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We use a tight-binding Hamiltonian and Green functions methods to calculate the quantum

transmission through single-wall fullerenes and bilayered and trilayered onions of icosahedral

symmetry attached to metallic leads. The electronic structure of the onion-like fullerenes takes into

account the curvature and finite size of the fullerenes layers as well as the strength of the intershell

interactions depending on to the number of interacting atom pairs belonging to adjacent shells.

Misalignment of the symmetry axes of the concentric iscosahedral shells produces breaking of the

level degeneracies of the individual shells, giving rise some narrow quasi-continuum bands instead

of the localized discrete peaks of the individual fullerenes. As a result, the transmission function

for non symmetrical onions is rapidly varying functions of the Fermi energy. Furthermore, we

found that most of the features of the transmission through the onions are due to the electronic

structure of the outer shell with additional Fano-like antiresonances arising from coupling with or

between the inner shells. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824460]

I. INTRODUCTION

Fullerenes, hollow clusters made up of carbon atoms

bonded by sp2 orbitals, have interesting conducting properties.

The origin of such a behavior is their delocalized p frontier mo-

lecular orbitals, what gives rise to a high conductance when an

electric field is applied on the molecule, e.g., by an external

potential bias. It has been discussed that free-electron and

tight-binding (TB) models can capture the main features of the

electronic transport through nearly spherical fullerenes.1,2 The

high conductivity of C60 has lead to speculate on the possibility

of considering it as a conducting spherical shell.3 Particularly,

several authors have studied the molecular junctions of the C60

fullerene under different types of connections, such as a sub-

strate and a STM tip,4,5 one-dimensional leads,6 carbon nano-

tubes (CNTs),7 gold clusters,8 or break junctions.9

Furthermore, the stability and strong hybridization of C60 with

metallic surfaces make it also a feasible anchoring group with

high conductance.8 In the search of similar suitable molecular

junctions, other larger icosahedral fullerenes Cn from the same

family n¼ 60k2 (k integer) have also been shown to be sta-

ble,10,11 while the conductance of others, such as C20 or its

complexes have also been explored.12–14 On the other hand, by

doping with boron and nitrogen, fullerene-based molecular

junctions were found to have negative resistance.15

A number of methods have been applied to the study of

energetics and stability of buckyonions, namely, icosahedral

fullerenes encapsulated by larger ones.16–26 Carbon nano-

onions are interesting structures between fullerenes and

multi-wall carbon nanotubes, having high thermal stability

and chemical reactivity compared to CNTs. They also have

the characteristic high contact area and affinity for noble

metals, what make them interesting as anchoring groups for

molecular electronics. For instance, it has also been shown

that onion-like nanoparticles can be used as electrochemical

capacitors, also called supercapacitors, with high discharge

rates of up to three order of magnitude higher than conven-

tional supercapacitors.27 The static polarizability, closely

related to the response of the electronic charges to applied

static fields, have been studied for onions formed by mem-

bers of the icosahedral 60k2 family, using both phenomeno-

logical models and first-principle methods,28–30 showing

their capability to partially screen static external electric

fields. The conductance of onion-like structures functional-

ized with sulfide-terminated chains has been measured

between a gold substrate and a gold STM tip.31

The present work is aimed to study the electronic trans-

mission of single-wall and multi-wall fullerenes weakly

attached to metallic leads. In Sec. II, we discuss the TB

model and the influence of the curvature and finite size of

the layers on it, as well as the Green function-based method

for the calculation of the transmission. In Sec. III, we present

our results for the dependence of the transmission function

on the electron energy T(E). We study how T(E) is affected

by the relative angular orientation of the shells, the number

of intershell connections included in the TB model and the

number of shells of the onions. Finally, in Sec. IV, we sum-

marize our conclusions on the systems studied.

II. MODEL AND CALCULATION METHOD

A. Single-wall fullerenes: Curvature and finite size

The Hamiltonian of a n-atom fullerene Cn is described

in the TB approximation with one p orbital per site

Hn ¼ tn

X
hiji

c†
i cj þ H:c:; (1)

where the summation runs on nearest neighbor (NN) atom

pairs hiji, and the operator c†
i (cj) creates (annihilates) an

electron in the p orbital centered at the atom i (j). The con-

stant on-site energy has been taken as zero.a)Electronic address: rhromero@exa.unne.edu.ar
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A single parameter tn is used for the hopping integral

between nearest neighbor atoms for a given fullerene.

