3,845 research outputs found

    Approaching perfect microwave photodetection in circuit QED

    Get PDF
    In order to apply all ideas from quantum optics to the field of quantum circuits, one of the missing ingredients is a high-efficiency single-photon detector. In this work we propose a design for such a device which successfully reaches 100% efficiency with only one absorber. Our photon detector consists of a three-level system (a phase qubit) coupled to a semi-infinite one-dimensional waveguide (a microwave transmission line) which performs highly efficient photodetection in a simplified manner as compared to previous proposals. Using the tools of quantum optics we extensively study the scattering properties of realistic wave packets against this device, thereby computing the efficiency of the detector. We find that the detector has many operating modes, can detect detuned photons, is robust against design imperfections, and can be made broadband by using more than one absorbing element in the design. Many of these ideas could be translated to other single-mode photonic or plasmonic waveguides interacting with three-level atoms or quantum dots

    Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies

    Get PDF
    Hyperphosphatemic familial tumoral calcinosis (HFTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is an autosomal recessive disorder of ectopic calcification due to deficiency of or resistance to intact fibroblast growth factor 23 (iFGF23). Inactivating mutations in FGF23, N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO (KL) have been reported as causing HFTC/HHS. We present what we believe is the first identified case of autoimmune hyperphosphatemic tumoral calcinosis in an 8-year-old boy. In addition to the classical clinical and biochemical features of hyperphosphatemic tumoral calcinosis, the patient exhibited markedly elevated intact and C-terminal FGF23 levels, suggestive of FGF23 resistance. However, no mutations in FGF23, KL, or FGF receptor 1 (FGFR1) were identified. He subsequently developed type 1 diabetes mellitus, which raised the possibility of an autoimmune cause for hyperphosphatemic tumoral calcinosis. Luciferase immunoprecipitation systems revealed markedly elevated FGF23 autoantibodies without detectable FGFR1 or Klotho autoantibodies. Using an in vitro FGF23 functional assay, we found that the FGF23 autoantibodies in the patient's plasma blocked downstream signaling via the MAPK/ERK signaling pathway in a dose-dependent manner. Thus, this report describes the first case, to our knowledge, of autoimmune hyperphosphatemic tumoral calcinosis with pathogenic autoantibodies targeting FGF23. Identification of this pathophysiology extends the etiologic spectrum of hyperphosphatemic tumoral calcinosis and suggests that immunomodulatory therapy may be an effective treatment

    Controllable Image Generation via Collage Representations

    Full text link
    Recent advances in conditional generative image models have enabled impressive results. On the one hand, text-based conditional models have achieved remarkable generation quality, by leveraging large-scale datasets of image-text pairs. To enable fine-grained controllability, however, text-based models require long prompts, whose details may be ignored by the model. On the other hand, layout-based conditional models have also witnessed significant advances. These models rely on bounding boxes or segmentation maps for precise spatial conditioning in combination with coarse semantic labels. The semantic labels, however, cannot be used to express detailed appearance characteristics. In this paper, we approach fine-grained scene controllability through image collages which allow a rich visual description of the desired scene as well as the appearance and location of the objects therein, without the need of class nor attribute labels. We introduce "mixing and matching scenes" (M&Ms), an approach that consists of an adversarially trained generative image model which is conditioned on appearance features and spatial positions of the different elements in a collage, and integrates these into a coherent image. We train our model on the OpenImages (OI) dataset and evaluate it on collages derived from OI and MS-COCO datasets. Our experiments on the OI dataset show that M&Ms outperforms baselines in terms of fine-grained scene controllability while being very competitive in terms of image quality and sample diversity. On the MS-COCO dataset, we highlight the generalization ability of our model by outperforming DALL-E in terms of the zero-shot FID metric, despite using two magnitudes fewer parameters and data. Collage based generative models have the potential to advance content creation in an efficient and effective way as they are intuitive to use and yield high quality generations

    Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions

    Get PDF
    Numerous reports suggest there are low and high skeletal muscle hypertrophic responders following weeks to months of structured resistance exercise training (referred to as low and high responders herein). Specifically, divergent alterations in muscle fiber cross sectional area (fCSA), vastus lateralis thickness, and whole body lean tissue mass have been shown to occur in high versus low responders. Differential responses in ribosome biogenesis and subsequent protein synthetic rates during training seemingly explain some of this individual variation in humans, and mechanistic in vitro and rodent studies provide further evidence that ribosome biogenesis is critical for muscle hypertrophy. High responders may experience a greater increase in satellite cell proliferation during training versus low responders. This phenomenon could serve to maintain an adequate myonuclear domain size or assist in extracellular remodeling to support myofiber growth. High responders may also express a muscle microRNA profile during training that enhances insulin-like growth factor-1 (IGF-1) mRNA expression, although more studies are needed to better validate this mechanism. Higher intramuscular androgen receptor protein content has been reported in high versus low responders following training, and this mechanism may enhance the hypertrophic effects of testosterone during training. While high responders likely possess “good genetics,” such evidence has been confined to single gene candidates which typically share marginal variance with hypertrophic outcomes following training (e.g., different myostatin and IGF-1 alleles). Limited evidence also suggests pre-training muscle fiber type composition and self-reported dietary habits (e.g., calorie and protein intake) do not differ between high versus low responders. Only a handful of studies have examined muscle biomarkers that are differentially expressed between low versus high responders. Thus, other molecular and physiological variables which could potentially affect the skeletal muscle hypertrophic response to resistance exercise training are also discussed including rDNA copy number, extracellular matrix and connective tissue properties, the inflammatory response to training, and mitochondrial as well as vascular characteristics

    Spelling errors and shouting capitalization lead to additive penalties to trustworthiness of online health information: randomized experiment with laypersons

    Get PDF
    Background: The written format and literacy competence of screen-based texts can interfere with the perceived trustworthiness of health information in online forums, independent of the semantic content. Unlike in professional content, the format in unmoderated forums can regularly hint at incivility, perceived as deliberate rudeness or casual disregard toward the reader, for example, through spelling errors and unnecessary emphatic capitalization of whole words (online shouting). Objective: This study aimed to quantify the comparative effects of spelling errors and inappropriate capitalization on ratings of trustworthiness independently of lay insight and to determine whether these changes act synergistically or additively on the ratings. Methods: In web-based experiments, 301 UK-recruited participants rated 36 randomized short stimulus excerpts (in the format of information from an unmoderated health forum about multiple sclerosis) for trustworthiness using a semantic differential slider. A total of 9 control excerpts were compared with matching error-containing excerpts. Each matching error-containing excerpt included 5 instances of misspelling, or 5 instances of inappropriate capitalization (shouting), or a combination of 5 misspelling plus 5 inappropriate capitalization errors. Data were analyzed in a linear mixed effects model. Results: The mean trustworthiness ratings of the control excerpts ranged from 32.59 to 62.31 (rating scale 0-100). Compared with the control excerpts, excerpts containing only misspellings were rated as being 8.86 points less trustworthy, those containing inappropriate capitalization were rated as 6.41 points less trustworthy, and those containing the combination of misspelling and capitalization were rated as 14.33 points less trustworthy (P<.001 for all). Misspelling and inappropriate capitalization show an additive effect. Conclusions: Distinct indicators of incivility independently and additively penalize the perceived trustworthiness of online text independently of lay insight, eliciting a medium effect size

    Improving protein order-disorder classification using charge-hydropathy plots

    Get PDF
    BACKGROUND: The earliest whole protein order/disorder predictor (Uversky et al., Proteins, 41: 415-427 (2000)), herein called the charge-hydropathy (C-H) plot, was originally developed using the Kyte-Doolittle (1982) hydropathy scale (Kyte & Doolittle., J. Mol. Biol, 157: 105-132(1982)). Here the goal is to determine whether the performance of the C-H plot in separating structured and disordered proteins can be improved by using an alternative hydropathy scale. RESULTS: Using the performance of the CH-plot as the metric, we compared 19 alternative hydropathy scales, with the finding that the Guy (1985) hydropathy scale (Guy, Biophys. J, 47:61-70(1985)) was the best of the tested hydropathy scales for separating large collections structured proteins and intrinsically disordered proteins (IDPs) on the C-H plot. Next, we developed a new scale, named IDP-Hydropathy, which further improves the discrimination between structured proteins and IDPs. Applying the C-H plot to a dataset containing 109 IDPs and 563 non-homologous fully structured proteins, the Kyte-Doolittle (1982) hydropathy scale, the Guy (1985) hydropathy scale, and the IDP-Hydropathy scale gave balanced two-state classification accuracies of 79%, 84%, and 90%, respectively, indicating a very substantial overall improvement is obtained by using different hydropathy scales. A correlation study shows that IDP-Hydropathy is strongly correlated with other hydropathy scales, thus suggesting that IDP-Hydropathy probably has only minor contributions from amino acid properties other than hydropathy. CONCLUSION: We suggest that IDP-Hydropathy would likely be the best scale to use for any type of algorithm developed to predict protein disorder

