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In order to apply all ideas from quantum optics to the field of quantum circuits, one of the missing ingredients
is a high-efficiency single-photon detector. In this work we propose a design for such a device which successfully
reaches 100% efficiency with only one absorber. Our photon detector consists of a three-level system (a phase
qubit) coupled to a semi-infinite one-dimensional waveguide (a microwave transmission line) which performs
highly efficient photodetection in a simplified manner as compared to previous proposals. Using the tools of
quantum optics we extensively study the scattering properties of realistic wave packets against this device, thereby
computing the efficiency of the detector. We find that the detector has many operating modes, can detect detuned
photons, is robust against design imperfections, and can be made broadband by using more than one absorbing
element in the design. Many of these ideas could be translated to other single-mode photonic or plasmonic
waveguides interacting with three-level atoms or quantum dots.
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I. INTRODUCTION

The field of quantum circuits is an interdisciplinary one
which combines ideas and tools from quantum optics with
the novel possibilities brought by superconducting circuits.
This field is undergoing a silent revolution, which started
with the first superconducting qubits [1–4], greatly advanced
in the matter-wave interaction field [5–7], and is now preparing
the foundations of an entirely new technology: propagating
quantum microwaves. The first ingredients in this new field
are the generation of nonclassical propagating waves—either
through qubits and cavities [8,9], or through nonlinearities
[10]—and the analysis of those fields, currently done using
quantum homodyne detection techniques [8,9,11–13]. In order
to consolidate and complete the field, we still lack two
other ingredients: photon-photon interactions and single-shot
photon detection and counting. In particular, photodetection
is the ultimate and most desired goal. It is common to
quantum optics and quantum-information protocols, from
trivial homodyne detection methods up to sophisticated all-
optical quantum-computing protocols [14]. Developing such
a tool in circuit QED would open the door to quantum
communication, quantum cryptography, and general-purpose
quantum-information processing with propagating photons. In
short, circuit QED allows quantum opticians to explore novel
physics and technologies that are not yet available for real
atoms interacting with electromagnetic fields.

In previous work [15,16], we identified photodetectors
as the ultimate missing tool in circuit QED, and helped in
specifying the desired properties of such a device: it should
be single shot, work outside the cavity [17], achieve great
efficiency, be broadband, and be passive. In that same work,
we proposed a rather minimal design that performed the
task [15,16]: coupling phase qubits to open transmission
lines. In our design the phase qubit acts as a metastable
three-level system which can absorb individual photons from
the one-dimensional photonic waveguide and transition into
a third, easily detectable state, in a process that implements

single-photon detection [Fig. 1(b)] with strict upper limit of
50%. We showed that by adding more qubits this value could
be easily increased up to 100%. This also had the side effect of
improving both the bandwidth and robustness of the detector.

In this work, we show that a slight modification of our
design boosts its efficiency up to 100% for a single-qubit
detector, without affecting the bandwidth or robustness of the
original design. The small change consists of embedding the
three-level system in a semi-infinite line, at some distance
from the end, which behaves as a perfect mirror. Qualitatively,
in this new setup the end mirror allows incoming photons to
bounce back from the end of the line and have several chances
to be detected just by a single qubit. Alternatively, the setup
can be seen as a one-dimensional implementation of the idea
in Ref. [18], by which a two-level system is made to absorb a
photon whose wave function is the complex conjugate of that
from a spontaneously emitted photon.

Our present work is also related to two recent developments.
The first one is the implementation of a microwave photode-
tector using phase-biased Josephson junctions in Ref. [19].
This setup contains some ingredients that are needed for the
proposals in this and previous papers [15,16], and in particular
its layout closely resembles the ones put forward in this paper.
The second work is devoted to the study of the quasibound
states that appear when a qubit is confronted with a mirror [20].
Those resonances are to a large extent responsible for the
high efficiency and long interaction times between incoming
photons and our detector. This is further evidenced in our
study of photodetection when the photons are directly injected
between the qubit and the mirror (Sec. IV).

