11,100 research outputs found

    Leptonic emission from microquasar jets: from radio to very high-energy gamma-rays

    Get PDF
    Microquasars are sources of very high-energy gamma-rays and, very probably, high-energy gamma-ray emitters. We propose a model for a jet that can allow to give accurate observational predictions for jet emission at different energies and provide with physical information of the object using multiwavelength data.Comment: 2 pages, 1 figure. Proceedings of the conference: "International Astronomical Union Symposium No. 230: Populations of High Energy Sources in Galaxies". Edited by Evert J.A. Meurs & Giuseppina Fabbian

    Extreme intranight variability in the BL Lacertae object AO 0235+164

    Get PDF
    We present results of two-colour photometry with high time resolution of the violently variable BL Lac object AO 0235+164. We have found extreme intranight variability with amplitudes of ~ 100 % over time scales of 24 hours. Changes of 0.5 magnitudes in both R and V bands were measured within a single night, and variations up to 1.2 magnitudes occurred from night to night. A complete outburst with an amplitude ~ 30 % was observed during one of the nights, while the spectrum remained unchanged. This seems to support an origin based on a thin relativistic shock propagating in such a way that it changes the viewing angle, as recently suggested by Kraus et al. (1999) and Qian et al. (2000).Comment: 4 pages, 3 figures, to appear in Astronomy & Astrophysics (Letters

    Parity-dependent State Engineering and Tomography in the ultrastrong coupling regime

    Get PDF
    Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like superconducting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.Comment: Improved version. 9 pages, 5 figure

    Recurrent microblazar activity in Cygnus X-1?

    Get PDF
    Recurrent flaring events at X- and soft gamma-ray energies have been recently reported for the galactic black hole candidate Cygnus X-1. The observed fluxes during these transient outbursts are far higher than what is observed in ``normal'' episodes. Here we suggest that the origin of this radiation is non-thermal and produced by inverse Compton interactions between relativistic electrons in the jet and external photon fields, with a dominant contribution from the companion star field. The recurrent and relatively rapid variability could be explained by the precession of the jet, which results in a variable Doppler amplification.Comment: 4 pages, 5 figures, Accepted for publication in Astronomy & Astrophysics Letter

    Nonthermal processes and neutrino emission from the black hole GRO J0422+32 in a bursting state

    Get PDF
    GRO J0422+32 is a member of the class of low-mass X-ray binaries (LMXBs). It was discovered during an outburst in 1992. During the entire episode a persistent power-law spectral component extending up to ∼1\sim 1 MeV was observed, which suggests that nonthermal processes should have occurred in the system. We study relativistic particle interactions and the neutrino production in the corona of GRO J0422+32, and explain the behavior of GRO J0422+32 during its recorded flaring phase. We have developed a magnetized corona model to fit the spectrum of GRO J0422+32 during the low-hard state. We also estimate neutrino emission and study the detectability of neutrinos with 1 km3^3 detectors, such as IceCube. The short duration of the flares (∼\sim hours) and an energy cutoff around a few TeV in the neutrino spectrum make neutrino detection difficult. There are, however, many factors that can enhance neutrino emission. The northern-sky coverage and full duty cycle of IceCube make it possible to detect neutrino bursts from objects of this kind through time-dependent analysis.Comment: 12 pages, 11 figures, accepted for publication in A&
    • …
    corecore