Although no bond dimerization effect is included, it has been

shown that its sole effect is to slightly break some degenera-

cies in the spectrum with no major qualitative effect.1 In

order to take into account the effect of the curvature of the

shell for the various fullerenes, we consider the hopping pa-

rameter tn to be a function of the mean radius Rn of the

(nearly) spherical shell of n C atoms and the mean inter-

atomic distance dn (Ref. 32)

tn ¼ t 1� 1

2

dn

Rn

� �2
" #

: (2)

The value t¼�2.73 eV is a suitable hopping for graphene

and is chosen to correctly reproduce the HOMO-LUMO gap

for C60, Eg¼�1.90 eV, as obtained from density functional

theory (DFT) calculations.33 Although the TB Hamiltonian

only depends on the topology of the molecule (i.e., on the

atoms bonded), the molecular geometry affects the hopping

integral. Table I shows that the mean radius of the shell is the

main geometrical variable with the mean inter-atomic distance

being approximately constant for the various fullerenes Cn of

the families n¼ 60k2 and n¼ 20k2 (k integer). The inter-shell

separations are approximately constant for successive fuller-

enes of each family (�3.5 Å, close to the inter-layer separation

in bulk graphite, for the former; and �2 Å for the latter).

B. Intershell interactions in two-wall fullerenes

We shall study single-wall fullerenes and bilayer and tri-

layer onions composed by two and three concentric shells of

icosahedral symmetry (Ih), Cn1
@Cn2

…. In onions, it has been

shown that the resulting structures for each shell are much the

same those ones of the isolated fullerenes. Therefore, we

assume the geometry for each shell in the onion to be the

same as that of isolated Cn, taken from Yoshida data base.

The most stable mutual orientation is the one that preserves

the Ih symmetry of the composite system.18,19 Furthermore, in

the onion-like family C60k2 , it is reasonable to assume the

strength of their intershell interactions as similar to those

between the layers of graphite, due to the similarity in their

interlayer separation. Figure 1(a) shows a scheme of a part of

two adjacent parallel layers in graphite separated a distance of

3.35 Å. Each layer is constituted by two triangular lattices

whose sites are denoted as A and B. The subscript 1 or 2 indi-

cates which layer each site belongs. In graphite, the distances

and number of nearest neighbors are exactly determined by

TABLE I. Mean interatomic C-C distances, mean radii, and hopping integral

for the single-wall icosahedral fullerenes of the families 60k2 and 20k2 (k
integer).

Cn dn (Å) Rn (Å) tn (eV) Cn dn (Å) Rn (Å) tn (eV)

C60 1.43 3.54 2.51 C20 1.42 1.99 2.04

C240 1.42 7.05 2.68 C180 1.42 6.10 2.66

C540 1.42 10.58 2.71 C500 1.42 10.18 2.70

FIG. 1. (a) Scheme of a part of a two adjacent layers of graphite showing the interlayer connections between the lattices A and B from the upper and lower

layers, (b) and(c) Schemes of two portions of the three layers of the onions considered in this work and their connections: (b) with the centers of pentagons

aligned, and (c) with the centers of hexagons aligned. These and other configurations occur in all the multiwall fullerenes considered here, making variable the

number of nearest neighbors of the atoms of the shells. (d) Average number of connections f in two-wall buckyonions per atom belonging to the inner sheel as

a function of a maximum range for including neighbors Rcutoff, Eq. (4), for C60@C240 with Ih symmetry, C240@C540 with Ih symmetry, C60@C240 without sym-

metry (symmetry C1) and for two layers of graphite, for comparison purpose. In graphite, only f¼ 0.5 and f¼ 5 are possible for the range of Rcutoff shown, and

the step-like variation of f is due to the constrain imposed by the geometrical alignment between the two infinite layers. The three shaded regions highlight

ranges of Rcutoff where f has also a step-like behavior for the two-wall onions. (d) Scheme of the single-wall C60, C240, and C540 fullerenes.
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the relative position between the plane infinite layers of identi-

