	Platte Valley	y 10		1	3	7	
		<u>Lepomis ma</u>	<u>acrochirus</u>	(bluegill sun	<u>fish)</u>		
1st - 3rd	Loess Hills	11		.2	.6	1	
		Micropterus	<u>salmoides</u>	(largemouth	<u>bass)</u>		
1st - 3rd	Sandhills	12		.8	3	7	
1st - 3rd	Loess Hills	13		.5	1	2	
		<u>Moxostoma macr</u>	<u>olepidotur</u>	n (shorthead	<u>redhorse)</u>		
1st - 3rd	Loess Hills	11		1	2	5	
		<u>Notropis c</u>	<i>lorsalis</i> (b	igmouth shin	ler)		
1st - 3rd	Sandhills	13		2	6	16	
1st - 3rd	Glaciated A			5	10	17	
		<u>Notropis</u>	<u>stramineu</u>	s (sand shine	er)		
1st - 3rd	Sandhills	21		10	28	40	
1st - 3rd	Loess Hills	20		5	19	32	
1st - 3rd	Glaciated Ar		2	15	26	44	76
1st - 3rd	Platte Valley	7 11		4	14	46	
		<u>Notu</u>	<u>rus flavus</u>	(stonecat)			
1st - 3rd	Sandhills	12		.7	2	4	

Table 13. Statistical summary of relative abundance of selected fish and macroinvertebrate taxa identified during aquatic-ecological surveys within Central Nebraska Basins, 1981-90--Continued

Summar	y group	Number of sites			ndance, in perc ndicated percer		ple,
Stream order or lake class	Sub- unit	where identified (number of de- terminations)	10th	25th	50th (median)	75th	90th
		FIS	SH TAXA0	Continued			
		Pimenhales	nromelas	(fathead min	(wom		
		<u>z intepriateo</u>	prometao				
1st - 3rd	Sandhills	19		2	6	15	
1st - 3rd	Loess Hills	18		2	11	2 8	
1st - 3rd	Glaciated Ar		2	11	21	42	87
1st - 3rd	Platte Valley	11		3 .	10	75	
		<u>Rhinichthy</u>	<u>s cataracto</u>	<i>ae</i> (longnose (lace)		
1st - 3rd	Sandhills	15		3	5	24	
		<u>Semotilus</u>	atromacul	atus (creek cl	hub)		
1st - 3rd	Sandhills	17		2	4	7	
1st - 3rd	Glaciated Ar	ea 22		3	8	17	
		MACRO		BRATE TAXA	N		
			Argia	<u>a</u>			
1 . 0 .				_	•		
1st - 3rd	Glaciated Are	ea 11		.7	2	4	
			<u>Baeti</u>	<u>s</u>			
1 / 0]	G 11 '11	• /		•			
1st - 3rd	Sandhills	14		9	15	20	
1st - 3rd 1st - 3rd	Loess Hills Glaciated Are	18 ea 16		4 1	7 3	14	
ist - oru	Glaciated Are	ea 10		1	3	7	
			<u>Caeni</u>	is			
1st - 3rd	Loess Hills	15		2	4	10	
1st - 3rd	Glaciated Are	ea 13		1	2	3	
		9	Ceratopogo	<u>onidae</u>			
Lakes	Glaciated Are	ea 13		3	5	9	

Table 13. Statistical summary of relative abundance of selected fish and macroinvertebrate taxa identified during aquatic-ecological surveys within Central Nebraska Basins, 1981-90--Continued

Summar	y group	Number of sites			ndance, in perc ndicated percer		ole,
Stream order or lake class	Sub- unit	where identified (number of de- terminations)		25th	50th (median)	75th	90th
		MACROINV	ERTEBRAT	E TAXACor	ntinued		
		Ch	aoborus pu	<u>nctipennis</u>			
Lakes	Glaciated A	area 12		5	9	29	
			Cheumato	<u>psyche</u>			
1st - 3rd 1st - 3rd	Loess Hills Glaciated A		 	2 2	3 5	9 9	
			<u>Chirono</u>	mus			
Lakes 1st - 3rd	Glaciated A Glaciated A		 	4 .5	7 1	32 8	
			<u>Corixic</u>	lae			
1st - 3rd 1st - 3rd 1st - 3rd	Sandhills Loess Hills Glaciated A	11 10 srea 14	 	.8 .9 .8	2 2 3	8 5 5	
		<u>C</u>	ricotopus b	<u>icinctus</u>			
1st - 3rd 1st - 3rd	Loess Hills Glaciated A	12 rea 13		.8 .9	2 4	12 12	
		9	Cryptochirc	nomus			
1st - 3rd	Glaciated A	rea 11		.5	.9	1	
		E	<u>rpobdella p</u>	ounctata			
1st - 3rd	Glaciated A	rea 12		1	2	4	
			Heptage	enia			
1st - 3rd 1st - 3rd 1st - 3rd	Sandhills Loess Hills Glaciated A	11 17 rea 14	 	2 2 .8	3 3 3	11 7 8	

Table 13. Statistical summary of relative abundance of selected fish and macroinvertebrate taxa identified during aquatic-ecological surveys within Central Nebraska Basins, 1981-90--Continued

Summary group Number of sites					ndance, in perc indicated percer		ple,
Stream order or lake class	Sub- unit	where identified (number of de- terminations)	10th	25th	50th (median)	75th	9 0th
		MACROINVE	RTEBRAT	E TAXACor	ntinued		
			<u>Hetaer</u>	ina			
1st - 3rd	Loess Hills	14		0.8	6	14	
			<u>Hyalella a</u>	azteca			
Lakes	Glaciated Ar	rea 11		3	. 7	11	
1st - 3rd	Sandhills	13		3	8	15	
1st - 3rd	Loess Hills	17		1	2	12	
1st - 3rd	Glaciated Ar	rea 13		.8	2	12	
		Hy	vdropsyche	<u>e betteni</u>			
1st - 3rd	Glaciated Ar	rea 11		2	5	12	
		Hyd	dropsyche	<u>simulans</u>			
1st - 3rd	Loess Hills	15		4	10	14	
1st - 3rd	Glaciated Ar			.7	5	32	
		Ily	odrilus ter	<u>npletoni</u>			
Lakes	Glaciated Ar	rea 11		2	3	6	
		Limr	nodrilus ho	offmeisteri			
Lakes	Glaciated Ar	ea 18		3	7	16	
			<u>Physa</u>	<u>1</u>			
1st - 3rd	Sandhills	10		1	0	4	
1st - 3rd 1st - 3rd	Loess Hills	10 10		1 .6	3	4 4	
1st - 3rd 1st - 3rd	Glaciated Ar			.o 3	4 6	4 22	
		Poly	<u>pedilum c</u>	<u>onvictum</u>			
1st - 3rd	Loess Hills	13		1	3	7	
1st - 3rd	Glaciated Ar			2	4	11	

Table 13. Statistical summary of relative abundance of selected fish and macroinvertebrate taxaidentified during aquatic-ecological surveys within Central Nebraska Basins, 1981-90--Continued