Finally, we want to remark that the developments in this
and previous works [15,16] are very general. The formalism
is based on one-dimensional waveguides and three-level sys-
tems, and it could be trivially exported to novel and fascinating
experimental setups, such as single-mode fibers or photonic
waveguides interacting with atoms [21], or plasmonic waves
coupled to quantum dots or nitrogen-vacancy (NV) centers
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(a)

(b)

FIG. 1. (Color online) Scheme of our microwave photon detector
proposal. (a) The setup consists of a metastable quantum circuit
positioned at a distance L from the right mirror of a one-sided cavity,
forming a pseudocavity. (b) The quantum circuit can be made from
a current-biased Josephson junction, in which a washboard potential
confines two metastable states that can decay into a continuum of
current states.

[22,23], where the degree of controllability and interaction
strength are expected to approach those of circuit QED in the
near future.

This work is organized as follows. In Sec. II we study in
detail a design that consists of a three-level system sitting
on a semi-infinite transmission line and how it interacts with
a finite-width propagating photon. We work in the strong-
interaction, rotating-wave-approximation regime, in which the
number of excitations is preserved, and develop an analytic
approximation to the dynamics (Sec. II A), including a simple
analyitical expression for long wave packets (Sec. II B). With
these tools we can demonstrate that for a wide variety of
parameters a single photon may be perfectly absorbed by the
three-level detector, even when it is detuned (Sec. II C). In
Sec. III we develop a simplified theory based on scattering of
plane waves which reproduces the previous results and allows
us to study setups with more than one three-level system. The
main result is that an increased number of absorbers enhances
the robustness, the bandwidth, and the overall performance
of the detector. In Sec. IV we slightly modify our theory to
study what happens when photons are not coming from the
semi-infinite transmission line, but rather injected through the
end of the line. We will show that efficient photodetection is
still possible and is mediated by quasilocalized states between
the qubit and the mirror, at the expense of longer detection
times. Finally in Sec. V we summarize our results.

II. A QUBIT AND A MIRROR

In this section, we discuss the simple setup of a semi-infinite
transmission line coupled to a metastable quantum circuit
located at a distance L from the end of the waveguide,
which acts as a mirror (see Fig. 1). Studying the problem
in real space, we derive the relevant equations describing
the dynamics of the system. These models are used to study

the scattering of a photon wave packet, showing that, under
realistic conditions, it is completely absorbed by the metastable
quantum circuit which represents the detector itself. More
precisely, we demonstrate that when the photon is not reflected,
the fraction that bounces back and forth between the absorber
and the end mirror is also absorbed and thus detected. This
will be the starting point for a more general and simpler theory
in the following section.

A. One absorber interacting with a single photon

As sketched before, the basis of our work, as in our
previous proposal [15,16], is the real-space representation
of a one-dimensional waveguide interacting with a single
qubit [24]. The model consists of a non-Hermitian Hamiltonian
that contains terms for the metastable quantum circuits or
“absorbers,” modeled as three-level systems, and the radiation
fields ψR and ψL propagating to the right and to the left with
group velocity vg ,

H =
∑

i

h̄

(
ωi − i

�i

2

)
|1〉i〈1|

+ ih̄vg

∫
[ψ†

L∂xψL−ψ
†
R∂xψR]dx

+
∑

i

h̄V

∫
δ(x−xi)[(ψR+ψL)|1〉i〈0|+H.c.]dx. (1)

Note how the interaction between photons and circuits is
modeled using a δ potential of strength V located at the
positions of the latter, xi . In this notation, |0〉 and |1〉 represent
the two states of the absorber connected by the photon [see
Fig. 1(b)], �i stands for the decay rate from the metastable
state |1〉, and ωi is the frequency separation between |0〉
and |1〉.