cal geometry. In two-wall buckyonions, nevertheless, the

inner and outer fullerenes have finite sizes with different num-

ber of atoms, different geometrical structures due of their dif-

ferent number of hexagons (e.g., in the family 60 n2, every

member have 12 pentagons) and eventually different orienta-

tions from each other (even though both have Ih symmetry),

as shown in Figures 1(b) and 1(c). Therefore, although it is

usually thought of intershell interactions in buckyonions as

locally similar to interlayer interactions in bilayer graphene, a

more thorough consideration of the intershell hopping is

needed due to the differences mentioned above. In graphite,

the hopping parameter c0 ¼ t describes the covalent bonding

arising from sp2 hybridization in a layer. Inter-layer Van der

Waals interactions are described by the parameters c1 ¼ t?
� 0:4 eV (hopping energy between atoms A1 and A2), c3

� 0:3 eV (between B1 and B2 atoms), and c4 � 0:04 eV (hop-

ping energy for A1-B2 and A2-B1 pairs).34,35 In bilayer

onions, no such two lattices exists due to the finite size and

the curvature of the layers. Nevertheless, similar Van de

Waals interactions between NN and next-nearest neighbors

(NNN) atoms exist. Taking into account that for graphite c1

� c3 and c4 � 0, we take a single value t? ¼ 0:35 eV for the

hopping between pairs of the NN and NNN between layers.24

The intershell interaction is included through the hopping inte-

gral t? between pairs of NN and NNN atoms as follows: we

define a cutoff radius Rcutoff such that every pair of atoms, at

ri and rj, belonging to adjacent shells and separated a distance

shorter than Rcutoff is assigned a hopping t?, i.e.,

tij ¼
t?; jri � rjj � Rcutoff

0; otherwise:

�
(3)

It should be noted that, due to the faceting of the icosahedral

symmetry, the number of intershell connections is not iso-

tropic. As an illustration, Figures 1(b) and 1(c) show two

portions of a trilayer onion within a solid angle around the

directions joining the centers of the pentagons and hexagons,

respectively. The lines joining atoms in adjacent shells repre-

sent the intershell connections tij ¼ t? for a given cutoff ra-

dius. Due to the non sphericity of the shells, the outermost

pentagon is not connected but the outermost hexagon it is.

We characterize the number of pairs of atoms connected at a

given Rcutoff, by the mean number of neighbors (in the outer

shell) “felt” by atoms in the inner shell,

f ðRcutoffÞ ¼ Nconnect=Ninner; (4)

where Nconnect is the number of intershell connections for a

given Rcutoff, and Ninner is the number of atoms in the inner

shell. Figure 1(d) shows the variation of f with Rcutoff for

C60@C240 with Ih symmetry, C240@C540 with Ih symmetry,

C60@C240 without symmetry (symmetry C1), and for two ad-

jacent layers of graphite. In the latter, there are wide ranges of

Rcutoff where the number of connections keeps constant. Thus,

due to the parallel orientation of the infinite layers, there are

only some discrete values at which the number of connections

increases due to the inclusion of neighbors farther to a given

atom. For the onions with Ih symmetry, there are common

ranges of Rcutoff that show step-like behavior for both onions

(see regions shaded in Figure 1(d)). In Sec. II C, we present

results of calculations with a number of intershell connections

(characterized by f) chosen in those regions. Such a step-like

dependence is in contrast to the approximately linear depend-

ence for C60@C240 with symmetry C1, when the symmetry

axes of the Ih fullerenes are misaligned. The faceting of the

fullerenes induced by the Ih symmetry is particularly noticea-

ble for the largest layers, as can be seen en Figure 1(e) for

C60, C240, and C540. Therefore, the fraction of carbon atoms

having a NN or NNN within the range jri � rjj � Rcutoff is

smaller for the larger fullerenes. Hence, the TB Hamiltonian

for the onions becomes that of the isolated layers with an

inter-layer interaction term

Honion ¼
XN

n

Hn þ t?
X
hiji
ðc†

i cj þ c†
j ciÞ; (5)

where site i belongs to a inner shell, and site j is its NN or

NNN on the adjacent outer shell.