Summar	y group	Number of sites		Relative abundance, in percent of sample, at indicated percentile						
Stream order or lake class	Sub- unit	where identified (number of de- terminations)	10th	2 5th	50th (median)	75th	90th			
		MACROINV	ERTEBRAT	E TAXACon	tinued					
			Proclac	lius						
Lakes	Glaciated Ar	ea 20		5	10	14				
			Rheotany	<u>tarsus</u>						
1st - 3rd	Loess Hills	10		.6	3	9				
			Simulii	dae						
1st - 3rd 1st - 3rd	Loess Hills Glaciated Ar	13 ea 15		2 1	10 6	19 8				
150 - 510	Giaciateu Ai			rpunctatum	U	0				
		Ster	lacron inter	rpunctatum						
1st - 3rd	Loess Hills	10		2	6	12				
			Thienemar	nimyia						
1st - 3rd	Loess Hills	12		.7	2	4				
1st - 3rd	Glaciated Ar			2	3	10				
			<u>Tricoryt</u>	nodes						
1st - 3rd	Sandhills	12		2	4	7				
1st - 3rd	Loess Hills	10		1	3	5	••			
			<u>Tubifici</u>	dae						
Lakes 1st - 3rd	Glaciated Ar Glaciated Ar			11 .7	21 2	38 7				

Table 13. Statistical summary of relative abundance of selected fish and macroinvertebrate taxa identified during aquatic-ecological surveys within Central Nebraska Basins, 1981-90--Continued

Table 14. Statistical summary of taxonomic richness and dominance of sampled communities fromaquatic-ecological surveys within Central Nebraska Basins, 1981-90

[Values are reported only for summary groups that had 10 or more sites where a specific community was sampled; --, value not computed for summary groups that had fewer than 30 determinations]

Summ	ary group	Number of		Value	at indicated pe	er cen tile	
Stream order or lake class	Sub- unit	sites sampled (number of determinations)	10th	25th	50th (median)	75th	9 0th
	<u>Fish</u>	community richne	ess, as nu	mber of spec	<u>ies in sample</u>		
1st - 3rd	Sandhills	31	3	5	9	11	13
1st - 3rd	Loess Hills	27		6	10	13	
1st - 3rd	Glaciated Area	. 38	1	3	5	7	11
1st - 3rd	Platte Valley	15		4	7	10	
	Fish comm	unity dominance.	single mo	st-dominant	<u>t species, in per</u>	<u>cent</u>	
1st - 3rd	Sandhills	29		37	43	55	
1st - 3rd	Loess Hills	25		34	44	58	
1st - 3rd	Glaciated Area	a 36	34	42	52	79	9 0
1st - 3rd	Platte Valley	14		43	50	7 8	
	Macroinve	rtebrate communi	ty richnes	ss, as numbe	er of taxa in sar	nple	
Lakes	Loess Hills	12		0	3	8	
Lakes	Glaciated Area	a 32	0	5	7	11	16
1st - 3rd	Sandhills	28		16	24	29	
1st - 3rd	Loess Hills	2 6		14	21	27	
1st - 3rd	Glaciated Area	41	9	14	21	26	32
1st - 3rd	Platte Valley	14		17	21	27	
Ŋ	lacroinvertebrat	e community dom	inance, si	ngle most-de	ominant taxon,	in percent	2
Lakes	Loess Hills	10		25	49	77	
Lakes	Glaciated Area	a 28		30	36	51	
1st - 3rd	Sandhills	2 6		23	30	39	
1st - 3rd	Loess Hills	25		18	26	32	
1st - 3rd	Glaciated Area	. 4 0	13	25	29	41	48
1st - 3rd	Platte Valley	13		16	20	33	

[Number in parentheses is parameter code used in U.S. Environmental Protection Agency's Storage and Retrieval System and U.S. Geological Survey's National Water Information System; values are reported only for summary groups that had 10 or more analyses. μS/cm, microsiemens per centimeter; °C, degrees Celsius; mg/L, milligrams per liter; μg/L, micrograms per liter; pCi/L picocuries per liter; -, value not determined for fewer than 30 analyses; <, less than]

Summary	group		<u></u>	Value	at indicated pe	ercentile	
Well- depth category	Sub- unit	Number of analyses	1 0th	25th	50th (median)	75th	90th
	Speci	fic conduct:	ance, onsit	<u>e, total, in µ</u>	<u>S/cm at 25 °C</u>	(00095)	
Deep Deep Deep Deep	Sandhills Loess Hills Glaciated Area Platte Valley	59 49 4 10 39	110 240 350	130 450 600 520	150 490 1,400 750	220 610 2,000 900	360 760 1,100
Shallow Shallow Shallow Shallow	Sandhills Loess Hills Glaciated Area Platte Valley	24 86 25 60	 330 440	140 460 480 570	170 560 670 920	200 670 790 1,200	900 1,400
		<u>pH, c</u>	onsite, in s	<u>tandard uni</u>	<u>ts (00400)</u>		
Deep Deep Deep Deep	Sandhills Loess Hills Glaciated Area Platte Valley	60	7.1 6.9 6.8 6.9	7.2 7.2 7.1 7.1	7.4 7.3 7.2 7.2	7.7 7.5 7.4 7.5	7.9 7.7 7.5 7.6
Shallow Shallow Shallow Shallow	Sandhills Loess Hills Glaciated Area Platte Valley	97 187 139 90	6.8 6.9 6.8 6.8	7.1 7.1 7.1 7.0	7.3 7.2 7.2 7.2	7.5 7.4 7.4 7.4	7.8 7.6 7.6 7.6
		Ten	<u>nperature,</u>	<u>water, in °C</u>	<u>(00010)</u>	·	
Deep Deep Deep Deep	Sandhills Loess Hills Glaciated Area Platte Valley	86 146 74 59	12.0 12.0 12.0 12.0	12.5 13.0 13.0 12.5	13.0 14.0 13.5 13.0	14.0 15.0 14.5 14.0	15.0 15.5 15.5 14.5
Shallow Shallow Shallow Shallow	Sandhills Loess Hills Glaciated Area Platte Valley	98 187 139 90	11.0 12.0 12.0 11.0	12.0 13.0 12.5 12.0	12.5 13.5 13.5 13.0	13.0 14.5 14.5 14.0	14.0 15.0 16.0 15.5

Summary	group	<u></u>		Value	at indicated pe	rcentile	
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	90th
		Dis	solved oxy	gen, in mg/I	<u>. (00300)</u>		
Shallow Shallow	Sandhills Platte Valley	45 31	0.3 1.4	0.4 3.0	0.6 5.8	2.9 7.0	6.5 9.5
		<u>Carbon d</u>	<u>ioxide, tot</u>	al as CO ₂ , ir	<u>mg/L (00405)</u>		
Deep	Platte Valley	10		12	15	26	
Shallow	Loess Hills	29		20	29	35	
		Hardnes	<u>ss, total as</u>	<u>CaCO3, in 1</u>	mg/L (00900)		
Deep Deep Deep	Sandhills Loess Hills Platte Valley	36 42 19	44 120 	50 200 190	60 230 270	100 270 300	150 330
Shallow Shallow Shallow Shallow	Sandhills Loess Hills Glaciated Area Platte Valley	11 66 15 39	 140 150	39 200 260 260	54 260 330 370	76 300 420 420	410 590
		Noncarbon	ate hardn	<u>ess, onsite, i</u>	n mg/L (00902	2	
Deep Deep Deep	Sandhills Loess Hills Platte Valley	20 31 12	 0 	0 0 56	0 0 92	11 18 110	 92
Shallow Shallow	Loess Hills Platte Valley	53 23	0 	0 61	4 94	58 140	140
	N	oncarbonat	e hardnes	s, laboratory	<u>, in mg/L (959(</u>	<u>)2)</u>	
Deep	Loess Hills	10		0	2	41	
Shallow Shallow	Loess Hills Glaciated Area		0	0 0	0 16	24 32	120
Shallow	Platte Valley	30	9	66	100	160	260