The simplest scenario that we consider is a single photon
interacting with one absorber placed at x = 0, as shown in
Fig. 1(a). The photon coming from the left with energy E =
h̄|k|vg will exchange its excitation. The most general wave
function that describes this process is [24]

|�〉=
∫

[ξR(x)ψ†
R(x)+ξL(x)ψ†

L(x)]|0,vac〉 + e(t)|1,vac〉.
(2)

The first part of the state constitutes the most general form in
which the field contains just a single photon, moving right,
ξR(x), or left, ξL(x), with the detector or absorber in the
metastable state |0〉. As soon as this photon interacts with
the three-level system, there is some probability that the field
excitation gets absorbed and the three-level system jumps into
the unstable level |1〉. When this happens, the excited-state
population of the absorber, e(t), increases. We will derive the
evolution equations for general wave packets, ξR,L(x), but in
order to compute the absorption efficiency we need to impose
constraints on the bandwidth and the shape of these photons.

We want to emphasize the possibility of having input states
other than (2). Consider for instance an attenuated coherent
state. This basically consists on Eq. (2) plus a dominant term
|0,vac〉 and higher-order terms with two and more photons. The
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higher-order terms can be neglected and thus the absorption
efficiency basically coincides with the one derived using (2).
Another possibility would be an incoherent mixture of differ-
ent single-photon wave packets ρ = ∫

p[ξ ]|ψξ 〉〈ψξ |Dξ , with
some distribution over wave-packet shapes and properties,
p[ξ ]. One example of this is a statistical mixture of single
photons whose emission time and phase cannot be precisely
determined, as would be the case of photons emitted by a driven
qubit [8] or scattered by a two-level system [25]. In this simple
case the total efficiency will be the average over the possible
input states. However, given that the same source will produce
identical photons through time, and that our single-photon
detector will be insensitive to the arrival time and to the phase
(Sec. II B), we will find that it is enough to work with the
ansatz (2).

Solving the Schrödinger equation with the non-Hermitian
Hamiltonian (1) leads to a set of equations containing the field
and absorber amplitudes:

i∂t ξR(x,t) = −iv∂xξR(x,t) + V δ(x)e,

i∂t ξL(x,t) = +iv∂xξL(x,t) + V δ(x)e, (3)(
i∂t − ω + i

�

2

)
e = V

2
[ξ+

R + ξ−
R + ξ+

L + ξ−
L ],

where we abbreviate ξ±
R,L(t) := ξR,L(0±,t). As explained

elsewhere [16], our quantum jump description allows us to
compute the population of the level |g〉 as Pg = 1 − ||�||2.
Indeed, the value of Pg at long times is what we call the detector
efficiency and can be fully determined from the previous
equations, after a few manipulations.

Note that two equations in (3) can be turned into boundary
conditions around the absorber

ξ+
R = ξ−

R − i
V

vg

e, ξ−
L = ξ+

L − i
V

vg

e. (4)

This allows us to express the amplitude of the unstable state
|1〉 in terms of the left and right incoming fields, that is,[

i∂t − ω + i
�

2
+ i

V 2

vg

]
e = V [ξ−

R + ξ+
L ]. (5)

The above procedure is standard in any single-photon scat-
tering problem, but in this case the mirror to the right end
imposes another key boundary condition, which is a coupling
between right- and left-propagating fields. More precisely, the
only independent variable will be the field coming from the
left, ξR(0−,t) = φ(t), since the incoming field from the right,
ξL(0+,t), is generated by the former, after being reflected by
the mirror and affected by a phase factor κ . In other words,

ξ+
L (t) = κξ+

R (t − a) = κφ(t − a) − κi
V

vg

e(t − a), (6)

with a = 2L/vg depending on the distance between the
absorber and the mirror and the group velocity of the photons.
This boundary condition provides us with a closed delay
differential equation (DDE) for the amplitude of state |1〉,

i∂t e(t) =
[
ω − i

�

2
− i

V 2

vg

]
e(t) − κi

V 2

vg

e(t − a)

+V φ(t) + κV φ(t − a), (7)

thereby specifying the complete dynamics of the system for
any incoming signal.