C. Electronic transport

When a molecule is attached between two metallic leads

and subject to a potential bias, the charge current flowing

through it can be calculated with the Landauer equation36

I ¼ 2e

h

ð
dE TðEÞ½fLðEÞ � fRðEÞ�; (6)

where fL and fR are the Fermi distributions at the left (L) and

right (R) leads. At low temperatures, the transmission func-

tion represents the dimensionless conductance (in units of

the quantum e2/2 h) and is calculated as

TðEÞ ¼ 4TrðCLGrðEÞCRGaðEÞÞ; (7)

where Ga and Gr are the matrix representation of the advanced

and retarded Green functions Gr;a ¼ ðE1�H6i0Þ�1
, and CL

and CR are the spectral densities of the leads.37

In the wide band approximation, the Green function of the

connected system can be obtained by using Dyson equation, as

Glr ¼
glr

1� C2ðgllgrr � jglrj2Þ � iCðgll þ grrÞ
: (8)

Where gij is the retarded Green function of the isolated sys-

tem, l and r label the carbon atoms on the external shell con-

nected to the left and right leads, and RL ¼ RR ¼ iC are the

self-energies of the leads, considered to be energy independ-

ent. Throughout this work, we connect the fullerenes to the

leads, using C ¼ 0:05 eV, through two carbon atoms located

diametrally opposite to each other, one atom in the vertex of a

pentagon and its corresponding one obtained by applying the

operation of inversion with respect to the center of symmetry.

III. RESULTS AND DISCUSSION

A. Effect of the relative orientation between adjacent
shells

The approximately spherical form of the fullerenes, par-

ticularly the smaller ones, allows to treat onions as a family

144305-3 D. A. Lovey and R. H. Romero J. Appl. Phys. 114, 144305 (2013)



of concentric spherical shells for the calculation of some

properties, such as the determination of radii of equilibrium,

intershell distances, static polarizability, or photoionization

cross section.38–41 For other applications, however, a more

accurate description of their geometry is relevant. In particu-

lar, the trend in larger fullerenes to approach faceted icosahe-

dral forms makes very relevant the relative orientation of

adjacent layers, even for concentric shells having individu-

ally Ih symmetry, as already shown in Figure 1(d) for the av-

erage number of connections per atom f. The influence of the

relative orientation on the quantum transmission is shown in

Figure 2 for two bilayer onions: C60@C240 and C240@C540.

Two orientations were considered: one where the onion has

overall Ih symmetry, that is, with the symmetry axes of the

individual shell aligned; and one where both shells are con-

centric but the individual symmetry axes are rotated an arbi-

trary relative angle from each other (C1 symmetry). The

differences in T(E) between the icosahedral (Ih) and the non

symmetrical (C1) onion are visible in Figure 2. In the onion

with misalignment between the shells, some degeneracies in

the energy spectrum are broken, as reflected in the occur-

rence of multiple resonant states with many peaks and antire-

sonances close to each other leading to a trend to the

formation of narrow bands for the larger onion C240@C540.

