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Abstract

We discuss the general form of the transmission spectrum through a molec-
ular junction in terms of the Green function of the isolated molecule. By
introducing a tight binding method, we are able to translate the Green func-
tion properties into practical graphical rules for assessing beforehand the
possible existence of antiresonances in an energy range for a given choice of
connecting sites. The analysis is exemplified with a benzene molecule under
a hypothetical local gate, which allows one to continuously tune the on-site
energy of single atoms, for various connection topologies and gate positions.

Keywords: molecular electronics, quantum interference, transmission
spectrum

1. Introduction

The theoretical prediction and experimental demonstration of the pos-
sibility of conduction through single molecules attached to metallic leads
[1, 2, 3, 4, 5], has triggered the interest about the factors that affect the
electron transmission and the feasibility to control them [6, 7, 8, 9]. It is
expected not only to scale down the electronic devices to smaller sizes, but
also to provide them with new functionalities based on the quantum nature
of the system [6, 10, 11, 12]. In particular, the possibility of controling quan-
tum interference has raised a great deal of interest from both a theoretical
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and experimental point of view [10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
For instance, it has been pointed out the possibility of controling magneti-
cally the transmission through molecular rings, such as aromatic molecules,
taking advantage of the condition of quantum interference [22]. Another way
of affecting the quantum transmission could be by the direct modulation
of transport current through a molecule junction by an external gate volt-
age [7, 9]. Such a three-terminal molecule-scale device allows for the direct
modification of the orbital energy. The physically interesting, although cur-
rently hypothetical, possibility of applying a local gate potential on one or
more atoms in the molecule, would allow one to tune the molecular electronic
structure in a similar way as the introduction of a substituent or side group
does, although now in a continuously controlled way.

The standard first-principle theoretical description of the transmission
through single molecule junctions is based on non equilibrium Green func-
tion (NEGF) techniques in conjunction with density functional theory (DFT)
based electronic structure. Nevertheless, it has been shown that more ap-
proximate descriptions, such as Hartree-Fock or tight binding methods, also
provide a qualitative and even reasonably quantitative description of the
phenomena. Tight binding models are specially appealing, due to their sim-
plicity, for providing insight into the most relevant physical mechanisms of
the transmission as well as for using them as simple predicting tools for
guiding either experiments or more precise theoretical methods. In line with
this, a number of methods have been proposed to discuss the relation be-
tween the electronic or molecular structure to the transmission properties of
the molecular devices [24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

In this work we study the quantum transmission through a molecular
junction whose on-site energies can be continuously tuned by a local poten-
tial. As usual and for brevity, we shall refer here to such a potential as a gate
potential. Although gating a single atom is currently only a hypothetical pos-
sibility, its theoretical analysis illustrates the physical principles underlying
those effects. Firstly, we summarize the analytical properties of the trans-
mission function in terms of the electronic structure and describe the two
types of zeroes of resonance. Then, we use a tight binding model, to trans-
late the analytical conditions on the Green function of the isolated molecule
into graphical rules based on the molecular orbital plots. This graphical in-
terpretation allows one to infer the complete spectrum of transmission, for
an arbitrary connection, from a direct inspection of the molecular orbitals.
Finally, we discuss how the application of a local potential at one or more
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atomic sites of the benzene molecule, gives rise to changes in the electronic
structure which, in due course, modulates the quantum transmission through
the molecule.

2. Properties of the transmission function T (E)

Consider that the atoms l and r of the molecule are connected to the
sites L and R at the left and right leads by hopping parameters tL and tR,
respectively. Applying Dyson equation, the Green function Glr of the coupled
system can be obtained in terms of the Green functions of the isolated leads
GLL and GRR, and those of the isolated molecule Gll, Grr and Glr

Glr =
Glr

1 + Σ2(GllGrr − |Glr|2)− Σ(Gll +Grr)
, (1)

where Σ = GLLt
2
L = GRRt

2
R is the self-energy, and symmetric coupling to

identical leads is assumed. Within the wide band approximation, Σ = iΓ is
assumed to be purely imaginary and energy-independent, with Γ giving the
broadening of the molecular levels, such that

Glr =
Glr

1− Γ2(GllGrr − |Glr|2)− iΓ(Gll +Grr)
, (2)

from which the transmission Tlr can be obtained:

