2,823 research outputs found

    A Balanced Energy Plan for the Interior West

    Get PDF
    Describes a Balanced Energy Plan for the Interior West region of Arizona, New Mexico, Nevada, Utah, Colorado, Wyoming and Montana. Part of the Hewlett Foundation Energy Series

    Economic Geology Models #3. Geological Contributions to Geometallurgy: A Review

    Get PDF
    Geometallurgy is a cross-disciplinary science that addresses the problem of teasing out the features of the rock mass that significantly influence mining and processing. Rocks are complex composite mixtures for which the basic building blocks are grains of minerals. The properties of the minerals, how they are bound together, and many other aspects of rock texture affect the entire mining value chain from exploration, through mining and processing, waste and tailings disposal, to refining and sales. This review presents rock properties (e.g. strength, composition, mineralogy, texture) significant in geometallurgy and examples of test methods available to measure or predict these properties.   Geometallurgical data need to be quantitative and spatially constrained so they can be used in 3D modelling and mine planning. They also need to be obtainable relatively cheaply in order to be abundant enough to provide a statistically valid sample distribution for spatial modelling. Strong communication between different departments along the mining value chain is imperative so that data are produced and transferred in a useable form and duplication is avoided. The ultimate aim is to have 3D models that not only show the grade of valuable elements (or minerals), but also include rock properties that may influence mining and processing, so that decisions concerning mining and processing can be made holistically, i.e. the impacts of rock properties on all the cost centres in the mining process are taken into account. There are significant costs to improving ore deposit knowledge and it is very important to consider the cost-benefit curve when planning the level of geometallurgical effort that is appropriate in individual deposits.RÉSUMÉLa géométallurgie est une science interdisciplinaire qui s’intéresse aux caractéristiques de la masse rocheuse qui influent de manière significative sur l'exploitation minière et le traitement du minerai. Les roches sont des mélanges composites complexes dont les éléments structurant de base sont des grains de minéraux. Les propriétés des minéraux, la façon dont ils sont liés entre eux, et de nombreux autres aspects de la texture des roches déterminent l'ensemble de la chaîne de valeur minière, de l'exploration à l'extraction à la transformation, à l'élimination des déchets et des résidus, jusqu'au raffinage et à la vente. La présente étude passe en revue les propriétés significatives de la roche (par ex. sa cohésion, sa composition, sa minéralogie, sa texture) en géométallurgie ainsi que des exemples de méthodes d'essai disponibles pour mesurer ou prédire ces propriétés.   Les données géométallurgiques doivent être quantitatives et localisées spatialement afin qu'elles puissent être utilisées dans la modélisation 3D et la planification de la mine. Elles doivent également être peu couteuses afin d'être suffisamment nombreuses pour fournir une distribution d'échantillon statistiquement valide pour la modélisation spatiale. Une communication efficace entre les différents segments de la chaîne de valeur minière est impérative pour que les données soient produites et transférées sous une forme utilisable et que les duplications soient évitées. Le but ultime est d'avoir des modèles 3D qui montrent non seulement la qualité des éléments précieux (ou minéraux), mais aussi les propriétés de roche qui déterminent l'exploitation minière et le traitement du minerai, de sorte que les décisions concernant l'exploitation minière et le traitement du minerai peuvent être réalisées de façon holistique, c.-à-d. que l’impact des propriétés de roche sur tous les maillons de la chaîne des coûts du processus minier sont prises en compte. Les coûts d’amélioration des connaissances sur le gisement de minerai étant importants, il faut tenir compte de la courbe coûts-bénéfices lors de la planification du niveau d'investissement géométallurgique approprié pour le gisement considéré

    Classical to Quantum Transition of a Driven Nonlinear Nanomechanical Resonator

    Full text link
    We seek the first indications that a nanoelectromechanical system (NEMS) is entering the quantum domain as its mass and temperature are decreased. We find them by studying the transition from classical to quantum behavior of a driven nonlinear Duffing resonator. Numerical solutions of the equations of motion, operating in the bistable regime of the resonator, demonstrate that the quantum Wigner function gradually deviates from the corresponding classical phase-space probability density. These clear differences that develop due to nonlinearity can serve as experimental evidence, in the near future, that NEMS resonators are entering the quantum domain

    Integrating Academic Technology Services into the Global Network University Library

    Get PDF
    As New York University (NYU) recently opened two new campuses in Abu Dhabi, United Arab Emirates, and Shanghai, China, academic technology services at both locations were launched to support faculty and student curricular and research needs. Consciously situated within the univer- sity library, these teams are constantly evolving to support the needs of their start-up campuses. As part of the Global Network University, local requirements must be balanced with the needs of the larger organization. Regular communication with administrators, faculty, and students is essential in making sure adequate staffing and services are in place to pro- vide the academic technology support required of these two campuses. An entrepreneurial spirit and a high degree of flexibility and responsiveness are important traits for delivering effective technology services as well. In this piece, there are six questions posed for the academic technology teams in Abu Dhabi and Shanghai

    Integrating Academic Technology Services into the Global Network University Library