    Elevated Baseline C-Reactive Protein as a Predictor of Outcome After Aneurysmal Subarachnoid Hemorrhage: Data From the Simvastatin in Aneurysmal Subarachnoid Hemorrhage (STASH) Trial.

    Get PDF
    BACKGROUND: There remains a proportion of patients with unfavorable outcomes after aneurysmal subarachnoid hemorrhage, of particular relevance in those who present with a good clinical grade. A forewarning of those at risk provides an opportunity towards more intensive monitoring, investigation, and prophylactic treatment prior to the clinical manifestation of advancing cerebral injury. OBJECTIVE: To assess whether biochemical markers sampled in the first days after the initial hemorrhage can predict poor outcome. METHODS: All patients recruited to the multicenter Simvastatin in Aneurysmal Hemorrhage Trial (STASH) were included. Baseline biochemical profiles were taken between time of ictus and day 4 post ictus. The t-test compared outcomes, and a backwards stepwise binary logistic regression was used to determine the factors providing independent prediction of an unfavorable outcome. RESULTS: Baseline biochemical data were obtained in approximately 91% of cases from 803 patients. On admission, 73% of patients were good grade (World Federation of Neurological Surgeons grades 1 or 2); however, 84% had a Fisher grade 3 or 4 on computed tomographic scan. For patients presenting with good grade on admission, higher levels of C-reactive protein, glucose, and white blood cells and lower levels of hematocrit, albumin, and hemoglobin were associated with poor outcome at discharge. C-reactive protein was found to be an independent predictor of outcome for patients presenting in good grade. CONCLUSION: Early recording of C-reactive protein may prove useful in detecting those good grade patients who are at greater risk of clinical deterioration and poor outcome.Financial support: British Heart Foundation. None of the authors have any personal or institutional financial interest in drugs or materials in the manuscript. PJK and PJH are supported by the Cambridge NIHR BRC and PJH is supported by a NIHR Research Professorship. We also acknowledge the support of the Cambridge Clinical Trials Unit, UK Clinical Research Network and all 35 participating sites.This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1227/NEU.000000000000096

    New activation mechanism for half-sandwich organometallic anticancer complexes

    Get PDF
    The Cpx C–H protons in certain organometallic RhIII half-sandwich anticancer complexes [(η5-Cpx)Rh(N,N′)Cl]+, where Cpx = Cp*, phenyl or biphenyl-Me4Cp, and N,N′ = bipyridine, dimethylbipyridine, or phenanthroline, can undergo rapid sequential deuteration of all 15 Cp* methyl protons in aqueous media at ambient temperature. DFT calculations suggest a mechanism involving abstraction of a Cp* proton by the Rh–hydroxido complex, followed by sequential H/D exchange, with the Cp* rings behaving like dynamic molecular ‘twisters’. The calculations reveal the crucial role of pπ orbitals of N,N′-chelated ligands in stabilizing deprotonated Cpx ligands, and also the accessibility of RhI–fulvene intermediates. They also provide insight into why biologically-inactive complexes such as [(Cp*)RhIII(en)Cl]+ and [(Cp*)IrIII(bpy)Cl]+ do not have activated Cp* rings. The thiol tripeptide glutathione (γ-L-Glu-L-Cys-Gly, GSH) and the activated dienophile N-methylmaleimide, (NMM) did not undergo addition reactions with the proposed RhI–fulvene, although they were able to control the extent of Cp* deuteration. We readily trapped and characterized RhI–fulvene intermediates by Diels–Alder [4+2] cyclo-addition reactions with the natural biological dienes isoprene and conjugated (9Z,11E)-linoleic acid in aqueous media, including cell culture medium, the first report of a Diels–Alder reaction of a metal-bound fulvene in aqueous solution. These findings will introduce new concepts into the design of organometallic Cp* anticancer complexes with novel mechanisms of action
    • …
    corecore