Tlr = 4Γ2|Glr|2. (3)

In approximate treatments of the electronic structure of molecules, like
in the tight-binding (Hückel) model, the charge transport results from a
competition between the on-site energy ε that tends to localize the electron
in the atom positions, and the hopping energy t that favours the motion from
an atom to its nearest neighbour. As a result, the spectrum of transmission
for a weakly coupled molecule (Γ � t) typically consists of narrow peaks
of high (eventually perfect) conductance and narrower antiresonances (i.e.,
complete suppression of transmission) or dips at a discrete set of energy
values, on top of a background of a smooth transmission function. This
background has an approximately constant order of magnitude within an
energy range, decreasing with a power-law of the energy out of it. The origin
of this smooth transmission function can be understood by neglecting the
details of the molecular structure. Then, the molecule is characterized by
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a set of energy eigenvalues, roughly in the range |E − ε| . 2t, where the
Green function behaves approximately as Glr ∼ 1/2t, so the transmission
becomes Tlr = 4Γ2|Glr|2 ∼ Γ2/t2. It will be shown below that the peaks
and dips reflect the details of the molecular junction, i.e., both the electronic
structure of the molecule as well as the topology of the connection.

Eqs. (2) and (3) shows that the transmission through the connected
molecule depends on the electronic structure of the isolated molecule both
through the diagonal Green functions (Gll and Grr) at the connecting sites
as well as through the off-diagonal function Glr between them. The choice
of the pair (l, r) corresponds to the dependence on the topology of the con-
nection.

2.1. Resonance and multipath zeroes

Consider an energy eigenvalue Ek of the disconnected molecule corre-
sponding to the molecular orbital |ψk〉, which is written as a linear com-
bination of the orbitals |i〉 centered at the atoms, |ψk〉 =

∑
i cki|i〉, with

cki = 〈i|ψk〉. Due to the spectral representation of the Green function, the
poles of G are a set of (eventually all) the energy eigenvalues Ek.

It has been shown that, for non degenerate Ek, the poles of Glr are also
poles of Gll and Grr [31]. This entails that the Green function of the con-
nected molecule, Eq. (2), can be approximated near the pole E = Ek as

Glr ≈
Rk

lr

(E − Ek)− iΓ(Rk
ll +Rk

rr)

E→Ek−→ iRk
lr

Γ(Rk
ll +Rk

rr)
, (4)

where Rk
ij = ckic

∗
kj (i, j = l, r) is the corresponding residue of Gij, which

shows that the transmission has a pole at E = Ek + iΓ(Rll +Rrr) and a finite
transmission Tlr = 4R2

lr/(R
k
ll + Rk

rr)
2 at E = Ek. The level Ek acquires a

finite width proportional to the coupling to the leads Γ. In the particular case
where the sites l and r are topologically equivalent because of the symmetry
of the system, Rll = Rrr = Rlr, a perfect transmission occurs.

On the other hand, if E = Ek is a pole of Gll or Grr, but not of Glr,
the numerator Glr(Ek) of Eq. (2) is finite whilst its denominator diverges;
therefore Tlr will show an antiresonance at E = Ek.

Finally, the condition for the energy eigenvalue Ek to be a pole of Glr can
be related to the corresponding eigenstate ψk of the isolated system: Ek will
become a pole of Glr if ψk have non-vanishing projection on the orbitals |l〉
and |r〉.
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Therefore, we can summarize the relation between the transmission and
the electronic structure as follows: the transmission coefficient T (E) will
show a peak of transmission, an antiresonance or a regular transmission
4Γ2/E2

k at the molecular energy Ek if the molecular orbital ψk has a non-
vanishing weight at both, only one or none of the connecting sites, respec-
tively.

