34,278 research outputs found

    Quantum transport through single and multilayer icosahedral fullerenes

    Get PDF
    We use a tight-binding Hamiltonian and Green functions methods to calculate the quantum transmission through single-wall fullerenes and bilayered and trilayered onions of icosahedral symmetry attached to metallic leads. The electronic structure of the onion-like fullerenes takes into account the curvature and finite size of the fullerenes layers as well as the strength of the intershell interactions depending on to the number of interacting atom pairs belonging to adjacent shells. Misalignment of the symmetry axes of the concentric icosahedral shells produces breaking of the level degeneracies of the individual shells, giving rise some narrow quasi-continuum bands instead of the localized discrete peaks of the individual fullerenes. As a result, the transmission function for non symmetrical onions are rapidly varying functions of the Fermi energy. Furthermore, we found that most of the features of the transmission through the onions are due to the electronic structure of the outer shell with additional Fano-like antiresonances arising from coupling with or between the inner shells.Comment: 16 pages, 5 figur

    Ermakov approach for the one-dimensional Helmholtz Hamiltonian

    Full text link
    For the one-dimensional Helmholtz equation we write the corresponding time-dependent Helmholtz Hamiltonian in order to study it as an Ermakov problem and derive geometrical angles and phases in this contextComment: 6 pages, LaTe

    Quantum interference through gated single-molecule junctions

    Get PDF
    We discuss the general form of the transmission spectrum through a molec- ular junction in terms of the Green function of the isolated molecule. By introducing a tight binding method, we are able to translate the Green func- tion properties into practical graphical rules for assessing beforehand the possible existence of antiresonances in an energy range for a given choice of connecting sites. The analysis is exemplified with a benzene molecule under a hypothetical local gate, which allows one to continuously tune the on-site energy of single atoms, for various connection topologies and gate positions.Comment: 17 pages, 5 figure

    Franck-Condon Factors as Spectral Probes of Polaron Structure

    Full text link
    We apply the Merrifield variational method to the Holstein molecular crystal model in D dimensions to compute non-adiabatic polaron band energies and Franck-Condon factors at general crystal momenta. We analyze these observable properties to extract characteristic features related to polaron self-trapping and potential experimental signatures. These results are combined with others obtained by the Global-Local variational method in 1D to construct a polaron phase diagram encompassing all degrees of adiabaticity and all electron-phonon coupling strengths. The polaron phase diagram so constructed includes disjoint regimes occupied by "small" polarons, "large" polarons, and a newly-defined class of "compact" polarons, all mutually separated by an intermediate regime occupied by transitional structures
    corecore