Summary	group			Value	at indicated per	centile	
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	9 0th
	ł	lkalinity, o	onsite, tota	<u>al as CaCO</u> 3	, in mg/L (0041)	<u>))</u>	
Deep	Sandhills	64	50	59	74	120	180
Deep	Loess Hills	142	160	200	24 0	280	320
Deep	Glaciated Area	6 6	230	280	320	360	3 80
Deep	Platte Valley	56	140	170	210	260	300
Shallow	Sandhills	55	42	50	67	92	150
Shallow	Loess Hills	146	150	190	23 0	280	300
Shallow	Glaciated Area	133	200	260	320	360	410
Shallow	Platte Valley	88	140	200	240	3 30	380
		<u>Calciun</u>	n, dissolve	d as Ca, in 1	mg/L (00915)		
Deep	Sandhills	80	13	15	18	29	47
Deep	Loess Hills	144	39	52	67	79	96
Deep	Glaciated Area	74	51	71	83	110	16 0
Deep	Platte Valley	61	49	62	79	98	120
Shallow	Sandhills	59	10	13	21	28	43
Shallow	Loess Hills	154	40	58	74	91	100
Shallow	Glaciated Area	139	5 3	66	86	100	130
Shallow	Platte Valley	90	51	73	99	120	150
		Magnesiu	m, dissolv	ed as Mg, i	n mg/L (00925)		
Deep	Sandhills	80	2.0	2.3	2.7	4.6	7.3
Deep	Loess Hills	144	6.0	9.3	11	12	16
Deep	Glaciated Area	74	12	16	21	29	50
Deep	Platte Valley	61	2.9	9.8	14	17	22
Shallow	Sandhills	59	1.5	2.0	2.9	4.2	7.3
Shallow	Loess Hills	154	7.0	9.4	12	13	17
Shallow	Glaciated Area	139	12	15	20	26	34
Shallow	Platte Valley	90	7.8	12	19	25	32
		Sodium	. dissolved	<u>l as Na, in r</u>	ng/L (00930)		
Deep	Sandhills	80	4.3	5.1	5.7	6.9	8.2
Deep	Loess Hills	144	5.8	6.6	8.3	11	16
Deep	Glaciated Area	74	11	17	22	38	150
Deep	Platte Valley	61	7.6	14	23	37	70

Table 15. Statistical summary of data on water-quality constituents and properties in ground-watersamples collected from selected sites within Central Nebraska Basins, 1978-90--Continued

160 WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

Summary	group			Value	at indicated per	rcentile	
Well- depth category	Sub- unit	Number of analyses		25th	50th (median)	75th	90th
	Sc	dium, diss	olved as N	<u>a. in mg/L ((</u>	<u>)0930)</u> Continu	ued	
Shallow	Sandhills	59	3.7	4.4	5.2	6.9	12
Shallow	Loess Hills	154	6.2	7.3	9.0	11	22
Shallow Shallow	Glaciated Area Platte Valley	139 90	13 11	20 18	26 31	41 64	59 110
		Potassii	ım, dissoly	red as K, in 1	mg/L (00935)		
Deep	Sandhills	80	4	4	5	6	10
Deep	Loess Hills	144	5	- 6	5 7	9	10
Deep	Glaciated Area		3	4	7	10	16
Deep	Platte Valley	61	5	6	9	12	14
Shallow	Sandhills	59	3	4	5	6	8
Shallow	Loess Hills	154	5	6	8	9	12
Shallow	Glaciated Area	139	3	4	6	8	10
Shallow	Platte Valley	90	6	8	12	14	21
		Bicart	onate, as l	HCO ₃ , in m _f	<u>g/L (00440)</u>		
Deep	Platte Valley	15		200	220	290	
Shallow	Loess Hills	32	160	260	3 20	360	39 0
Shallow	Platte Valley	19		190	260	340	
		Cart	onate, as (<u>CO3, in mg/l</u>	L (00445)		
Deep	Platte Valley	11		0	0	0	
Shallow	Loess Hills	29		0	0	0	
		<u>Sulfate.</u>	dissolved	<u>as SO4, in n</u>	ng/L (00945)		
Deep	Sandhills	80	<1.6	<2.2	<3.9	<5.0	6.9
Deep	Loess Hills	144	<5.0	<5.0	8.5	17	35
Deep	Glaciated Area		7.5	17	50	96	500
Deep	Platte Valley	61	10	22	69	160	460
Shallow	Sandhills	93	<4.0	<5.0	<5.0	8.0	13
Shallow	Loess Hills	154	<5.0	<5.0	11	24	66
Shallow	Glaciated Area		9.0	17	43	80	120
Shallow	Platte Valley	90	17	42	130	220	340

Summary	group			Value	at indicated per	centile	
Well- depth category	Sub- unit	Number of analyses	10t h	25th	50th (median)	75th	90th
		Chlorid	le, dissolve	d as Cl, in 1	mg/L (00940)		
Deep	Sandhills	80	<0.5	<0.7	<1.0	<10	<10
Deep	Loess Hills	144	<2.2	<7.4	<10	<10	<10
Deep	Glaciated Area	1 74	<10	<10	<10	20	85
Deep	Platte Valley	61	<6.1	<10	<10	19	29
Shallow	Sandhills	59	<1.2	<10	<10	<10	12
\mathbf{S} hallow	Loess Hills	154	<2.2	<4.6	<10	<10	16
Shallow	Glaciated Area		<7.7	<10	<10	10	38
Shallow	Platte Valley	90	<10	<10	19	34	46
		Fluoric	le, dissolve	ed as F. in n	ng/L (00950)		
Deep	Sandhills	55	.2	.2	.3	.3	.4
Deep	Loess Hills	45	.2	.2	.2	.3	.3
Deep	Platte Valley	19		.2	.3	.5	
Shallow	Sandhills	15		.1	.2	.3	
$\mathbf{Shallow}$	Loess Hills	75	.2	.2	.3	.4	.4
Shallow	Glaciated Area			.2	.4	.5	
Shallow	Platte Valley	37	.1	.1	.2	.4	.5
		Silica, o	dissolved a	<u>is SiO₂, in n</u>	ng/L (00955)		
Deep	Sandhills	55	45	47	52	57	60
Deep	Loess Hills	45	45	49	53	57	62
Deep	Platte Valley	19		29	47	55	
Shallow	Sandhills	15		45	55	57	
\mathbf{S} hallow	Loess Hills	75	35	43	51	56	60
Shallow	Glaciated Area			24	28	33	
Shallow	Platte Valley	20		22	28	36	
	D	issolved so	lids, resid	<u>ue at 180ºC</u>	<u>, in mg/L (7030(</u>	<u>))</u>	
Deep	Sandhills	26		118	128	161	
Deep	Loess Hills	10		202	281	328	
Shallow	Loess Hills	14		197	292	372	