The case when the eigenvalue Ek is degenerate requires some further
consideration. For the sake of simplicity, consider a two-fold degenerate
level Ek with eigenfunctions |ψ(p)

k 〉 =
∑

i c
(p)
ki |i〉, (p = 1, 2). The spectral

representation of the Green function now reads

Gij(E) =
∑
k

Rk
ij

E − Ek

, Rk
ij = c

(1)
ik c

(1)∗
jk + c

(2)
ik c

(2)∗
jk . (5)

The property RllRrr − R2
lr = 0, valid for the non-degenerate case, does no

longer hold here. Instead

Rk
llR

k
rr − (Rk

lr)
2 = (c

(1)
kl )2(c

(2)
kr )2 + (c

(2)
kl )2(c

(1)
kr )2

−c(1)
kl c

(1)
kr c

(2)∗
kl c

(2)∗
kr − c

(2)
kl c

(2)
kr c

(1)∗
kl c

(1)∗
kr ,

(6)

which can vanish or not depending on the c
(p)
kl and c

(p)
kr . If Rk

llR
k
rr−(Rk

lr)
2 = 0,

all above discussion holds; if not, the transmission becomes suppressed (T =
0) [31].

The antiresonances discussed above occur at the energy eigenvalues of the
molecule and, consequently, they were named as resonant zeroes of transmis-
sion. Nevertheless, Eq. (2), shows that also the roots of Glr can lead to
zeroes of conductance, that were termed multipath zeroes [26]. To explore
their origin, we employ a tight binding Hamiltonian together with a parti-
tioning consisting in dividing the basis of orbitals centered at the sites in the
P -subspace ({|l〉, |r〉}) and the Q-subspace, formed by the rest of the orbitals
centered at non-connecting sites.

The Green function of the isolated molecule can be written as the resol-
vent (E −Heff)−1 of an effective 2× 2 Hamiltonian in the P -space, in terms
of the self-energy Σ(E) as [26, 31]

G(E) =
1

∆

(
E − εr − Σrr tlr + Σlr

trl + Σrl E − εl − Σll

)
, (7)
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Figure 1: Scheme of the partitioning of the Hamiltonian. The leads are attached to sites l
and r, which are connected to the rest of the molecule through atoms l′, l′′, r′ and r′′. The
Green function Glr results from hoppings t from l to the Q-space, a sum of contributions
gij along pathways (A, B and C) within the Q-space, and hoppings t from the Q-space to
the atom r. The large empty circles represent atomic sites that are not directly connected
to the atoms l or r.

where ∆(E) = det(E−Heff) = (E−εr−Σrr)(E−εl−Σll)−|tlr +Σlr|2. The
energy-dependent diagonal and off-diagonal elements of the self-energy are
interpreted here as effective on-site energies and effective hoppings between
the sites l and r, respectively. Now assume that sites l and r are coupled to
the rest of the molecule through sites l′, l′′, r′ and r′′, as shown in Fig. 1,
through identical hoppings.
Then,

Glr =
tlr + Σlr

∆
, (8)

where tlr = t if l and r are adjacent to each other, and zero otherwise, with

Σlr = (gl′r′ + gl′′r′′ + gl′r′′ + gl′′r′)t
2, (9)

where g refers to the Q-block of the Green function G. This gives Glr as
a sum of four terms that can be interpreted as the pathways A (above), B
(below) and C (cross) shown in Fig. 1, and the Green function has the form

g =

(
gA gC

gC† gB

)
. (10)

When the molecule has two paths disconnected from each other, i.e., two
sets of disjoint sites, as in a cyclic molecule, the Green function in the Q-space
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becomes blocked

g =

(
gA 0
0 gB

)
, (11)

so that, gl′r′′ = gl′′r′ = 0, and there are only two contributing pathways A
(l′ ↔ r′) and B (l′′ ↔ r′′):

Σlr = (gl′r′ + gl′′r′′)t
2. (12)

Then, a zero of transmission coming from Glr = 0 can be attributed to a
cancellation of the two contributions, one from each path: gl′r′ + gl′′r′′ = 0.

2.2. Approximate positions of the multipath zeroes

From the spectral representation it can be seen that near a pole En the
Green function behaves like Glr(E) ≈ cnlcnr/(E − En), where |cni| ≤ 1 and,
therefore, for En ≤ E ≤ En+1, its behaviour is well represented by

Glr(E) =
cnlcnr
E − En

+
cn+1,lcn+1,r

E − En+1

, (13)

which is schematically depicted in Figs. 2(a)-2(b) for cnlcnr > 0, and positive
(a) or negative (b) cn+1,lcn+1,r.
When both residues have the same sign, say positive, g(E) changes its sign

from g(En + 0) =∞ to g(En+1− 0) = −∞, thus showing that there exists a
root in the range (En, En+1) which in due turn produces a zero of resonance
at a weighted average of En and En+1

E =
cnlcnrEn+1 + cn+1,lcn+1,rEn

cnlcnr + cn+1,lcn+1,r

. (14)

It should be noted that En is weighted by the residue at En+1 such that the
larger the residue is at En+1, the closer is the root to En. This could be
pictorially described as a repulsion of the root by two successive poles that
enclose it and having residues of the same sign.

