169 research outputs found

    Where Are We Now?: A Study of Gifted Program Availability by Region, Urbanicity and SES

    Get PDF
    There is considerable diversity among gifted programs and program availability in the United States. This is at least in part due to the fact that there is no national mandate for gifted programming, despite the existence of the Javitts Act. Instead, decisions about gifted programming are left up to the individual states, which may then choose to allow individual counties or districts to set their own standards. This in turn creates a situation in which parents and teachers of the gifted have no ready access to information about the type of gifted programming options available in their area. Many of them seek assistance through national organizations such as the National Research Center on the Gifted and Talented (NRC/GT), which are not equipped to help them. Thus, a descriptive study of the locations of gifted programs and the age ranges they serve will be a useful resource for parents and teachers of the gifted and will lay the foundation for future research into the efficacy of gifted programming across regions and settings

    A Decision to Serve: Decision Making Through Service Learning

    Get PDF
    The use of service learning and community service with students at all levels of ability is becoming increasingly prevalent, especially with gifted students, because of their need to prepare for college applications. These applications often require a range of activities including community service as well as straight academic success. However, the distinction between community service, a reactive activity, and service learning, a proactive process in which students take leadership roles in their community, is not always emphasized. The role of structured decision-making processes, like those in Talents Unlimited and Future Problem Solving, to enable gifted students to take proactive leadership roles in service-learning experiences, along with the benefits of these programs for both gifted and non-gifted students, is the focus of this paper

    Silence Is Not Golden: Invisible Latinas Living with HIV in the Midwest

    Get PDF
    This qualitative study was conducted to better understand the health needs and concerns of immigrant HIV-infected Latinas residing in the Midwest United States. Individual interviews (n = 18) were conducted in Spanish with Latinas in Kansas, Oklahoma and Missouri. Women were at different stages of acceptance about their HIV diagnosis and four common themes emerged from the data: pregnancy as a death sentence, HIV is taboo, God as their only resource, and living in isolation. Silence was an over-arching theme present throughout all the narratives and many women had never shared their stories about HIV with anyone. Depressive symptoms and suicidal ideation were common. These findings have implications for strategies to address the HIV prevention and HIV-related healthcare needs of this population of women. Results from this study further suggest that efforts are needed to break the silence surrounding HIV and to reduce HIV-related stigma in smaller Midwestern Hispanic communities

    N-Terminal Arginines Modulate Plasma-Membrane Localization of Kv7.1/KCNE1 Channel Complexes

    Get PDF
    BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks)) is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks) and atrial fibrillation (a human arrhythmia). Structure-function relationship of the KCNE1 N-terminus for I(Ks) modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines) at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks) resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA') were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'). Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks). Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex

    Are p.I148T, p.R74W and p.D1270N cystic fibrosis causing mutations ?

    Get PDF
    BACKGROUND: To contribute further to the classification of three CFTR amino acid changes (p.I148T, p.R74W and p.D1270N) either as CF or CBAVD-causing mutations or as neutral variations. METHODS: The CFTR genes from individuals who carried at least one of these changes were extensively scanned by a well established DGGE assay followed by direct sequencing and familial segregation analysis of mutations and polymorphisms. RESULTS: Four CF patients (out of 1238) originally identified as carrying the p.I148T mutation in trans with a CF mutation had a second mutation (c.3199del6 or a novel mutation c.3395insA) on the p.I148T allele. We demonstrate here that the deletion c.3199del6 can also be associated with CF without p.I148T. Three CBAVD patients originally identified with the complex allele p.R74W-p.D1270N were also carrying p.V201M on this allele, by contrast with non CF or asymptomatic individuals including the mother of a CF child, who were carrying p.R74W-p.D1270N alone. CONCLUSION: These findings question p.I148T or p.R74W-p.D1270N as causing by themselves CF or CBAVD and emphazises the necessity to perform a complete scanning of CFTR genes and to assign the parental alleles when novel missense mutations are identified

    Veratridine produces distinct calcium response profiles in mouse Dorsal Root Ganglia neurons.

    Get PDF
    Nociceptors are a subpopulation of dorsal root ganglia (DRG) neurons that detect noxious stimuli and signal pain. Veratridine (VTD) is a voltage-gated sodium channel (VGSC) modifier that is used as an "agonist" in functional screens for VGSC blockers. However, there is very little information on VTD response profiles in DRG neurons and how they relate to neuronal subtypes. Here we characterised VTD-induced calcium responses in cultured mouse DRG neurons. Our data shows that the heterogeneity of VTD responses reflects distinct subpopulations of sensory neurons. About 70% of DRG neurons respond to 30-100 μM VTD. We classified VTD responses into four profiles based upon their response shape. VTD response profiles differed in their frequency of occurrence and correlated with neuronal size. Furthermore, VTD response profiles correlated with responses to the algesic markers capsaicin, AITC and α, β-methylene ATP. Since VTD response profiles integrate the action of several classes of ion channels and exchangers, they could act as functional "reporters" for the constellation of ion channels/exchangers expressed in each sensory neuron. Therefore our findings are relevant to studies and screens using VTD to activate DRG neurons

    Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene

    Get PDF
    Identification of regulatory elements and their target genes is complicated by the fact that regulatory elements can act over large genomic distances. Identification of long-range acting elements is particularly important in the case of disease genes as mutations in these elements can result in human disease. It is becoming increasingly clear that long-range control of gene expression is facilitated by chromatin looping interactions. These interactions can be detected by chromosome conformation capture (3C). Here, we employed 3C as a discovery tool for identification of long-range regulatory elements that control the cystic fibrosis transmembrane conductance regulator gene, CFTR. We identified four elements in a 460-kb region around the locus that loop specifically to the CFTR promoter exclusively in CFTR expressing cells. The elements are located 20 and 80 kb upstream; and 109 and 203 kb downstream of the CFTR promoter. These elements contain DNase I hypersensitive sites and histone modification patterns characteristic of enhancers. The elements also interact with each other and the latter two activate the CFTR promoter synergistically in reporter assays. Our results reveal novel long-range acting elements that control expression of CFTR and suggest that 3C-based approaches can be used for discovery of novel regulatory elements

    Voltage-gated Na<sup>+</sup> channel activity increases colon cancertranscriptional activity and invasion via persistent MAPK signaling

    Get PDF
    © 2015 Macmillan Publishers Limited. All rights reserved. Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes
    corecore