1,090 research outputs found

    Configuring the cancellation of optical near-fields

    Get PDF
    The characteristic near-field behavior of electromagnetic fields is open to a variety of interpretations. In a classical sense the term 'near-field' can be taken to signify a region, sufficiently close to some primary or secondary source, that the onset of retardation features is insignificant; a quantum theoretic explanation might focus more on the large momentum uncertainty that operates at small distances. Together, both near-field and wave-zone (radiative) features are fully accommodated in a retarded resonance propagation tensor, within which each component individually represents one asymptotic limit - alongside a third term that is distinctly operative at distances comparable to the optical wavelength. The propagation tensor takes different forms according to the level of multipole involved in the signal production and detection. In this presentation the nature and symmetry properties of the retarded propagation tensor are explored with reference to various forms of electric interaction, and it is shown how a suitable arrangement of optical beams can lead to the complete cancellation of near-fields. The conditions for such behavior are fully determined and some important optical trapping applications are discussed

    Optically induced multi-particle structures: multi-dimensional energy landscapes

    Get PDF
    Recent quantum electrodynamical studies on optically induced inter-particle potential energy surfaces have revealed unexpected features of considerable intricacy. The exploitation of these features presents a host of opportunities for the optical fabrication of nanoscale structures, based on the fine control of a variety of attractive and repulsive forces, and the torques that operate on particle pairs. Here we report an extension of these studies, exploring the first detailed potential energy surfaces for a system of three particles irradiated by a polarized laser beam. Such a system is the key prototype for developing generic models of multi-particle complexity. The analysis identifies and characterizes potential points of stability, as well as forces and torques that particles experience as a consequence of the electromagnetic fields, generated by optical perturbations. Promising results are exhibited for the optical fabrication of assemblies of molecules, nanoparticles, microparticles, and colloidal multi-particle arrays. The comprehension of mechanism that is emerging should help determine the fine principles of multi-particle optical assembly

    Second trimester inflammatory and metabolic markers in women delivering preterm with and without preeclampsia.

    Get PDF
    ObjectiveInflammatory and metabolic pathways are implicated in preterm birth and preeclampsia. However, studies rarely compare second trimester inflammatory and metabolic markers between women who deliver preterm with and without preeclampsia.Study designA sample of 129 women (43 with preeclampsia) with preterm delivery was obtained from an existing population-based birth cohort. Banked second trimester serum samples were assayed for 267 inflammatory and metabolic markers. Backwards-stepwise logistic regression models were used to calculate odds ratios.ResultsHigher 5-α-pregnan-3β,20α-diol disulfate, and lower 1-linoleoylglycerophosphoethanolamine and octadecanedioate, predicted increased odds of preeclampsia.ConclusionsAmong women with preterm births, those who developed preeclampsia differed with respect metabolic markers. These findings point to potential etiologic underpinnings for preeclampsia as a precursor to preterm birth

    Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts

    Get PDF
    Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia

    Transplantation of canine olfactory ensheathing cells producing chondroitinase ABC promotes chondroitin sulphate proteoglycan digestion and axonal sprouting following spinal cord injury

    Get PDF
    Olfactory ensheathing cell (OEC) transplantation is a promising strategy for treating spinal cord injury (SCI), as has been demonstrated in experimental SCI models and naturally occurring SCI in dogs. However, the presence of chondroitin sulphate proteoglycans within the extracellular matrix of the glial scar can inhibit efficient axonal repair and limit the therapeutic potential of OECs. Here we have used lentiviral vectors to genetically modify canine OECs to continuously deliver mammalian chondroitinase ABC at the lesion site in order to degrade the inhibitory chondroitin sulphate proteoglycans in a rodent model of spinal cord injury. We demonstrate that these chondroitinase producing canine OECs survived at 4 weeks following transplantation into the spinal cord lesion and effectively digested chondroitin sulphate proteoglycans at the site of injury. There was evidence of sprouting within the corticospinal tract rostral to the lesion and an increase in the number of corticospinal axons caudal to the lesion, suggestive of axonal regeneration. Our results indicate that delivery of the chondroitinase enzyme can be achieved with the genetically modified OECs to increase axon growth following SCI. The combination of these two promising approaches is a potential strategy for promoting neural regeneration following SCI in veterinary practice and human patients