The transmission function of the non symmetrical onions

have rapid variations from perfect to vanishing transmission

with slight variations of the Fermi energy E, while T(E) for

the Ih onions is a well behaved smooth function with a few

peaks of perfect transmission in the range around the

HOMO-LUMO gap. The gap itself increases when the shells

become disoriented from each other what also corresponds

to a less stable configuration, as previously reported.18

B. Dependence on the number of intershell hopping
connections

As mentioned in Sec. II B, the relative orientation of hex-

agons belonging to adjacent shells, the choice of the cutoff ra-

dius for defining NN and NNN sites of a given atom, and the

faceting of the larger fullerenes preclude a unique definition

of the number of intershell connections to be included in the

Hamiltonian (5). Both the interlayer distances in graphite and

intershell distance in the 60k2 family are close to 3.5 Å. Thus,

we took two cutoff radii close to this value and a larger one

(see shaded regions of Figure 1(d)), to include a bigger num-

ber of NN and NNN pairs in the intershell interaction

Hamiltonian. In the following, we show the results of calcu-

lated T(E) for icosahedral onions (Ih@ Ih) and the aforemen-

tioned three choices of Rcutoff. In those three regions, f¼ 1, 1,

and 4 for C60@C240, and f¼ 0.5, 1, and 2 for C240@C540. In

Figure 3, the transmission T(E) is depicted for the three values

of f, as indicated in the legends. It should be noticed that for

the smaller onion C60@C240, the three f values give almost the

same curve (Fig. 3(a)). Therefore, this increase of connectivity

does not affect the transmission throughout the composite sys-

tem. Therefore, the main paths of transmission between shells

are along the pairs formed by the atoms of the inner shell with

its closest neighbor in the outer one. Figure 3(b) shows that

the dependence of the transmission on the number of inter-

shell connections is more important for the larger onion

C240@ C540. For larger fullerenes, the deviation from the

FIG. 2. Transmission function for (a) C60@C240, and (b) C240@C540 buckyonions for the concentric shells rotated an arbitrary angle with respect to each other

(C1 symmetry), and with their symmetry axes aligned (Ih symmetry).

FIG. 3. Transmission function T(E) of the bilayer and trilayer onions (a) C60@C240, (b) C240@C540, and (c) C60@C240@C540 for three different cutoff radii

chosen in the shaded regions of Figure 1. The resulting mean number of intershell connections f, Eq. (4), is indicated in each curve.
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spherical shape becomes more noticeable as the number of

atoms increases. Thus, the C240 shell is less spherical than

C60, and C540 is clearly faceted. This departure from sphericity

favours the hopping from the inner to the outer shell along

certain directions, namely, those in which the icosahedral

faces of both shells are closer to each other. Therefore, the

larger the number of intershell links the better the quantum

transmission. Interestingly, the increasing in the number of

connections mainly affect the states above the highest

occupied-lowest unoccupied (HOMO-LUMO) gap, noticeably

the LUMO and LUMOþ1 ones.

Finally, Figure 3(c) shows T(E) for the trilayered onion

C60@C240@ C540, which is notoriously similar to the one of

the bilayer onion of Fig. 3(b), thus showing that the two

external shells are the most relevant for the transmission,

with only small corrections coming from the innermost C60

shell. This effect is discussed in greater detail in Sec. III C.

The bilayer onion have four peaks above the gap in range

shown, namely, those corresponding to LUMO, LUMOþ1,

LUMOþ2, and LUMOþ3. The two central peaks

(LUMOþ1, LUMOþ2) are almost degenerates in C240@

C540 but become better resolved in the trilayered onion.

C. Influence of the number of onion shells

We shall show here that the outermost shell greatly

determines the most relevant features of the transmission

spectra of bilayered and trilayered onions. The importance of

the influence of the inner shells on T(E) decreases inwards.

In Figure 3(c), we observed that the most noticeable effects

when adding C60 to the two external shells are the occur-

rence of an antiresonance between the LUMO and

LUMOþ1 peaks, and the widening of the narrow Fano-like

profile after the LUMOþ2 peak (at E � 0.2 eV). Such a type

of effects is analogous to the modifications to the transmis-

sion function through a chain introduced by adding a lateral

site or chain to the system. This phenomenon was first stud-

ied by Fano in the spectrum of photoionization of atoms42

and recently observed in the spectra of conductance of nano-

scale systems.43–45 Two types of antiresonances occur in the

conductance spectrum: (i) multipath zeros arising from the

vanishing of the Green function along interfering pathways

between the sites of connections to the leads, and (ii) reso-
nant zeros when the energy eigenvalues of the system are