B. Adiabatic limit

DDEs are very complicated mathematical objects which
rarely have analytic solutions and which typically lead to
nonlinear phenomena. In order to simplify the treatment, avoid
critical behavior, and get some understanding of the detection
of realistic wave packets, we will make some additional
simplifications. More precisely, we will assume an incoming
wave packet with frequency ω0 and phase η and adiabatically
modulate

φ(t) = χ (t) exp(−iω0t + iη), |∂tχ | � ω0. (8)

This ansatz has various consquences for the dynamics. First
of all, the absorber itself will evolve according to the main
frequency, e(t) = vgx(t) exp(−iω0t + iη)/V . Second, intro-
ducing the constants θ = ω0a and a = vg�/V 2 and making
the change of variables t = vτ/V 2, we will obtain a simplified
equation

i∂τ x(τ ) = −i(1 + γ )x(τ ) − izx(τ − �)

+χ (τ ) + zχ (τ − �), (9)

with only two free parameters

γ = vg

V 2

[
�

2
+ i(ω − ω0)

]
, z = κeiθ . (10)

Finally, using the adiabatic approximation, that is, the smooth-
ness of the envelope, |∂τχ | � ω0, we may replace χ (τ − �)
by χ (τ ), and integrate the resulting equation

x(τ ) = −i(1 + z)
∫ τ

−∞
e−(1+γ+z)(τ−s)χ (s)ds. (11)

The whole problem has simplified considerably, and in par-
ticular the dependency on the global phase η has disappeared
completely.

C. Test wave packets

Starting from expression (11) we would like to compute
the efficiency of the detector. The integral in that equation is
roughly a Fourier transform of the adiabatic modulation, and
we expect that the the left-hand-side term, in the limit t → ∞,
does not depend much on the fine details of the driving field.
One may now study, for instance, a normalized Gaussian wave
packet

χ (τ ) = 1√
σ
√

π
exp[−τ 2/(2σ 2)], (12)

and how it is scattered by the three-level system. The Gaussian
form is chosen for convenience, but it is in no way essential
for the results. This Gaussian has the advantage that in the
limit σ → ∞ it contains the case of infinite plane waves, a
limit which we used in previous works and which we would
like to recover. However, as long as the wave packet remains
adiabatic, that is, σ � ω−1

0 , none of the results will depend
dramatically on its precise shape, as we confirmed numerically.

We are now in a position to compute the transmitted
and reflected wave packets ξ+

R (t),ξ−
L (t), the dynamics of the
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FIG. 2. (Color online) (a) Time evolution of an incident wave
packet that undergoes no reflection, leading to a confined field to the
right of the absorber. (b) Decay of the field inside the absorber-mirror
cavity. The inset shows a logarithmic plot of the field amplitude,
exhibiting a time scale with decay.

detector x(t), and even the detection probability mentioned
before, all as a function of the parameters σ, γ , and z. The
first result that we show in Fig. 2(a) is that there indeed exist
configurations for which no incoming photon is reflected. In
such setups the photon tunnels through the qubit and bounces
back and forth between the qubit and the mirror. If this process
continued indefinitely, our system could not perform as a
photodetector, as it would never capture the photon and switch.
In order for the photodetection to succeed, the three-level
system must be able to absorb the confined field completely
and undergo an irreversible transition to the “click” state |g〉.
Fortunately, as Fig. 2(b) shows, the population of the field
inside the qubit-mirror pseudocavity dissipates very quickly,
and in a time scale determined by the decay channel of the
absorber, �−1, the absorber fully detects the confined photon.