    Extraordinary absorption of sound in porous lamella-crystals

    Get PDF
    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.The work was supported by the Spanish Ministry of Science and Innovation and European Union FEDER through project FIS2011-29734-C02-01. J.C. gratefully acknowledges financial support from the Danish Council for Independent Research and a Sapere Aude grant (12-134776). V. R. G. gratefully acknowledges financial support from the ''Contratos Post-Doctorales Campus Excelencia Internacional'' UPV CEI-01-11.Christensen, J.; Romero García, V.; Picó Vila, R.; Cebrecos Ruiz, A.; Garcia De Abajo, FJ.; Mortensen, NA.; Willatzen, M.... (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports. 4(4674). https://doi.org/10.1038/srep04674S44674Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).Leroy, V., Strybulevych, A., Scanlon, M. G. & Page, J. Transmission of ultrasound through a single layer of bubbles. Eur. Phys. J. E 29, 123 (2009).Leroy, V., Bretagne, A., Fink, M. H. W., Tabeling, P. & Tourin, A. Design and characterization of bubble phononic crystals. Appl. Phys. Lett. 95, 171904 (2009).Thomas, E. L. Applied physics: Bubbly but quiet. Nature 462, 990 (2009).Romero-García, V., Sánchez-Pérez, J. V. & Garcia-Raffi, L. M. Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. J. Appl. Phys. 110, 014904 (2011).Garcia-Chocano, V. M., Cabrera, S. & Sanchez-Dehesa, J. Broadband sound absorption by lattices of microperforated cylindrical shells. Appl. Phys. Lett. 101, 184101 (2012).Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993).Vasseur, J. O. et al. Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals. Phys. Rev. Lett. 86, 3012 (2001).Liu, Z. et al. Locally Resonant Sonic Materials. Science 289, 1734 (2000).Christensen, J., Martin-Moreno, L. & Garcia-Vidal, F. J. All-angle blockage of sound by an acoustic double-fishnet metamaterial. Appl. Phys. Lett. 97, 134106 (2010).Botten, L. C., Craig, M. S., McPhedran, R. C., Adams, J. L. & Andrewartha, J. R. The finitely conducting lamellar diffraction grating. Optica Acta 28, 1087 (1981).McPhedran, R. C., Botten, L. C., Craif, M. S., Neviere, M. & Maystre, D. Lossy lamellar gratings in the quasistatic limit. Optica Acta 29, 289 (1982).Kravets, V. G., Schedin, F. & Grigorenko, A. N. Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings. Phys. Rev. B 78, 205405 (2008).Sondergaard, T. et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun. 3, 969 (2012).Clapham, P. B. & Hurtley, M. C. Reduction of Lens Reflexion by the Moth Eye Principle. Nature Vol. 244, 281 (1973).Garcia-Vidal, F. J., Pitarke, J. M. & Pendry, J. B. Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes. Phys. Rev. Lett. 78, 4289 (1997).Yang, Z., Ci, L., Bur, J. A., Lin, S. & Ajayan, P. M. Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array. Nano Lett. 8, 446 (2008).Garcia-Vidal, F. J. Metamaterials: Towards the dark side. Nat. Photonics 2, 215 (2008).Mizunoa, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106, 6044 (2009).Lidorkis, E. & Ferrari, A. C. Photonics with Multiwall Carbon Nanotube Arrays. ACS Nano 3, 1238 (2009).Beenakker, C. W. J. & Brouwer, P. W. Distribution of the reflection eigenvalues of a weakly absorbing chaotic cavity. Physica E 9, 463 (2001).Lafarge, D., Lemarinier, P., Allard, J. F. & Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102, 1995 (1997), With the macroscopic parameters: ϕ = 0.94, α∞ = 1, σ = 20000 Nm−4s and Λ = Λ′ = 0.41 μm.García de Abajo, F. J. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007)

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients
    corecore