23 research outputs found

    Usefulness of ELISA Methods for Assessing LPS Interactions with Proteins and Peptides

    Get PDF
    Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, can trigger severe inflammatory responses during bacterial infections, possibly leading to septic shock. One approach to combatting endotoxic shock is to neutralize the most conserved part and major mediator of LPS activity (lipid A) with LPS-binding proteins or peptides. Although several available assays evaluate the biological activity of these molecules on LPS (e.g. inhibition of LPS-induced TNF-α production in macrophages), the development of simple and cost-effective methods that would enable preliminary screening of large numbers of potential candidate molecules is of great interest. Moreover, it would be also desirable that such methods could provide information about the possible biological relevance of the interactions between proteins and LPS, which may enhance or neutralize LPS-induced inflammatory responses. In this study, we designed and evaluated different types of ELISA that could be used to study possible interactions between LPS and any protein or peptide. We also analysed the usefulness and limitations of the different ELISAs. Specifically, we tested the capacity of several proteins and peptides to bind FITC-labeled LPSs from Escherichia coli serotypes O111:B4 and O55:B5 in an indirect ELISA and in two competitive ELISAs including casein hydrolysate (hCAS) and biotinylated polymyxin B (captured by deglycosylated avidin; PMX) as LPS-binding agents in the solid phase. We also examined the influence of pH, detergents and different blocking agents on LPS binding. Our results showed that the competitive hCAS-ELISA performed under mildly acidic conditions can be used as a general method for studying LPS interactions, while the more restrictive PMX-ELISA may help to identify proteins/peptides that are likely to have neutralizing properties in vitro or in vivoThis work was funded by Ministerio de Ciencia e Innovación, Spain, Grant AGL2011-30563-C03; Xunta de Galicia, Spain, Grant GPC2014/058; and the European Fund for Regional Development (FEDER). VMS holds a predoctoral fellowship from the Spanish Ministerio de Educación, Cultura y Deporte (Programa de Formación del Profesorado Universitario) and RAOM is recipient of a fellowship from the Spanish Ministerio de Economía y Competitividad (Programa de Formación de Personal Investigador). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptS

    In-plate recapturing of a dual-tagged recombinant Fasciola antigen (FhLAP) by a monoclonal antibody (US9) prevents non-specific binding in ELISA

    Get PDF
    Recombinant proteins expressed in E. coli are frequently purified by immobilized metal affinity chromatography (IMAC). By means of this technique, tagged proteins containing a polyhistidine sequence can be obtained up to 95% pure in a single step, but some host proteins also bind with great affinity to metal ions and contaminate the sample. A way to overcome this problem is to include a second tag that is recognized by a preexistent monoclonal antibody (mAb) in the gene encoding the target protein, allowing further purification. With this strategy, the recombinant protein can be directly used as target in capture ELISA using plates sensitized with the corresponding mAb. As a proof of concept, in this study we engineered a Trichinella-derived tag (MTFSVPIS, recognized by mAb US9) into a His-tagged recombinant Fasciola antigen (rFhLAP) to make a new chimeric recombinant protein (rUS9-FhLAP), and tested its specificity in capture and indirect ELISAs with sera from sheep and cattle. FhLAP was selected since it was previously reported to be immunogenic in ruminants and is expressed in soluble form in E. coli, which anticipates a higher contamination by host proteins than proteins expressed in inclusion bodies. Our results showed that a large number of sera from non-infected ruminants (mainly cattle) reacted in indirect ELISA with rUS9-FhLAP after single-step purification by IMAC, but that this reactivity disappeared testing the same antigen in capture ELISA with mAb US9. These results demonstrate that the 6XHis and US9 tags can be combined when double purification of recombinant proteins is required.This work was supported by: Ministerio de Economía y Competitividad (Spain) [grant number AGL2011-30563-C03 and AGL2014-57125R], Ministerio de Economía, Industria y Competitividad (INIA, Spain) [grants numbers RTA2017-00010-C02-01 and RTA2017-00010-C02-02] and the Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia, Spain) [grant number ED431B 2017/18]. RAOM holds a predoctoral fellowship from the Spanish Ministerio de Economía y Competitividad (Programa de Formación de Personal Investigador). VMS is supported by a contract under the grant ED431B 2017/18. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    Development and Evaluation of a New Lateral Flow Immunoassay for Serodiagnosis of Human Fasciolosis