    Get PDF
    As New York University (NYU) recently opened two new campuses in Abu Dhabi, United Arab Emirates, and Shanghai, China, academic technology services at both locations were launched to support faculty and student curricular and research needs. Consciously situated within the univer- sity library, these teams are constantly evolving to support the needs of their start-up campuses. As part of the Global Network University, local requirements must be balanced with the needs of the larger organization. Regular communication with administrators, faculty, and students is essential in making sure adequate staffing and services are in place to pro- vide the academic technology support required of these two campuses. An entrepreneurial spirit and a high degree of flexibility and responsiveness are important traits for delivering effective technology services as well. In this piece, there are six questions posed for the academic technology teams in Abu Dhabi and Shanghai

    OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    Get PDF
    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023

    Emerging trends in business analytics

    Full text link

    Prediction of Acid Rock Drainage (ARD) from Calculated Mineralogy

    Get PDF
    ABSTRACT The acid-forming potential of ore and waste can be calculated based on a detailed knowledge of mineralogy, especially sulphide and carbonate contents. However, most mineralogical techniques (e.g., semi-quantitative X-ray diffraction (qXRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) point counting) are too expensive for routine application. Mineralogy can be calculated from assay data using linear programming (simplex method) which is a mature method with application to real world quantities that cannot be negative. In order to apply this method, a table of mineral compositions is required for all the significant minerals in the study area. Unlike least squares methods, the mineral list can exceed the number of elements included in the assay data. Several carbonate compositions with a range of neutralising potential can be included. To use the linear programming method, a calibration must be established based on known compositions. This calibration can be based on qXRD or SEM/EDS point counting methods. Not all types of assay data are sufficient for calculating mineralogy reliably. The best assay data comes from X-ray fluorescence analysis of major elements, including "loss on ignition" (LOI). Adding measured C content to this analysis provides a robust data set for calculating sulphide and carbonate contents of rocks. The mineralogy can be calculated without measured C, if LOI and SiO2 are included in the analysis. However, typical mine databases contain multi-element assays based on a four-acid digestion method. In this case SiO2 is not analysed and there is no "LOI" or total C. With typical four acid digestion data it is not possible to estimate the original carbonate content even when the mineralogy is simple. In rocks with complex mineralogy, mixed carbonates and/or multiple sulphides, qXRD and full chemical analyses are required to calculated acid rock drainage potential from mineralogy

    Pbx homeodomain proteins pattern both the zebrafish retina and tectum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pbx </it>genes encode TALE class homeodomain transcription factors that pattern the developing neural tube, pancreas, and blood. Within the hindbrain, Pbx cooperates with Hox proteins to regulate rhombomere segment identity. Pbx cooperates with Eng to regulate midbrain-hindbrain boundary maintenance, and with MyoD to control fast muscle cell differentiation. Although previous results have demonstrated that Pbx is required for proper eye size, functions in regulating retinal cell identity and patterning have not yet been examined.</p> <p>Results</p> <p>Analysis of retinal ganglion cell axon pathfinding and outgrowth in <it>pbx2/4 </it>null embryos demonstrated a key role for <it>pbx </it>genes in regulating neural cell behavior. To identify Pbx-dependent genes involved in regulating retino-tectal pathfinding, we conducted a microarray screen for Pbx-dependent transcripts in zebrafish, and detected genes that are specifically expressed in the eye and tectum. A subset of Pbx-dependent retinal transcripts delineate specific domains in the dorso-temporal lobe of the developing retina. Furthermore, we determined that some Pbx-dependent transcripts also require Meis1 and Gdf6a function. Since <it>gdf6a </it>expression is also dependent on Pbx, we propose a model in which Pbx proteins regulate expression of the growth factor <it>gdf6a</it>, which in turn regulates patterning of the dorso-temporal lobe of the retina. This, in concert with aberrant tectal patterning in <it>pbx2/4 </it>null embryos, may lead to the observed defects in RGC outgrowth.</p> <p>Conclusion</p> <p>These data define a novel role for Pbx in patterning the vertebrate retina and tectum in a manner required for proper retinal ganglion cell axon outgrowth.</p

    Perpendicular momentum injection by lower hybrid wave in a tokamak

    Full text link
    The injection of lower hybrid waves for current drive into a tokamak affects the profile of intrinsic rotation. In this article, the momentum deposition by the lower hybrid wave on the electrons is studied. Due to the increase in the poloidal momentum of the wave as it propagates into the tokamak, the parallel momentum of the wave increases considerably. The change of the perpendicular momentum of the wave is such that the toroidal angular momentum of the wave is conserved. If the perpendicular momentum transfer via electron Landau damping is ignored, the transfer of the toroidal angular momentum to the plasma will be larger than the injected toroidal angular momentum. A proper quasilinear treatment proves that both perpendicular and parallel momentum are transferred to the electrons. The toroidal angular momentum of the electrons is then transferred to the ions via different mechanisms for the parallel and perpendicular momentum. The perpendicular momentum is transferred to ions through an outward radial electron pinch, while the parallel momentum is transferred through collisions.Comment: 22 pages, 4 figure
    corecore