On the other hand, if both residues have opposite signs,

Glr(E) =
cnlcnr
E − En

− |cn+1,lcn+1,r|
E − En+1

> 0, (15)

becomes definite positive in the range (En, En+1) and no zero occurs. Rather
rarely, the approximation (13) might not be accurate enough, because other
poles make non negligible contributions, so that the curve cuts the E-axis
twice and two antiresonances occurs.

7



�a)

E1 E2
E

G�E�

�b)

E1 E2
E

G�E�

�c)

� c
b

Figure 2: Scheme of the Green function G(E) near two consecutive poles E1 and E2 and
the visualization of their significance in the MO plot: Residues at E = E1 and E = E2

have (a) the same sign, (b) opposite sign. (c) Plot of a typical molecular orbital (MO):
nodal (dashed) lines in the plane of the molecule separate darker and lighter regions of
positive and negative sign of the wave function; the closer an atom to the nodal line, the
smaller its coefficient in the MO expansion in terms of atomic orbitals. Pairs of atoms
placed in regions of opposite sign (e.g., atoms a and b) give negative residues while those
in regions of the same sign (e.g., a and c) give positive residues in the corresponding Green
functions at the energy of the MO. Furthermore, |Res(gab)| < |Res(gbc)| because atom ‘a’
is close to a nodal line.
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2.3. Predicting transmission spectra from orbital plots

Now we shall show that the general form of the transmission spectra
can be obtained from a graphical interpretation of the properties derived in
Section 2 from the plots of the molecular orbitals. Typical plots show regions
of different signs (shown as darker and lighter zones) separated by nodal lines
resulting from the intersection between nodal surfaces with the plane of the
molecule (see Fig. 2c) The following observations translate the analytical
properties of the coefficients cki = 〈i|ψk〉 into graphical rules:

(i) If a molecular orbital ψk has a vanishing weight at any of the sites of
connection, a nodal line in the plot of ψk passes through it.

(ii) When the atoms connected to the leads (l and r) are in regions of
opposite sign of ψk, it entails a negative residue (cklckr < 0) at E = Ek;
analogously, when the atoms l and r are in regions of the plot where ψk has
the same sign, the residue of the pole E = Ek has a positive sign.

(iii) Due to ψk is normalized, the proximity of the atom l or r to a nodal
line entails that the coefficient is small, and so is the residue at E = Ek.

The molecular orbital plots can also be directly related to the transmission
spectra as follows:

(I) In the transmission spectrum, there are peaks and antiresonances at
the molecular eigenvalues Ek . The peaks occurs at those values Ek whose
corresponding molecular orbital has no nodal line passing through the con-
nection sites, the antiresonances when it does.

(II) The transmission spectrum can have additional antiresonances at
energies between two consecutive molecular energy eigenvalues En and En+1

of the molecular orbitals ψn and ψn+1 (Section 2.2). If in the plots of ψn and
ψn+1, the two atoms l and r have the same relative phase (both atoms in
regions of the same sign or both in regions of opposite signs), there will be
an antiresonance at E given by Eq. (14).

(III) The closer the atom l or r is to a nodal line, the smaller the trans-
mission for the connection (l, r).

The simple rules stated above allows us to explain the calculated trans-
mission spectra shown in the next Section.

3. Results and discussion

As an example of the analysis given in the previous section, we calculated
the transmission through benzene in its ortho-, meta- and para-connections
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Figure 3: Transmission function T (E) for: (a) 1,2 ortho-benzene, (b) 1,3 meta-benzene
and (c) 1,4 para-benzene with a gate potential applied at atom 5 (solid red line). The
dashed blue lines are the transmission through ungated benzene for comparison. The
horizontal dotted black lines are the order of magnitude estimates Γ2/t2 = 4× 10−4.

to the leads. Fig. 3 shows the scheme of the molecular orbitals for benzene
(disconnected from the leads) with a gate voltage of 0.5 eV applied on atom
5, i.e., in the later case, the on-site energy ε5 is shifted to εg = −6.1 eV while
the rest of the atoms are kept at ε = −6.6 eV. The hopping parameter is
t = −2.5 eV, and the coupling to the leads Γ = 0.05 eV.