The above results give us a hint that a single absorber
with a mirror could reach 100% detection efficiency, but this
result must be confirmed for a larger variety of experimental
parameters. In order to make the study more systematic, we
introduce the detector efficiency as the fraction of the wave
packet that was absorbed, given by

α = 1 −
∫ ∞
−∞ |ξL(0−,t)|2∫ ∞
−∞ |ξR(0−,t)|2 . (13)

This value is computed numerically for different photon
profiles σ and varying setup parameters ω, ω0, θ , and �.
With respect to the pulse width, we have found that any
value of σ > 10 gives approximately the same result. For
the other parameters we have to distinguish the resonant and
nonresonant cases, and in the latter study the dependence
of the efficiency on the detuning, δ = ω − ω0. As shown in
Fig. 3(a), for a resonant incident photon the efficiency reaches
a maximum of 100% around θ = π and � = 2 [Fig. 3(a)],
where � is in units of V 2/vg . When the photon is off resonant,
δ 	= 0, we obtain two remarkable results. First of all, theoretical
perfect detection is still possible, and second, this happens for
two different sets of parameters, as shown in Fig. 3(b). The
relative position of the two maxima depends on the coupling
strength V . These solutions approach each other [Fig. 3(c)]
until the detuning reaches a threshold δ � V 2/vg , where the
two solutions merge and disappear. Using parameters in the
range used in Ref. [15], this sets the limit of the bandwidth
around δ ∼ 10–100 MHz for just a single detector, but it
increases for larger couplings.

III. SCATTERING THEORY

In the previous section we demonstrated two important
results. The first one is that the scattering of a realistic
wave packet through a single three-level system indicates the
existence of a regime of theoretically perfect photodetection.
The second one is that we can analytically compute all
scattering properties for a sufficiently large wave packet and
that these values are almost insensitive to the wave-packet size.
This result motivates us to replace the previous formalism with
a simpler one, based on the scattering of plane waves through
one or multiple three-level systems. This method, developed
in Ref. [24] and applied in our photodetector works [15,16],
has the advantage that it scales well to setups with multiple
detectors, an ingredient which is crucial for enhancing the
robustness and the bandwidth of the detector.

Consider an incident monochromatic beam interacting with
more qubits, using the scattering theory developed in Refs. [15,
16,24]. The idea is that the fields on the left and on the right
of the absorbers are related by a scattering matrix(

ξ ′
R

ξ ′
L

)
= T

(
ξR

ξL

)
, (14)

where T stands for the transfer matrix and takes the form

T =
N∏
j

ei
2πLj

λ
σzTj , Tj =

(
1 − 1/γ −1/γ

1/γ 1 + 1/γ

)
. (15)

Compared to Ref. [15], the main difference now is that after
leaving the scatterers and confronting the mirror, the field has
to satisfy a boundary condition(

1
κ

)
= exp(iθσ z)T

(
ξR

ξL

)
. (16)

The parameter θ is the phase acquired by the photon between
the last scatterer and the mirror, while κ is the boundary
condition for the mirror to have zero field, typically −1.
The previous equations hide a relation between the incoming
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FIG. 3. (Color online) (a) Detection efficiency as a function of the
decay γ and the phase θ when the three-level system is on resonance
with the incident photon. (b) Real part of the detection efficiency for
the off-resonance case. (c) Position of the efficiency maxima as a
function of the detuning (off-resonance case).

field ξ−
R and the reflected one ξ−

L , which can be revealed by
projecting onto an orthogonal subspace

(
κ −1

)
exp(iθσ z)T

(
ξR

ξL

)
= 0. (17)

In the case of a single absorber (N = 1), we directly obtain an
analytic expression for the outgoing field,

ξL =
[

γ (z + 1)

1 + γ + z
− 1

]
ξR, (18)

which becomes exactly zero for

γ = 1 + z−1, (19)

reflecting the limit in which no photon is reflected and all
photons are absorbed, in perfect agreement with the exact
results for Gaussian wave packets developed in the previous
section.