    Get PDF
    Fasciolosis is an important plant-borne trematode zoonosis. This disease is of both clinical and veterinary relevance and, according to the WHO, is considered a re-emerging disease that is spreading around the world. Fasciolosis has a serious impact on health because of the large size of the parasite and the effects of the parasite in down-regulating the host immune response. Human fasciolosis can be distinguished by an acute phase, in which the parasite migrates through different tissues, and a chronic phase in which it invades the bile ducts. Here we describe the development of a rapid, simple and inexpensive immunochromatographic diagnostic method, based on the use of a recombinant cathepsin L1 protein, which performs better than other more complex indirect methods, providing similar specificity and higher sensitivity. The simplicity of the method represents a great advantage for the intervention systems applied in different endemic areas by WHO, such as passive case finding (e.g. Vietnam) and selective treatment (e.g. Egypt). Because of its characteristics, the system can be applied to both phases of the disease, and in holo, meso and hyperendemic areas where point-of-care testing is required

    Delineating distinct heme-scavenging and -binding functions of domains in MF6p/helminth defense molecule (HDM) proteins from parasitic flatworms

    Get PDF
    MF6p/FhHDM-1 is a small protein secreted by the parasitic flatworm (trematode) Fasciola hepatica that belongs to a broad family of heme-binding proteins (MF6p/helminth defense molecules (HDMs)). MF6p/HDMs are of interest for understanding heme homeostasis in trematodes and as potential targets for the development of new flukicides. Moreover, interest in these molecules has also increased because of their immunomodulatory properties. Here we have extended our previous findings on the mechanism of MF6p/HDM-heme interactions and mapped the protein regions required for heme binding and for other biological functions. Our data revealed that MF6p/FhHDM-1 forms high-molecular-weight complexes when associated with heme and that these complexes are reorganized by a stacking procedure to form fibril-like and granular nanostructures. Furthermore, we showed that MF6p/FhHDM-1 is a transitory heme-binding protein as protein·heme complexes can be disrupted by contact with an apoprotein (e.g. apomyoglobin) with higher affinity for heme. We also demonstrated that (i) the heme-binding region is located in the MF6p/FhHDM-1 C-terminal moiety, which also inhibits the peroxidase-like activity of heme, and (ii) MF6p/HDMs from other trematodes, such as Opisthorchis viverrini and Paragonimus westermani, also bind heme. Finally, we observed that the N-terminal, but not the C-terminal, moiety of MF6p/HDMs has a predicted structural analogy with cell-penetrating peptides and that both the entire protein and the peptide corresponding to the N-terminal moiety of MF6p/FhHDM-1 interact in vitro with cell membranes in hemin-preconditioned erythrocytes. Our findings suggest that MF6p/HDMs can transport heme in trematodes and thereby shield the parasite from the harmful effects of heme.This work was supported in part by Ministerio de Ciencia e Innovación (Spain) Grant AGL2011-30563-C03, Xunta de Galicia (Spain) Grant GPC2014/058, Instituto de Salud Carlos III-Acción Estratégica de Salud Intramural Grant PI14CIII/00076, and the European Fund for Regional Development (FEDER). The authors declare that they have no conflicts of interest with the contents of this article.S

    Usefulness of ELISA Methods for Assessing LPS Interactions with Proteins and Peptides.

    No full text
    Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, can trigger severe inflammatory responses during bacterial infections, possibly leading to septic shock. One approach to combatting endotoxic shock is to neutralize the most conserved part and major mediator of LPS activity (lipid A) with LPS-binding proteins or peptides. Although several available assays evaluate the biological activity of these molecules on LPS (e.g. inhibition of LPS-induced TNF-α production in macrophages), the development of simple and cost-effective methods that would enable preliminary screening of large numbers of potential candidate molecules is of great interest. Moreover, it would be also desirable that such methods could provide information about the possible biological relevance of the interactions between proteins and LPS, which may enhance or neutralize LPS-induced inflammatory responses. In this study, we designed and evaluated different types of ELISA that could be used to study possible interactions between LPS and any protein or peptide. We also analysed the usefulness and limitations of the different ELISAs. Specifically, we tested the capacity of several proteins and peptides to bind FITC-labeled LPSs from Escherichia coli serotypes O111:B4 and O55:B5 in an indirect ELISA and in two competitive ELISAs including casein hydrolysate (hCAS) and biotinylated polymyxin B (captured by deglycosylated avidin; PMX) as LPS-binding agents in the solid phase. We also examined the influence of pH, detergents and different blocking agents on LPS binding. Our results showed that the competitive hCAS-ELISA performed under mildly acidic conditions can be used as a general method for studying LPS interactions, while the more restrictive PMX-ELISA may help to identify proteins/peptides that are likely to have neutralizing properties in vitro or in vivo

    Evaluation of Trichinella spiralis Larva Group 1 Antigens for Serodiagnosis of Human Trichinellosis