poles of the Green function for the connection sites.46–48

In the following, we fix the number of connections in tri-

layer onions by choosing f¼ 4 (f¼ 2) between the two

outermost (innermost) shells. Figure 4 shows the transmis-

sion for the bilayer onions C60@C240 and C240@C540 as

compared to those for the corresponding single-wall fuller-

enes. It can be seen that for energies below the gap, T(E) for

the onions is very similar to the one of the outer fullerene,

i.e., the one for C240 in Figure 4(a), and for C540 in Figure

4(b). The peaks above the gap preserve similar features both

in C60@C240 and C240, although with a relative energy shift

of the peaks. In Figure 4(b), similar considerations can be

made about the comparison the transmission through

C240@C540 and C540; the latter provides most of the features

observed in the former, particularly for energies below the

gap. The intershell connections in C240@C540 eventually

contributes to the occurrence of antiresonances, such as that

at �� 1:4 eV, not present in T(E) for C540. In other cases, it

softens the vanishing of transmission, such as in the antireso-

nance of C540 at �� 1:1 eV, which becomes in a finite trans-

mission for C240@C540. Roughly speaking, introducing C60

as a third innermost shell does not greatly modify the trans-

mission of the bilayered onion. The influence of the external

shell on the transmission can be interestingly shown in the

onions formed from fullerenes belonging to the family 20k2,

which also have icosahedral symmetry. Thus, Cn fullerenes

with n¼ 20, 80, 180, 320, 500… are predicted to be stable,

with a radii increasing by approximately 2 Å from each

member from the family to the next one. The radii of equilib-

rium for the family 60k2 were shown to be accurately deter-

mined by a continuous spherically symmetric Lennard-Jones

model.22 Application of the same model for the multiwall

onions of the 20k2 family (with k odd integer) results an

intershell distance of about 4 Å, not far from the intershell

distance for the 60k2 family or the interlayer distance in

graphite. Therefore, we show calculations for the

single-wall, two-wall, and three-wall fullerenes obtained

from C20, C180, and C500. Our TB calculations show that C20

and C500 are gapless, while C180 presents a gap of � 1.5 eV.

In Figures 5(a) and 5(b), C180 is the outer and inner shell,

respectively. As a consequence, in Figure 5(a), C20@C180

shows a region of vanishing transmission within the gap,

while it keeps finite for C180@C500, except for the already

discussed narrow antiresonances arising from the intershell

connections. Hence, the transmission function is strongly

sensitive to the electronic structure of the external shell. As a

final example of this property, Figure 5(b) shows the trans-

mission for the trilayered C20@C180@ C500 as compared to

those of the single-wall fullerenes. It is seen that the most of

the features of the onion are reproduced by the transmission

FIG. 4. Transmission function for (a) C60@C240 and (b) C240@C540 compared to those for the single-wall fullerenes.

144305-5 D. A. Lovey and R. H. Romero J. Appl. Phys. 114, 144305 (2013)



through C500, with some Fano-like anti-resonances origi-

nated in the transmission spectrum of the inner C180 and, to

less extent, in the innermost C20. It can be seen that the

three-wall onion (Figure 5(b)) is well described by the

two-wall one (Figure 5(a)). Interestingly, the Fano-like reso-

nance of C20@C180@ C500 at E � 0.1 eV is not present in

C180@ C500 but it is in C20@C180; therefore, such a peak of

conductance is an effect from the coupling of the two inner

shells.

IV. CONCLUSIONS

In this work, we have studied theoretically the quantum

transmission through single-wall fullerenes and bilayered and

trilayered onions of icosahedral symmetry, when attached to

metallic leads, by using a TB Hamiltonian and Green func-

tions methods. Although the Van der Waals interactions

between onion shells are supposed to be similar to those

between graphite layers, the finite size of the fullerenes, their

curvature, and relative orientations need some analysis for

including the intershell hopping parameter. We include in the

model the effect of finite size and curvature through a para-

metrization of the hopping integral as a function of the num-

ber of atoms of the shell. The number of connections from a

given atom to others belonging to adjacent shells was studied

by introducing a cutoff radius for the interaction. We found

that misalignment of the symmetry axes produces breaking of

the level degeneracies of the individual shells, giving rise

some narrow quasi-continuum bands instead of the localized

discrete peaks of the individual fullerenes. Most of the fea-

tures of the transmission through the onions are already visible

in the transmission function of the single-wall fullerene form-

ing the outer shell. The main modifications between them are

antiresonances arising from the coupling between the outer

layer with the next innermost one. For three-wall onions, the

transmission becomes barely sensitive to the most internal

shell. Interestingly, when the fullerene of the external shell is

gapless, the transmission of the onion does not vanish along fi-

nite ranges of energy. This property could be useful for

designing multilayered fullerenes with tailored conductance

by properly growing the outermost layers.
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