Table 15. Statistical summary of data on water-quality constituents and properties in ground-watersamples collected from selected sites within Central Nebraska Basins, 1978-90--Continued

Summary	group			Value a	at indicated per	rcentile	
Well- depth category	Sub- unit	Number of analyses		25th	50th (median)	75th	90th
	Dissolve	ed solids, ca	alculated, s	um of const	ituents, in mg/	<u>L (70301)</u>	
Deep Deep Deep	Sandhills Loess Hills Platte Valley	20 36 19	 261 	130 300 288	146 338 420	195 392 556	 517
Shallow Shallow Shallow	Loess Hills Glaciated Area Platte Valley	63 15 18	209 	284 358 316	367 462 533	431 563 808	578
		Nitrate	e, as N, in n	ng/L (00618	and 00620)		
Deep Deep	Loess Hills Platte Valley	25 62	 < .02	1.0 .50	2.1 2.2	4.6 6.4	 18
Shallow Shallow	Loess Hills Platte Valley	67 89	.21 1.4	.80 4.0	2.4 12	5.8 19	13 31
	Ni	<u>trite plus r</u>	<u>nitrate, as l</u>	<u>N, in mg/L (</u>	00630 and 006	<u>31)</u>	
Deep Deep Deep Deep	Sandhills Loess Hills Glaciated Area Platte Valley	126 204 105 96	.10 .76 < .02 < .10	.52 1.1 < .10 1.0	.96 1.8 .80 3.6	1.6 3.1 3.2 9.9	4.4 4.8 9.7 16
Shallow Shallow Shallow Shallow	Sandhills Loess Hills Glaciated Area Platte Valley	135 276 107 137	< .10 .28 < .10 < .10	.40 .92 < .30 2.2	1.1 1.8 2.7 6.5	2.1 3.8 11 18	7.1 7.7 25 32
	Ni	trogen, am	monia, as l	<u>N, in mg/L (</u>	00608 and 006	<u>10)</u>	
Deep	Platte Valley	21		< .01	< .01	.02	
Shallow	Platte Valley	30	< .01	< .07	< .09	.10	.13
	N	litrogen, ar	nmonia, to	tal as NH ₄ ,	in mg/L (71845	<u>D</u>	
Shallow	Platte Valley	17		.04	.07	.08	

Summary	group			Value a	at indicated per	centile	
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	90th
		<u>Nitrogen</u>	<u>, total orga</u>	nic as N, in	mg/L (00605)		
Deep	Platte Valley	10		0.28	0.42	0.67	
Shallow	Platte Valley	26		.56	. 9 0	1.5	
	Nitro	gen, total a	ummonia p	lus organic :	as N, in mg/L ((00625)	
Deep	Platte Valley	10		.38	.56	.77	
Shallow	Platte Valley	26		.59	.90	1.4	
	Nitroge	en, dissolve	d ammonia	plus organi	ic as N, in mg/L	<u>. (00623)</u>	
Deep	Platte Valley	22		< .20	.40	.80	
Shallow	Platte Valley	11		.40	.60	.80	
		Nitro	ogen, total	as N, in mg/	L (00600)		
Shallow	Platte Valley	26		3.4	4.6	12	
		Nitrog	en, total a	s NO ₃ , in m	g/L (71887)		
Shallow	Platte Valley	26		16	20	46	
		Phospho	rus, dissolv	ved as P. in	mg/L (00666)		
Deep Deep Deep Deep	Sandhills Loess Hills Glaciated Area Platte Valley	36 135 68 56	< 0.04 < .04 < .04 < .04	< .04 < .04 < .04 < .04	< .04 < .04 < .04 < .04	.17 < .04 .07 .10	0.29 .10 .15 .19
Shallow Shallow Shallow Shallow	Sandhills Loess Hills Glaciated Area Platte Valley	82 146 139 88	< .04 < .04 < .04 < .04	< .04 < .04 < .04 < .04	.09 < .04 < .04 < .04	.19 .11 .13 .06	.31 .24 .27 .14

Table 15. Statistical summary of data on water-quality constituents and properties in ground-watersamples collected from selected sites within Central Nebraska Basins, 1978-90--Continued

Summary	group			Value	at indicated per	centile	
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	90th
		Alumin	um, dissolv	ved as Al. in	μ <u>g/L (01106)</u>		
Deep	Sandhills	34	<10	<10	<10	16	18
Deep	Loess Hills	133	<10	<10	<10	<10	12
Deep	Glaciated Area	65	<10	<10	<10	<14	<43
Deep	Platte Valley	38	<10	<10	<10	<10	22
Shallow	Sandhills	79	<10	<10	<10	18	27
Shallow	Loess Hills	145	<10	<10	<10	<10	<22
Shallow	Glaciated Area	133	<10	<10	<10	12	24
Shallow	Platte Valley	88	<10	<10	<10	<11	<22
		<u>Arseni</u>	<u>c. dissolve</u>	<u>d as As, in p</u>	ı <u>g/L (01000)</u>		
Deep	Sandhills	58	2.4	3.0	6.5	8.4	10
Deep	Loess Hills	155	1.1	2.0	3.2	4.5	6.8
Deep	Glaciated Area	69	< .5	< .5	1.0	2.1	5.3
Deep	Platte Valley	54	< .9	1.1	2.0	4.1	6.0
Shallow	Sandhills	83	.8	1.7	3.0	5.0	8.2
Shallow	Loess Hills	146	1.2	2.1	3.0	4.5	6.6
Shallow	Glaciated Area		< .5	.5	1.1	2.1	4.2
Shallow	Platte Valley	88	.5	.8	1.7	3.0	6.1
		<u>Bariun</u>	n. dissolved	<u>l as Ba, in p</u>	u <u>g/L (01005)</u>		
Deep	Sandhills	38	34	46	67	130	170
Deep	Loess Hills	133	85	110	150	180	22 0
Deep	Glaciated Area	66	< 7	21	<54	<92	190
Deep	Platte Valley	54	48	<62	130	200	300
Shallow	Sandhills	80	37	44	62	110	170
Shallow	Loess Hills	146	<98	130	170	21 0	280
Shallow	Glaciated Area		38	68	110	190	24 0
Shallow	Platte Valley	88	35	68	110	200	380
		<u>Berylliu</u>	<u>m, dissolve</u>	ed as Be, in	μ g/L (01010)		
Deep	Sandhills	34	<1	<1	<1	<1	<1
Deep	Loess Hills	131	<1	<1	<1	<1	<1
Deep	Glaciated Area	65	<1	<1	<1	<1	1
Deep	Platte Valley	52	<1	<1	<1	<1	<1

Table 15. Statistical summary of data on water-quality constituents and properties in ground-water samples collected from selected sites within Central Nebraska Basins, 1978-90--Continued

