54 research outputs found

    280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter

    Get PDF
    We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary science goal of detecting or placing an upper limit on the amplitude of the primordial gravitational wave signature in the cosmic microwave background (CMB) by constraining the B-mode contamination in the CMB from Galactic dust emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated silicon feedhorns coupled to an array of aluminum-manganese transition-edge sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the three 280 GHz FPUs contain 1,530 polarization sensitive bolometers (765 spatial pixels) optimized for the low loading environment in flight and read out by time-division SQUID multiplexing. In this paper we describe the mechanical, thermal, and magnetic shielding architecture of the focal planes and present cryogenic measurements which characterize yield and the uniformity of several bolometer parameters. The assembled FPUs have high yields, with one array as high as 95% including defects from wiring and readout. We demonstrate high uniformity in device parameters, finding the median saturation power for each TES array to be ~3 pW at 300 mK with a less than 6% variation across each array at one standard deviation. These focal planes will be deployed alongside the 95 and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo Station in Antarctica in December 2018

    Characterization, deployment, and in-flight performance of the BLAST-TNG cryogenic receiver

    Full text link
    The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is a submillimeter polarimeter designed to map interstellar dust and galactic foregrounds at 250, 350, and 500 microns during a 24-day Antarctic flight. The BLAST-TNG detector arrays are comprised of 918, 469, and 272 MKID pixels, respectively. The pixels are formed from two orthogonally oriented, crossed, linear-polarization sensitive MKID antennae. The arrays are cooled to sub 300mK temperatures and stabilized via a closed cycle 3^3He sorption fridge in combination with a 4^4He vacuum pot. The detectors are read out through a combination of the second-generation Reconfigurable Open Architecture Computing Hardware (ROACH2) and custom RF electronics designed for BLAST-TNG. The firmware and software designed to readout and characterize these detectors was built from scratch by the BLAST team around these detectors, and has been adapted for use by other MKID instruments such as TolTEC and OLIMPO. We present an overview of these systems as well as in-depth methodology of the ground-based characterization and the measured in-flight performance.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, December 13-18, 202

    The Balloon-Borne Large Aperture Submillimeter Telescope Observatory

    Full text link
    The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300L 4^4He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a 3^3He sorption refrigerator all backed by a liquid helium pumped pot operating at 2K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70%\% will be dedicated to observations for BLAST scientific goals and the remaining 30%\% will be open to proposals from the wider astronomical community through a shared-risk proposals program.Comment: Presented at SPIE Ground-based and Airborne Telescopes VIII, December 13-18, 202

    Auto-tuned thermal control on stratospheric balloon experiments

    Get PDF
    Balloon-borne experiments present unique thermal design challenges, which are a combination of those present for both space and ground experiments. Radiation and conduction are the predominant heat transfer mechanisms with convection effects being minimal and difficult to characterize at 35-40 km. This greatly constrains the thermal design options and makes predicting flight thermal behaviour very difficult. Due to the limited power available on long duration balloon flights, efficient heater control is an important factor in minimizing power consumption. SuperBIT, or the Super-Pressure Balloon-borne Imaging Telescope, aims to study weak gravitational lensing using a 0.5m modified Dall-Kirkham telescope capable of achieving 0.02" stability and capturing deep exposures from visible to near UV wavelengths. To achieve the theoretical stratospheric diffraction-limited resolution of 0.25", mirror deformation gradients must be kept to within 20 nm. The thermal environment must be stable on time scales of an hour and the thermal gradients on the telescope must be minimized. During its 2018 test-flight, SuperBIT will implement two types of thermal parameter solvers: one for post-flight characterization and one for in-flight control. The payload has 85 thermistors as well as pyranometers and far-infrared sensors which will be used post-flight to further understand heat transfer in the stratosphere. This document describes the in-flight thermal control method, which predicts the thermal circuit of components and then auto-tunes the heater PID gains. Preliminary ground testing shows the ability to control the components to within 0.01 K

    Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter

    Get PDF
    We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications

    IMI : global trends in myopia management attitudes and strategies in clinical practice : 2022 update

    Get PDF
    PURPOSE. Surveys in 2015 and 2019 identified a high level of eye care practitioner concern/activity about myopia, but the majority still prescribed single vision interventions to young myopes. This research aimed to provide updated information. METHODS. A self-administered, internet-based questionnaire was distributed in 13 languages, through professional bodies to eye care practitioners globally. The questions examined awareness of increasing myopia prevalence, perceived efficacy and adoption of available strategies, and reasons for not adopting specific strategies. RESULTS. Of the 3195 respondents, practitioners’ concern about the increasing frequency of pediatric myopia in their practices differed between continents (P < 0.001), being significantly higher in Asia (9.0 ± 1.5 of 10) than other continents (range 7.7–8.2; P ≤ 0.001). Overall, combination therapy was perceived by practitioners to be the most effective method of myopia control, followed by orthokeratology and pharmaceutical approaches. The least effective perceived methods were single vision distance undercorrection, spectacles and contact lenses, as well as bifocal spectacles. Practitioners rated their activity in myopia control between (6.6 ± 2.9 in South America to 7.9 ± 1.2/2.2 in Australasia and Asia). Single-vision spectacles are still the most prescribed option for progressing young myopia (32.2%), but this has decreased since 2019, and myopia control spectacles (15.2%), myopia control contact lenses (8.7%) and combination therapy (4.0%) are growing in popularity. CONCLUSIONS. More practitioners across the globe are practicing myopia control, but there are still significant differences between and within continents. Practitioners reported that embracing myopia control enhanced patient loyalty, increasing practice revenue and improving job satisfaction
    • …
    corecore