The application of the gate potential produces small changes in the en-
ergy eigenvalues with respect to the ungated molecule. Nevertheless, two
qualitatively different features occur, namely, the breaking of the degener-
acy of states (E2, E3) and (E4, E5), and the change in the symmetry of the
corresponding orbitals. The lowest and the highest energy orbitals are only
slightly modified and keep their symmetry. For both, gated and ungated
benzene, the first orbital have a single sign in all the plane while the highest
energy orbital alternates its sign from one atom to the adjacent one.

From application of the above stated graphical rules, the effect of the
relative positions of gate and leads can be anticipated. Firstly, we consider
the transmission spectra of benzene with a gate at atom 5. The left lead
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is connected at atom l = 1, while the right lead is attached to atom r,
where r = 2, 3 and 4 for the ortho, meta and para connections, respectively.
Fig. 3a shows plots of molecular orbitals for this case. For none of them
any nodal line passes through atoms 1, 3 nor 4. Therefore, at the energy
eigenvalues there are peaks of transmission in the meta and para connections.
For the ortho connection, however, there are zeroes of transmission at E =
E2 and E = E4 because a nodal line passes through atom 2 in the plot
of the molecular orbitals corresponding to those energies. The other two
antiresonances are multipath zeroes in the intervals (E1, E2) and (E5, E6),
that are due to the fact that the atoms 1 and 2 have residues of the same
sign at two consecutive poles of the Green function. In the plots, this is seen
as due to the fact that the atoms 1 and 2 both occupy regions of opposite
signs in the two consecutive orbitals ψ5 and ψ6.

On the other hand, atoms 1 and 3 occupy regions of the same sign, thus
giving positive residue, in the orbitals ψ1, ψ3, ψ5 and ψ6. Therefore an
antiresonance is expected for the meta connection (with the gate applied at
atom 5) in the interval (E5, E6).

Finally, atoms 1 and 4 occupy regions of the same sign for the orbitals ψ1,
ψ4 and ψ5; as a consequence an antiresonance in the transmission function
of the para-connection arises in the interval (E4, E5), since both energies are
poles with residues of the positive sign. A similar analysis shows that E2 and
E3 are poles having both negative residues, thus giving an antiresonance in
the interval (E2, E3).

Fig. 4b shows the comparison for a fixed connection (meta between atoms
1 and 3) of the effect of the gate position. The transmission functions for
a gate applied on atoms 4 and 5 are shown with dashed blue line and solid
red line, respectively. The most remarkable change is that the peak of trans-
mission at E = E2 and E = E4, when the gate is applied on atom 4, turns
into an antiresonance when the gate is applied on atom 5. The reason can
be traced back to the Green function (depicted in Fig. 4c), which shows that
G13(E) diverges at E = E2 for the gate at 5, while remains finite for the
gate at 4. Nevertheless, a simpler justification can be argued based on the
molecular orbital plots. As seen in Fig. 4a, both sets of orbitals only differ
in a 60 degrees rotation between each other. Then, the nodal line passing
through atom 1 at E = E2 and E = E4 when the gate is on site 4, transforms
into a nodal line passing through atom 2 when the gate is on site 5. Then,
for the 1,3-meta- connection, the former has a vanishing weight at one of the
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connecting atoms (atom 1), while the latter does not. Interestingly, such a
change in the relative position of gate and connecting sites, entails a change
from perfect to null transmission at a given energy.