Using this formalism, we can go beyond one absorber,
studying the optical properties of a setup with multiple three-
level systems in front of a mirror. Inspired by our previous
works we expect that a setup with multiple scatterers will help,
first, by increasing the robustness of the detector and, second,
by enlarging the band of frequencies for which almost perfect
detection takes place. Furthermore, as shown in those works,
the way in which we place the absorbers is very relevant, as
placing them too close together does not have any influence
in the detector efficiency or bandwidth. For simplicity, we
will adopt the optimal configuration from the open line, with
equally spaced absorbers. From the elements of the transfer
matrix given by Eq. (15), we can compute the absorption
efficiency (13) using the formula

α = 1 −
∣∣∣∣T11 + eiθT12

T21 + eiθT22

∣∣∣∣
2

, (20)

where now Tij depends on the number of absorbers, N , and
the previous two parameters � and θ .

As an illustration, in Fig. 4 we show three plots that
demonstrate the enhanced bandwidth and decreased sensitivity
to the qubit and setup properties � and θ . To start with, let
us look at Fig. 4(a), which plots the detector efficiency for
N = 4 absorbers. Compared with Fig. 3(a), the maximum
efficiency is extended to a larger region of mirror separations,
now centered around π/2,3π/2, and tolerates also a larger set
of decay rates �. This is further confirmed when we study the
evolution of the efficiency for increasing number of absorbers.
For instance, Fig. 4(b) represents the efficiency as a function of
the phase θ = 4πL/λ, where L stands for the distance between
absorbers. Notice that, for N = 8 absorbers, the efficiency
reaches more than 90% almost independently of θ , the relative
position between absorbers becoming less important. A similar
effect happens with the detuning, and as Fig. 4(c) shows, the set
of multiple detectors very quickly acquires a large bandwidth,
even faster than in our previous works [15,16].

IV. DETECTING THROUGH THE MIRROR

On looking at our setup a natural question arises: what
happens if the photon is not coming from the semi-infinite
transmission line, but instead it “tunnels” through the mirror,
which is not perfect? This is an interesting question for a
number of reasons. The first one is that if the photon is
directly injected between the mirror and the cavity it has a
great chance to probe quasibound states existing between both,
providing further evidence that the qubit and the mirror form
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FIG. 4. (Color online) (a) Absorption efficiency for four qubits
as a function of the decay and phase θ . (b) Performing a cut along
the optimal value of � (dashed line), we compute the efficiency
as a function of θ for N = 1, 4, and 8 absorbers. (c) Efficiency
dependence on the detuning rate

a pseudocavity [20]. The second reason is that this setup is
close to the recent experiment [19] which demonstrates the
photodetection capabilities of a phase-biased junction.

Describing a semi-infinite line with an imperfect mirror
would severely depart from the methods introduced in this
paper, requiring the introduction of environments, decoher-
ence, and master equations. Fortunately, there is a simple “toy”
model that contains the essential ingredients of the problem
and which can still be treated with the scattering formalism. In
our model the photon is directly tunneling between the qubit
and the mirror, as shown in Fig. 5(a), and the only way it
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FIG. 5. (Color online) (a) Photodetector scheme for an incident
photon coming from the right. (b) Detection efficiency associated
with this detector.

may leak is by passing through the qubit again. The incoming
photon profile will be denoted by φin(t), and we expect that the
wave packet is partially trapped into the pseudocavity formed
by the mirror and the absorber and is partially transmitted.
Working with our previous single-photon formalism we obtain
the following set of equations for the field amplitudes:

ξ−
R (t) = 0, ξ+

R (t) = ξ−
R (t) − i

V

vg

e(t),

ξ−
L (t) = ξ+

L (t) − i
V

vg

e(t), ξ+
L (t) = φin(t) + κξ+

R (t − a),

(21)

where the presence of the time-delayed amplitude field ξ+
R is

due to the iterative feedback with the mirror. Using the same
tools, we can now compute the detection efficiency associated
with the switching process of the three level system. As shown
in Fig. 5(b), the contour plots of the efficiency suffer a radical
change. While the maxima are still at a resonant distance
between mirror and qubit, the 100% detection efficiency is
strictly achieved for � → 0.