Summary	group			Value	at indicated per	rcentile	
Well- depth category	Sub- unit	Number of analyses	10 th	25th	50th (median)	75th	90th
	Be	ryllium, dis	solved as	Be, in µg/L	<u>(01010)</u> Contin	ued	
Shallow	Sandhills	80	<1	<1	<1	<1	<1
Shallow	Loess Hills	139	<1	<1	<1	<1	<1
Shallow	Glaciated Area	133	<1	<1	<1	<1	1
Shallow	Platte Valley	84	<1	<1	<1	<1	1
		Boron	n, dissolve	ed as B, in μ	g/L (01020)		
Deep	Sandhills	68	<17	<20	27	100	130
Deep	Loess Hills	162	31	42	50	60	78
Deep	Glaciated Area	71	47	5 9	80	170	510
Deep	Platte Valley	46	31	40	56	70	120
Shallow	Sandhills	55	<14	<16	22	33	75
Shallow	Loess Hills	152	29	40	50	60	75
Shallow	Glaciated Area	139	43	58	74	91	130
Shallow	Platte Valley	89	30	43	62	110	180
		<u>Cadmiu</u>	m, dissolv	<u>ed as Cd, ir</u>	1 μg/ <u>L (01025)</u>		
Deep	Platte Valley	21		<1	<1	<1	
Shallow	Loess Hills	11		<2	<2	4	
		Ceriun	n, dissolve	ed as Ce, in	μ <u>g/L (01110)</u>		
Deep	Loess Hills	74	<30	<30	<30	<30	<30
Deep	Glaciated Area		<30	<30	<30	<30	<30
Deep	Platte Valley	29		<30	<30	<30	••
Shallow	Sandhills	19		<30	<30	<30	
Shallow	Loess Hills	97	<30	<30	<30	<30	<30
Shallow	Glaciated Area		<30	<30	<30	<30	<30
Shallow	Platte Valley	73	<30	<30	<30	<30	<30
		<u>Chromiv</u>	ım, dissoly	ved as Cr. ir	<u>1 μg/L (01030)</u>		
Deep	Sandhills	35	<4	<4	<4	<4	<10
Deep	Loess Hills	146	<4	<4	<4	4	6
Deep	Glaciated Area		<4	<4	<4	<4	<4
Deep	Platte Valley	51	<4	<4	<4	<8	<10

166 WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

Summary	y group			Value	at indicated per	rcentile	·
Well- depth category	Sub- unit	Number of analyses		25th	50th (median)	75th	90th
	Ch	romium, di	ssolved a	s Cr. in μg/L	<u>(01030)</u> Contir	nued	
Shallow	Sandhills	79	<4	<4	<4	<4	<4
Shallow	Loess Hills	137	<4	<4	<4	4	6
Shallow	Glaciated Area		<4	<4	<4	<4	<4
Shallow	Platte Valley	80	<4	<4	<4	<4	<4
		<u>Cobalt</u>	t, dissolve	ed as Co, in 1	u <u>g/L (01035)</u>		
Deep	Sandhills	34	<2	<2	<2	4	6
Deep	Loess Hills	133	<2	<2	<2	3	7
Deep	Glaciated Area	u 6 5	<2	<2	<2	<2	<3
Deep	Platte Valley	39	<2	<2	<2	2	4
Shallow	Sandhills	80	<2	<2	<2	4	7
Shallow	Loess Hills	145	<2	<2	<2	3	8
Shallow	Glaciated Area	133	<2	<2	<2	<2	3
Shallow	Platte Valley	88	<2	<2	<2	2	5
		Copper	r. dissolve	ed as Cu, in	u <u>g/L (01040)</u>		
Deep	Sandhills	58	<2	<2	<2	2	3
Deep	Loess Hills	155	<2	<2	<2	<2	2
Deep	Glaciated Area		<2	<2	<2	<2	<2
Deep	Platte Valley	54	<2	<2	<2	2	4
Shallow	Sandhills	83	<2	<2	<2	<2	2
Shallow	Loess Hills	146	<2	<2	<2	<2	4
Shallow	Glaciated Area	133	<2	<2	<2	<2	4
Shallow	Platte Valley	88	<2	<2	<2	2	8
		Iron,	dissolved	as Fe, in µg	<u>/L (01046)</u>		
Deep	Sandhills	6 8	<10	<10	<10	20	54
Deep	Loess Hills	162	<10	<10	<10	18	29
Deep	Glaciated Area		<10	<10	<10	<10	14
Deep	Platte Valley	45	<10	<10	<10	<10	27
Shallow	Sandhills	55	<10	<10	<10	<10	34
Shallow	Loess Hills	152	<10	<10	<10	17	37
Shallow	Glaciated Area		<10	<10	<10	<10	330
Shallow	Platte Valley	89	<10	<10	<10	<10	27
							~ •

Summary	group			Value	at indicated per	rcentile	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	90th
		Lead	dissolved	<u>l as Pb, in μ</u>	<u>z/L (01049)</u>		
Deep	Sandhills	28		<2	<2	3	
Deep	Platte Valley	21		<1	<2	3	
Shallow	Loess Hills	11		<2	3	9	
		Lithiu	m, dissolv	ed as Li, in 1	u <u>g/L (01130)</u>		
Deep	Sandhills	34	7	8	10	16	22
Deep	Loess Hills	133	15	17	19	22	30
Deep	Glaciated Area		16	20	31	54	160
Deep	Platte Valley	39	14	16	21	27	32
Shallow	Sandhills	80	5	7	9	12	16
Shallow	Loess Hills	145	14	17	20	23	29
Shallow	Glaciated Area		13	20	27	39	56
Shallow	Platte Valley	88	10	17	25	32	44
		Mangane	ese, dissol	ved as Mn, ii	n μg/L (01056)		
Deep	Sandhills	68	<2	<2	<3	<10	31
Deep	Loess Hills	162	<2	<2	<2	2	<6
Deep	Glaciated Area		<2	<2	14	200	660
Deep	Platte Valley	45	<2	<2	<2	<10	200
Shallow	Sandhills	5 5	<2	<2	<2	<4	<14
Shallow	Loess Hills	152	<1	<2	<2	2	30
Shallow	Glaciated Area	139	<2	<2	4	17 0	850
Shallow	Platte Valley	89	<2	<2	3	100	660
		Mercur	<u>y. dissolve</u>	ed as Hg, in I	u <u>g/L (71890)</u>		
Deep	Sandhills	28		< .1	< .1	< .1	
Deep	Platte Valley	21		< .1	< .1	< .1	
Shallow	Loess Hills	11		< .1	< .1	< .1	

•

Table 15. Statistical summary of data on water-quality constituents and properties in ground-watersamples collected from selected sites within Central Nebraska Basins, 1978-90--Continued