In order to get a deeper insight of the cancellation of the transmission due
to interference of pathways, consider benzene connected to the leads in the
meta configuration with l = 1, r = 3, and the gate potential applied to atom
4 or 5. The self-energy Σlr = Σ13 becomes the sum of two contributions [Eq.
(12)]

Σ13 = (g22 + g46)t2, (16)

one through the single site 2 with g22 = (E − ε)−1, and another through a
three-atoms chain (4 → 5 → 6) having an on-site energy εg at its end (gate
applied on site 4) or in the central site (gate applied at 5). Then,

g
(4)
46 =

t2

(E − ε)2(E − εg) + t2(εg + ε− 2E)
, (εg on site 4), (17)

or

g
(5)
46 =

t2

(E − ε) [(E − ε)(E − εg)− 2t2]
, (εg on site 5) (18)

with the super-index refering to the gate position.
When the gate is applied on site 4, at the energy E = εg, the contributions

g
(4)
46 = (ε− εg)−1 = −g22, cancels each other exactly, thus giving Σ13 = 0 and

therefore, an antiresonance in the transmission occurs at the energy of the
gate potential.

On the other hand, if the gate potential is applied at site 5, both g22 and
g

(5)
46 diverge at E = ε, and so does Σ13. Nevertheless, for this analytically

solvable case, it can be explicitly shown that for arbitrary on-site energies
ε4 and ε5, the self-energy is proportional to (E − ε4) [(E − ε5)(E − ε)− t2].
Therefore, when the gate is appled on site 5, ε4 = ε and ε5 = εg, the antires-
onances occur at E = ε and (ε + εg)/2 ± t, which correspond to the zeroes
at -8.85 eV and -3.85 eV.

Consider now para-connected benzene: l = 1, r = 4; in this case, Σ14 =
(g23 + g56)t2. If all on-site energies ε are the same, g23 = g56 and there is
constructive interference. However, if one on-site energy, say ε2 = εg, is
different,

g23 =
t

(E − εa)(E − εb)
, g56 =

t

(E − ε′a)(E − ε′b)
, (19)
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Figure 4: (a) Plots of molecular orbitals for the gate potential applied on atom 4 and
5. (b) Transmission function T (E) and (c) the Green function for 1,3 meta-benzene with
gate potentials applied at atoms 4 (dashed blue line) and 5 (solid red line).

where εa and ε′a are the energies of the antibonding orbitals, while εb and ε′b
are those of the bonding ones for the fragments 2-3 and 5-6, respectively,

εa,b = (εg + ε)/2±
√
t2 + (εg − ε)2/4, (20)

ε′a,b = ε± t (21)

Therefore, for energies εa < E < ε′a and εb < E < ε′b, g23 and g56 have
opposite signs and can cancel each other, thus giving a vanishing transmis-
sion. It should be noted that no antiresonance occur in the interval (ε′a, εb),
roughly corresponding to the absence of zeroes of transmission within the
HOMO-LUMO gap in the para-connection. Hence, the two paths interfere
destructively as a consequence of shifting the bonding and anti-bonding lev-
els of one fragment with respect to the other, by tuning one on-site energy.

Finally, Fig. 5 shows the effect of applying a gate voltage on atoms 5
and 6 simultaneously. From applying the graphical rules to the plots of
the molecular orbitals, Fig. 5(a), the transmission in the ortho, meta and
para-connections, Fig 5(b)-(d), can be understood as follows. Since none
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nodal surface passes through any atom, there are peaks of transmission at
every molecular eigenenergy. Nevertheless, two antiresonances arise close to
energies E3 and E5, as shown in the insets. The orbital ψ4 shows that, at the
energy E = E4, each one of the connected atoms is far from the nodal lines.
On the contrary, the orbital ψ5 shows that the atom 1, connected to the left
lead, is very close to a nodal surface, thus implying that the weight of the
orbital on atom 1 is small. The coefficients of ψ5 on atoms 2 and 3 are larger,
thus producing a finite, although not perfect, transmission for the ortho and
meta connections. In the para connection, nevertheless, both atoms 1 and
4 are equivalent because their positions are symmetrical with respect to an
axis passing perpendicularly to the line joining the gated atoms 5 and 6, thus
producing a perfect transmission, as mentioned for Eq. (4).

4. Concluding remarks

In this work we have analyzed the relation between the transmission func-
tion with the electronic structure of the isolated molecule and provided graph-
ical rules of analysis from direct inspection of the plots of molecular orbitals.
As an application of the concepts discussed, we have calculated the transmis-
sion of a benzene molecule subjected to tunable gate potentials, represented
by a continuous variation of the on-site energy with the molecule connected
in ortho, meta and para configurations. It is expected that this type of picto-
rial prediction of the transmission coefficient should be of help as a guideline
for experiments and applications of more accurate theoretical methods.
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