The previous analytical results have a very clear interpre-
tation. In order to have a large detection efficiency, the photon
has to spend a long time bouncing between the mirror and the
qubit. However, as shown previously [24], the qubit acts as a
perfect mirror only strictly for � = 0. The consequence is that
in this setup the decay time of the three-level system, �, must
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approach zero to increase the efficiency, and at the same time
the detection time diverges as 1/�. In other words, while this
setup seems quantitatively similar to the previous ones, it does
not work in practice, because, first, the tunneling probability
of the photon through the mirror will be small and, second, the
detection times are so long that the process will be damaged
by decoherence and losses.

V. SUMMARY AND CONCLUSIONS

The main result of this work is that a three-level system,
implemented as a phase qubit, a biased Josephson junction, or
whatever seems adequate, is an almost perfect photodetector.
The efficiency of this device is limited only by how it couples to
the waves that contain the photons it has to detect. In particular,
it seems that the setup we originally proposed [15,16] can
be improved by replacing a completely open transmission
line with a semi-infinite line that brings the photons to the
detector, allowing repeated interactions. We have studied this
absorber-mirror system in detail. Instead of a simple scattering
model [15,16], we now have a delay differential equation
that allows for nonlinear behavior and in particular for a
constructive interference effect. We have demonstrated that,
thanks to this effect, when an incoming photon passes through
the only qubit without reflection it is actually absorbed. This
first result is quite important, because it rules out that the
photon gets trapped in a metastable confined state between
the absorber and the mirror [19], and because it allows us
to develop a much simplified theory based on the scattering
of plane waves. With this theory we confirmed the 100%
efficiency of a single absorber, and extended our design to
include multiple qubits in front of a mirror, a setup that shows
enhanced bandwidth and very much decreased sensitivity to
the detector properties.

The insensitivity of the detector to the phase and its large
bandwidth can be used to prove numerically, as in Ref. [16],
its robustness against imperfections in the qubit specifications
and dephasing, which are the most important sources of
decoherence. Furthermore, since we use the same ingredients
as in our previous proposal, all other considerations about
robustness still apply. For instance, spontaneous decay from
the 1 to the 0 level is also not a problem, because this mainly
happens through radiative decay in which the qubit switches
its state and deposits a photon on the line. But, as we have seen
above, this decay process is contemplated in the theory through
the coupling “V”: in other words, spontaneous emission is part
of what makes the detector work. We can also neglect photon
losses, nonradiative qubit decay, and leaky mirrors, because

they operate on time scales which are much longer than the
photon wave packet. Finally, the greatest technical difficulty
of the setup is the control of the three-level system, to avoid
dark counts, that is, spontaneous transitions of the phase qubit
from the 0 state to the “g” states. This can be dealt with
by controlling the ratio between decay rates of the 0 and the 1
levels to the continuum. As is currently done with phase qubits,
by tuning the bias it is possible make the jump probability of
0 → g a thousand times smaller than �, which is typically
longer than the photon wave packets considered here. Another
possibility is to periodically refresh the detector, resetting it to
the 0 state, similar to the periodic refreshing that happens with
some photodetectors in the optical regime.

Overall, a small change in the photodetector design has been
shown to provide an enormous increase in detection efficiency,
revealed a different dynamics with a great potential for further
development, while making the setup simpler and much more
attractive for actual implementation. We strongly believe that
this setup is now suitable for integration in ongoing circuit
QED experiments with two-level systems and single photons
[8,9,25–27]. In this case one might need to use circulators to
prevent reflection from the detector and mutual interactions
spoiling the emitter signal. A realistic example is found in
Ref. [25], where the photons scattered by a two-level system
are shown to have widths of about 1 ns (a few centimeters) and
can be efficiently routed by circulators on the same chip.

Finally, we expect that many of the ideas in this work
can be translated to other physical systems that combine
fiber, photonic, or plasmonic waveguides with atoms, quantum
dots or NV centers [21–23], once the current degree of
controllability and interaction strength of circuit QED is
achieved.
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