Summary	group			Value	at indicated per	centile	
Well- depth category	Sub- unit	Number of analyses	 10th	25th	50th (median)	75th	90th
		Molybden	um. disso	lved as Mo.	<u>in μg/L (01060)</u>		
Deep	Sandhills	34	<4	<4	<4	4	8
\mathbf{D} eep	Loess Hills	133	<4	<4	<4	6	8
Deep	Glaciated Area		<4	<4	<4	<7	<10
Deep	Platte Valley	39	<4	<4	<4	5	10
Shallow	Sandhills	80	<4	<4	<4	4	7
Shallow	Loess Hills	145	<4	<4	<4	7	10
Shallow	Glaciated Area		<4	<4	<4	6	11
Shallow	Platte Valley	88	<4	<4	<4	7	14
		Nicke	l, dissolved	<u>l as Ni, in p</u>	<u>g/L (01065)</u>		
Deep	Sandhills	34	<4	<4	<4	4	6
Deep	Loess Hills	133	<4	<4	<4	4	5
Deep	Glaciated Area	65	<4	<4	<4	<4	6
Deep	Platte Valley	54	<2	<4	<4	<4	6
Shallow	Sandhills	80	<4	<4	<4	5	7
Shallow	Loess Hills	145	<4	<4	<4	<4	6
Shallow	Glaciated Area	133	<4	<4	<4	<4	5
Shallow	Platte Valley	88	<4	<4	<4	6	8
		<u>Scandiu</u>	m, dissolv	ed as Sc, in	μ g/L (01187)		
Deep	Sandhills	34	<1	<1	<1	<1	<1
Deep	Loess Hills	132	<1	<1	<1	<1	<1
Deep	Glaciated Area		<1	<1	<1	<1	<1
Deep	Platte Valley	38	<1	<1	<1	<1	<1
Shallow	Sandhills	79	<1	<1	<1	<1	<1
Shallow	Loess Hills	143	<1	<1	<1	<1	<1
Shallow	Glaciated Area		<1	<1	<1	<1	<1
Shallow	Platte Valley	88	<1	<1	<1	<1	<1
		Seleniu	m, dissolv	ed as Se, in	μ <u>g/L (01145)</u>		
Deep	Sandhills	58	< .2	< .4	< .9	<1.0	1.2
Deep	Loess Hills	155	< .2	.2	.4	.7	2.0
Deep	Glaciated Area	69	< .2	.2	.4	.5	1.1
Deep	Platte Valley	54	< .2	< .3	< .3	1.0	3.9

Summary	group			Value	at indicated p	ercentile	
Well- depth category	Sub- unit	Number of analyses		25th	50th (median)	75th	90th
	unit	analyses			(methan)		
	Se	lenium, d	issolved as	<u>s Se, in μg/L (</u>	(01145)Conti	nued	
Shallow	Sandhills	83	< 0.2	< 0.2	< 0.3	0.5	<0.8
Shallow	Loess Hills	146	< .2	.2	.4	< .7	1.1
Shallow	Glaciated Area	139	< .2	.3	.4	.5	1.0
Shallow	Platte Valley	88	< .2	< .3	< .4	< .6	<1.0
		Silic	on, dissolv	<u>ed as Si, in μ</u>	<u>g/L (01140)</u>		
Deep	Sandhills	34	15,000	18,000	22,000	25,000	26,000
Deep Deep	Loess Hills	132	18,000	20,000	22,000	25,000 24,000	26,000 26,000
Deep Deep	Glaciated Area		7,300	20,000 11,000	14,000	16,000	20,000
Deep	Platte Valley	38	8,400	11,000	15,000	22,000	25,000
Deep	I lable valley	00	0,100	11,000	10,000	22,000	20,000
Shallow	Sandhills	79	18,000	20,000	22,000	25,000	29,000
Shallow	Loess Hills	143	16,000	19,000	22,000	23,000	25,000
Shallow	Glaciated Area	133	8,600	11,000	13,000	16,000	20,000
Shallow	Platte Valley	88	8,500	11,000	12,000	15,000	17,000
		Silve	e <mark>r, dis</mark> solve	d as Ag, in μ	g/L (01075)		
Deep	Sandhills	38	<1	<2	<2	<2	2
Deep	Loess Hills	133	<2	<2	<2	<2	2
Deep	Glaciated Area		<2	<2	<2	<2	23
Deep	Platte Valley	54	<2	<2	<2	<2	<2
C1 11	0	00	.0	.0	0	0	
Shallow Shallow	Sandhills Loess Hills	80	<2 <2	<2	<2	<2	2
Shallow	Glaciated Area	146 133	<2 <2	<2 <2	<2 <2	<2 2	3 3
Shallow	Platte Valley	88	<2 <2	<2 <2	<2 <2	<2	3
	·				μ <u>g/L (01080)</u>		
D	0 11 11	0.4		R 0	100		~~-
Deep	Sandhills	34	66 850	78	130	240	360
Deep Deep	Loess Hills	133	250 270	330	390 550	450	540
Deep	Glaciated Area		270	350	550	960 600	1,300
Deep	Platte Valley	54	310	39 0	510	6 30	780
Shallow	Sandhills	80	53	70	110	170	29 0
Shallow	Loess Hills	145	230	310	370	430	520
Shallow	Glaciated Area		240	330	430	630	1,000
Shallow	Platte Valley	88	310	410	610	790	1,100

.

Table 15. Statistical summary of data on water-quality constituents and properties in ground-watersamples collected from selected sites within Central Nebraska Basins, 1978-90--Continued

170 WATER-QUALITY ASSESSMENT OF THE CENTRAL NEBRASKA BASINS: SUMMARY OF DATA FOR RECENT CONDITIONS THROUGH 1990

Summary	group			Value	at indicated per	rcentile	
Well- depth category	Sub- unit	Number of analyses		25th	50th (median)	75th	9 0th
		Titaniu	m, dissol	ved as Ti, in	μ g/L (01150)		
Deep	Sandhills	34	<2	<2	<2	<2	<2
Deep	Loess Hills	132	<2	<2	<2	<2	<2
Deep	Glaciated Area	65	<2	<2	<2	<2	<2
Deep	Platte Valley	38	<2	<2	<2	<2	<2
Shallow	Sandhills	79	<2	<2	<2	<2	<2
Shallow	Loess Hills	143	<2	<2	<2	<2	<2
Shallow	Glaciated Area	133	<2	<2	<2	<2	<2
Shallow	Platte Valley	88	<2	<2	<2	<2	<2
		Vanadi	um, dissol	ved as V, in	μ <u>g/L (01085)</u>		
Deep	Sandhills	34	<4	4	6	8	12
Deep	Loess Hills	133	<4	5	8	10	13
Deep	Glaciated Area	65	<4	<4	<4	5	18
Deep	Platte Valley	54	<4	<4	6	10	13
Shallow	Sandhills	80	<4	<4	6	10	15
Shallow	Loess Hills	145	<4	5	8	11	13
Shallow	Glaciated Area	133	<4	<4	<4	5	10
Shallow	Platte Valley	88	<4	<4	<4	5	9
		Yttriu	m, dissolv	ed as Y, in p	u <u>g/L (01201)</u>		
Deep	Sandhills	34	<1	<1	<1	<1	1
Deep	Loess Hills	132	<1	<1	<1	<1	1
Deep	Glaciated Area	65	<1	<1	<1	1	1
Deep	Platte Valley	38	<1	<1	<1	<1	1
Shallow	Sandhills	79	<1	<1	<1	<1	1
Shallow	Loess Hills	143	<1	<1	<1	1	1
Shallow	Glaciated Area		<1	<1	<1	1	1
Shallow	Platte Valley	88	<1	<1	<1	1	1
		Zinc.	dissolved	<u>as Zn, in µg</u>	<u>/L (01090)</u>		
Deep	Sandhills	58	<3	<10	<16	20	320
Deep	Loess Hills	155	<6	<9	12	20	110
Deep	Glaciated Area	66	<4	14	36	65	110
Deep	Platte Valley	54	<4	7	12	64	170