    No full text
    To identify Trichinella antigens suitable for high-specificity and high-sensitivity serodiagnosis of human trichinellosis, we evaluated assays using four antigens: (i) crude first-stage larval extract (CLE), (ii) O-deglycosylated CLE, (iii) tyvelose-bearing antigens (Trichinella spiralis larva group 1 [TSL-1] antigens) purified by US4 affinity chromatography and coupled directly to enzyme-linked immunosorbent assay (ELISA) plates (pTSL-1 antigens), and (iv) TSL-1 antigens immobilized on ELISA plates with the monoclonal antibody (MAb) US4 (cTSL-1 antigens). Assays using these antigens were compared by analysis of sera from healthy individuals (n = 224) (group 1), individuals with noninfectious intestinal pathologies (n = 114) (group 2), individuals with other parasitic infections (n = 107) (group 3), and individuals with confirmed trichinellosis (n = 42) (group 4). Our results indicate that capture ELISA using cTSL-1 antigens is the most effective method for serodiagnosis of human trichinellosis; this was the only method showing 100% specificity and 100% sensitivity at the patent stage of the infection, and it was also the most sensitive for sera obtained prior to patency in indirect immunofluorescence (IIF). Indirect ELISA with pTSL-1 antigens was also 100% specific but was slightly less sensitive, particularly with sera obtained before IIF patency. Inhibition ELISA with MAb US4 indicated (i) that in Trichinella-infected patients the immune response to TSL-1 antigens is directed mostly against tyvelose-containing epitopes (mean of 84.2% of total anti-TSL-1 immunoglobulin G1 [IgG1] antibody response [range, 51.3 to 97.6%]) and (ii) that in most individuals a large proportion of anti-CLE IgG1 antibodies (mean, 49.5%; range, 7.3 to 92.6%) are directed against tyvelose epitopes

    Increased specificity of Fasciola hepatica excretory-secretory antigens combining negative selection on hydroxyapatite and salt precipitation

    No full text
    Abstract A single and rapid method to obtain an antigenic fraction of excretory-secretory antigens (ESAs) from Fasciola hepatica suitable for serodiagnosis of fascioliasis is reported. The procedure consists in the negative selection of F. hepatica ESAs by hydroxyapatite (HA) chromatography (HAC; fraction HAC-NR) followed by antigen precipitation with 50% ammonium sulphate (AS) and subsequent recovery by means of a Millex-GV or equivalent filter (Fi-SOLE fraction). Tested in indirect ELISA, the Fi-SOLE antigens detected natural infections by F. hepatica with 100% sensitivity and 98.9% specificity in sheep, and 97.7% sensitivity and 97.7% specificity in cattle, as determined by ROC analysis. The SDS-PAGE and proteomic nano-UHPLC-Tims-QTOF MS/MS analysis of fractions showed that the relative abundance of L-cathepsins and fragments thereof was 57% in fraction HAC-NR and 93.8% in fraction Fi-SOLE. The second most abundant proteins in fraction HAC-NR were fatty-acid binding proteins (11.9%). In contrast, free heme, and heme:MF6p/FhHDM-1 complexes remained strongly bond to the HA particles during HAC. Interestingly, phosphorylcholine (PC)-bearing antigens, which are a frequent source of cross-reactivity, were detected with an anti-PC mAb (BH8) in ESAs and fraction HAC-NR but were almost absent in fraction Fi-SOLE

    Competitive hCAS-ELISA performed under neutral conditions.

    No full text
    <p>FITC-LPSs (5 μg/ml) from <i>E</i>. <i>coli</i> serotypes O111:B4 (A) and O55:B5 (B) were preincubated with different concentrations of proteins and peptides (40, 10, 1 and 0.25 μg/ml) in PBS-EDTA (pH 7.2) and added to the wells coated with casein hydrolysate (hCAS). Data are expressed as percentage inhibition of LPS binding to hCAS by the target molecule and are the mean values ±SD of duplicate wells. The average values of the optical density (492 nm) of control wells (without inhibitor) were 0.311 (±0.019, red dashed line) and 0.300 (±0.025, red dashed line) for serotypes O111:B4 and O55:B5, respectively. Differences were considered significant at <i>p</i> <0.05. NS: not significant. BSA, bovine serum albumin; HB, hemoglobin; HF1, histone f1 fraction; LF, lactoferrin; LSZ, lysozyme; MEL, melittin; MF6p, synthetic FhHDM-1/MF6p; MYO, myoglobin; P3L, <i>A</i>. <i>simplex</i> peptide: MCQCVQKYGTEFCKKRLA; PMX, polymyxin B.</p

    Influence of pH and ionic strength on LPS binding to casein hydrolysate (hCAS)-coated plates.

    No full text
    <p>FITC-LPSs from <i>E</i>. <i>coli</i> serotypes O111:B4 and O55:B5, diluted at 5 μg/ml in PBS-EDTA (pH 7.2) and acetate buffer-EDTA (pH 5.6) prepared 0.15 M, or the same buffers containing 1M NaCl, were added to hCAS-coated plates.</p
    corecore