Summary group			Value at indicated percentile							
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	90th			
		Zinc, disso	ved as Zn	ι <u>, in μg/L (01</u>	<u>090)</u> Continue	d				
Shallow	Sandhills	83	<6	15	25	64	160			
Shallow	Loess Hills	146	<8	<12	24	88	200			
Shallow	Glaciated Area		<4	16	47	110	220			
Shallow	Platte Valley	88	<6	<11	20	73	140			
		Zirconii	ım, dissol	ved as Zr. in	μ <u>g/L (01160)</u>					
Deep	Sandhills	34	<2	<2	<2	<2	<2			
Deep	Loess Hills	132	<2	<2	<2	<2	<2			
Deep	Glaciated Area	65	<2	<2	<2	2	3			
Deep	Platte Valley	38	<2	<2	<2	<2	3			
Shallow	Sandhills	79	<2	<2	<2	<2	<2			
Shallow	Loess Hills	143	<2	<2	<2	<2	2			
Shallow	Glaciated Area		<2	<2	<2	<2	3			
Shallow	Platte Valley	88	<2	<2	<2	<2	2			
	A	pha, gross.	dissolved	l as U natur	<u>al, in μg/L (800</u>	<u>30)</u>				
Deep	Platte Valley	17		48	50	52				
	1	Beta, gross	<u>, dissolve</u>	<u>l as Cs-137,</u>	in pCi/L (03515)				
Deep	Platte Valley	17		13	15	16				
	Be	eta, gross, c	lissolved a	as Sr-90/Y-90), in pCi/L (800	<u>50)</u>				
Deep	Platte Valley	17		11	13	14				
		<u>Potassi</u>	<u>um-40, di</u>	ssolved, in p	<u>Ci/L (82068)</u>					
Shallow	Glaciated Area	14		3.0	4.8	7.1				
Shallow	Platte Valley	20		6.6	9.0	13				
	Rac	lium-226, d	lissolved.	radon metho	od, in pCi/L (09	5 <u>11</u>)				
Deep	Platte Valley	17		.29	.34	.37				

Table 15. Statistical summary of data on water-quality constituents and properties in ground-watersamples collected from selected sites within Central Nebraska Basins, 1978-90--Continued

Summary	group			Value a	at indicated per	centile	
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	90th
		Uranium	, natural, o	lissolved, ir	ц µg/L (22703)		
Deep	Platte Valley	17		18	21	24	
	<u>Urani</u>	um, dissoly	ved, extract	tion fluorom	letric, in μg/L (ξ	<u>30020)</u>	
Deep	Sandhills	34	< 0.20	< .21	.47	1.6	3.2
Deep	Loess Hills	132	2.0	3.0	4.2	5.7	7.7
Deep	Glaciated Area	64	< .22	1.1	2.6	5.7	17
Deep	Platte Valley	53	2.1	6.6	11	20	33
Shallow	Sandhills	79	< .20	< .20	.30	1.2	2.8
Shallow	Loess Hills	143	.90	2.7	4.4	6.2	9.6
Shallow	Glaciated Area	100	.40	1.4	4.9	9.8	32
Shallow	Platte Valley	88	.96	5.0	12	28	76
		<u>Carbon</u> ,	organic tot	al as C, in 1	<u>ng/L (00680)</u>		
Shallow	Platte Valley	15		2.0	2.3	3.4	
		Carbon, or	ganic disso	lved as C. is	n mg/L (00681)		
Shallow	Sandhills	45	.9	1.1	1.4	2.3	3.8
Shallow	Platte Valley	17		1.1	1.6	2.2	
		Alachlor	r, total reco	verable, in j	ug/L (77825)		
Deep	Sandhills	19		(1)	(1)	(1)	
Deep	Loess Hills	13		(1)	(1)	(1)	
Deep	Glaciated Area			(1)	(1)	(1)	
Deep	Platte Valley	10		< .2	< .3	< .4	
Shallow	Sandhills	10		(1)	(1)	(1)	
Shallow	Loess Hills	25		(1)	(1)	< .2	
Shallow	Glaciated Area	25		(1)	(1)	(1)	
Shallow	Platte Valley	30	< .1	< .1	< .2	< .5	< .5
		<u>Ametryn</u>	<u>e, total rec</u>	overable, in	μ <u>g/L (82184)</u>		
Shallow	Sandhills	13		< .1	< .1	< .1	
Shallow	Platte Valley	23		< .1	< .1	< .1	

Summary	group			Value a	at indicated per	rcentile	
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	90th
	A	<u>trazine, to</u>	tal recovera	able, μg/L (3	9033 and 3963	<u>0)</u>	
Deep	Sandhills	66	(1)	< 0.05	< 0.05	< 0.05	< 0.05
Deep	Loess Hills	66	(1)	< .05	< .05	< .05	< .05
Deep	Glaciated Area		(1)	(1)	< .05	< .05	< .05
Deep	Platte Valley	51	< 0.05	< .05	< .05	< .06	.3
Shallow	Sandhills	105	< .05	< .05	< .05	< .05	< .05
Shallow	Loess Hills	143	< .04	< .05	< .05	< .05	< .05
Shallow	Glaciated Area	92	(1)	< .05	< .05	< .05	< .05
Shallow	Platte Valley	89	< .05	< .05	.3	.9	2.1
		<u>Cyanazir</u>	ne, total rec	coverable, in	ц µg/L (81757)		
Deep	Sandhills	24		(1)	(1)	< .4	
Deep	Loess Hills	20		(1)	(1)	< .3	
Deep	Glaciated Area			(1)	(1)	(1)	
Deep	Platte Valley	15		< .1	< .4	< .4	
Shallow	Sandhills	24		(1)	< .1	<.1	
Shallow	Loess Hills	40	(1)	(1)	<.1	< .4	< .4
Shallow	Glaciated Area			(1)	(1)	(1)	
Shallow	Platte Valley	33	< .02	< .02	<.1	< .4	< .4
	Me	tolachlor, t	<u>otal recove</u>	rable, μg/L ((39356 and 826	<u>512)</u>	
Deep	Sandhills	15		(1)	(1)	(1)	
Deep	Loess Hills	12		(1)	(1)	(1)	
Deep	Glaciated Area			(1)	(1)	(1)	
Shallow	Loess Hills	19		(1)	(1)	(1)	
Shallow	Glaciated Area	25		(1)	(1)	(1)	
Shallow	Platte Valley	25		< .1	< .1	< .2	
	Me	tribuzin, te	otal recover	rable, µg/L (81408 and 826	<u>11)</u>	
Deep	Sandhills	15		(1)	(1)	(1)	
Deep	Loess Hills	12		(1)	(1)	(1)	
r	Glaciated Area			(1)	(1)	(1)	

Summary	group		Value at indicated percentile						
Well- depth category	Sub- unit	Number of analyses	 10th	25th	50th (median)	75th	90th		
	Metribu	zin, total re	ecoverable.	µg/L (81408	<u>and 82611)</u> C	ontinued			
Shallow	Loess Hills	19	_	(1)	(1)	(1)			
Shallow	Glaciated Area			(1)	(1)	(1)			
Shallow	Platte Valley	25		< 0.1	< 0.1	< 0.1			
		Prometor	ne, total rec	overable, ir	<u>н µg/L (39056)</u>				
Deep	Sandhills	11		< .04	< .04	<.1			
Deep	Platte Valley	15		< .04	<.1	< .1			
Shallow	Sandhills	15		< .1	< .1	<.1			
Shallow	Loess Hills	21		< .04	< .04	< .1			
Shallow	Platte Valley	33	<0.02	< .02	< .04	< .1	<0.1		
		Prometry	<u>ne, total re</u>	coverable, ii	n μg/L (39057)				
Shallow	Sandhills	13		< .1	< .1	< .1			
Shallow	Platte Valley	33	< .02	< .02	< .1	< .1	< .1		
		<u>Propazin</u>	<u>e, total rec</u>	overable, in	μg/L (39024)				
Deep	Sandhills	11		< .04	< .04	< .1			
Shallow	Sandhills	15		< .1	< .1	< .1			
Shallow	Loess Hills	21		< .04	< .05	< .1			
Shallow	Platte Valley	33	< .02	< .04	< .04	< .1	< .1		
		Simazin	e, total reco	verable, in	μg/L (39055)				
Deep	Sandhills	11		< .05	< .05	< .1			
Deep	Platte Valley	13		< .05	< .1	<.1			
Shallow	Sandhills	15		< .1	<.1	< .1			
Shallow	Loess Hills	13		< .05	< .05	< .05			
Shallow	Platte Valley	33	< .02	< .02	< .05	<.1	.1		
		<u>Simetryn</u>	<u>e, total rec</u>	overable, in	μg/L (39054)				
Shallow	Sandhills	13		< .1	< .1	< .1			
Shallow	Platte Valley	23		<.1	< .1	<.1			

Summary group			Value at indicated percentile						
Well- depth category	Sub- unit	Number of analyses	10th	25th	50th (median)	75th	90th		
		Triflural	in, total re	coverable, i	<u>n μg/L (39030)</u>				
Deep	Sandhills	15		(1)	(1)	(1)			
Deep	Loess Hills	12	-	(1)	(1)	(1)			
Deep	Glaciated Area	26		(1)	(1)	(1)			
Shallow	Loess Hills	19		. (1)	(1)	(1)			
Shallow	Glaciated Area			(1)	(1)	(1)			
Shallow	Platte Valley	18		< 0.1	< 0.1	< 0.1			

Table 15. Statistical summary of data on water-quality constituents and properties in ground-watersamples collected from selected sites within Central Nebraska Basins, 1978-90--Continued

¹Percentile value is less than an unknown reporting level.

Table 16. Synthetic organic compounds detected in ground water for which all computed percentileconcentrations were less than an unknown reporting level, Central Nebraska Basins, 1978-90

[Number in parentheses is parameter code used in U.S. Environmental Protection Agency's Storage and Retrieval System and U.S. Geological Survey's National Water Information System; reporting levels unknown for most analyses; --, value not reported for fewer than 10 analyses; both summary groups in Platte Valley subunit had fewer than 10 analyses for all compounds]

	Nun	ber of analy	ses from	indicated s	ummary	group
	Sa	ndhills	Loe	ss Hills	Glacia	ated Area
Compound	Deep well	Shallow well	Deep well	Shallow well	Deep well	Shallow well
Aldrin, total (39330)	15		11	19	25	25
α-Benzene hexachloride, total (39337)	15		11	19	25	25
β-Benzene hexachloride, total (39338)	15 [°]		11	19	25	2 5
γ-Benzene hexachloride (lindane), total (39340)	15		11	19	25	25
δ-Benzene hexachloride, total (34259)	15		11	19	25	25
Butylate, total (81410)	15		11	19	25	25
Carbaryl, total (39750)	15		11	19	25	25
Carbofuran, total (81405)	15		11	19	25	25
Chlordane, technical, total (39350)	15		11	19	25	25
Chlorpyrifos, total recoverable (38932)	15		11	19	25	25
DDD, total (39310 and 39360)	15		11	19	25	25
DDE, total (39320 and 39365)	15		11	19	25	25
DDT, total (39300 and 39370)	15		11	19	25	25
Dieldrin, total (39380)	15		11	19	25	25
β-Endosulfan, total (34356)	15		11	19	25	25
Endosulfan sulfate, total (34351)	15		11	19	25	25
Endrin, total recoverable (39390)	15		11	19	25	25
Endrin aldehyde, total recoverable (34366)	15		11	19	25	25
Fonofos, total recoverable (39013)	15		11	19	25	2 5
Heptachlor epoxide, total (39420)	15		11	19	25	25
Heptachlor, total (39410)	15		11	19	25	25
Methoxychlor, total (39480)	15		11	19	25	25
Methyl parathion, total recoverable (39600)	15		11	19	25	25
Parathion, total recoverable (39015)	15		11	19	25	25
Terbufos, total recoverable (82088)	15		11	19	25	25
Toxaphene, total (39400)	15		11	19	25	25
Benzene, total (34030)	15	11	11	20	25	25

	Num	nber of analy	vses from	indicated s	ummary	group
	Sa	ndhills	Loe	ss Hills	Glacia	ated Area
Compound	Deep well	Shallow well	Deep well	Shallow well	Deep well	Shallow well
Bromodichloromethane, total (32101)	15	11	11	20	25	25
Bromoform, total (32104)	15	11	11	2 0	25	25
Bromomethane, total (34413)	15	11	11	2 0	25	25
Carbon tetrachloride, total (32102)	15	11	11	2 0	25	25
Chlorobenzene, total (34301)	15	11	11	20	25	25
Chloroethane, total (34311)	15	11	11	20	25	25
Chloroform, total (32106)	15	11	11	2 0	25	25
Dibromochloromethane, total (32105)	15	11	11	2 0	25	25
I,3-Dichlorobenzene, total (34566)	15	11	11	19	25	25
p-Dichlorobenzene, total (34536)	15	11	11	19	25	25
o-Dichlorobenzene, total (34571)	15	11	11	19	25	25
,2-Dichloroethane, total (34531)	15		11	19	25	25
,1-Dichloroethylene, total (34501)	15	11	11	2 0	25	25
is-1,2-Dichloroethylene, total (81686)	15		11	19	25	25
rans-1,2-Dichloroethylene, total (34546)	15	11	11	2 0	25	25
1,2-Dichloropropane, total (34541)	15	11	11	2 0	25	2 5
cis-1,3-Dichloropropene, total (34704)	15	11	11	19	25	25
rans-1,3-Dichloropropene, total (34699)	15	11	11	19	25	25
Ethylbenzene, total (34371)	15	11	11	2 0	25	2 5
Ethylene dibromide, total (77651)	15		11	19	2 5	25
Ethylidene dichloride, total (34496)	15	11	11	20 ·	25	25
Methylene chloride, total (34423)	15	11	11	2 0	25	25
PCB 1016, total (34671)	15		11	19	25	25
PCB 1221, total (39488)	15		11	19	25	25
PCB 1232, total (39492)	15		11	19	25	25
PCB 1242, total (39496)	15		11	19	25	25
PCB 1248, total (39500)	15		11	19	25	25
PCB 1254, total (39504)	15		11	19	25	25
PCB 1260, total (39508)	15		11	19	25	25
l,1,1,2-Tetrachloroethane, total (77562)	15		11	19	25	25

Table 16. Synthetic organic compounds detected in ground water for which all computed percentile concentrations were less than an unknown reporting level, Central Nebraska Basins, 1978-90--Continued