1,217 research outputs found

    Implicit cognition is impaired and dissociable in a head-injured group with executive deficits

    Get PDF
    Implicit or non-conscious cognition is traditionally assumed to be robust to pathology but Gomez-Beldarrain et al (1999, 2002) recently showed deficits on a single implicit task after head injury. Laboratory research suggests that implicit processes dissociate. This study therefore examined implicit cognition in 20 head-injured patients and age- and I.Q.-matched controls using a battery of four implicit cognition tasks: a Serial Reaction Time task (SRT), mere exposure effect task, automatic stereotype activation and hidden co-variation detection. Patients were assessed on an extensive neuropsychological battery, and MRI scanned. Inclusion criteria included impairment on at least one measure of executive function. The patient group was impaired relative to the control group on all the implicit cognition tasks except automatic stereotype activation. Effect size analyses using the control mean and standard deviation for reference showed further dissociations across patients and across implicit tasks. Patients impaired on implicit tasks had more cognitive deficits overall than those unimpaired, and a larger Dysexecutive Self/Other discrepancy (DEX) score suggesting greater behavioural problems. Performance on the SRT task correlated with a composite measure of executive function. Head-injury thus produced heterogeneous impairments in the implicit acquisition of new information. Implicit activation of existing knowledge structures appeared intact. Impairments in implicit cognition and executive function may interact to produce dysfunctional behaviour after head-injury. Future comparisons of implicit and explicit cognition should use several measures of each function, to ensure that they measure the latent variable of interest

    Virtuality or Physicality? Supporting Memorization Through Augmented Reality Gamification

    Get PDF
    Augmented reality (AR) is evolving to become a pervasive tool for interacting with virtual objects. We conducted a comparative study to explore the impact of virtuality and physicality in supporting human memorization through gamification. A head-mounted display (HMD) AR memory matching game and a corresponding physical version game with paper boards were harnessed. The proof-of-concept version was demonstrated in an initial user study (n=12) with counterbalancing design to determine that our proposed gamified HMD AR system with virtuality could support better human memorization compared to the physical version game in reducing task time, improving usability, becoming more recommendable, and decreasing cognitive task workload. The study was then followed by quantitative analysis of the respective four metrics: game completion time (GCT), system usability scale (SUS), recommendation level, and NASA task load index (TLX). A brief qualitative analysis is presented. The results show that in our case, the virtuality outperformed the physicality in supporting human memorization in a gamified context through HMD AR in an evident range

    Augmented Reality with Industrial Process Tomography: To Support Complex Data Analysis in 3D Space

    Get PDF
    Today, in-situ analyzing and monitoring are imperative for ensuring successful and healthy industrial processes in confined environments. With the rapid development of digitization, augmented reality (AR) has been utilized for letting people immersively interact with the necessary information. However, there are still knowledge gaps between AR technique and domain users pertaining to effective analysis of complex data. Hence, new solutions empowering domain users would benefit the whole industry. In this study, we report an initial prototype supporting complex data visualization and analysis in entire 3D surroundings within industrial process tomography (IPT). Microsoft HoloLens 2 is equipped for users to interact with the 3D information characterizing the workflow of the industrial process with high immersion. Our work distinctly improves the performance compared to existing solutions, pointing the way towards how AR should be deployed and developed more efficiently for aiding IPT systems

    Complete abolition of reading and writing ability with a third ventricle colloid cyst: implications for surgical intervention and proposed neural substrates of visual recognition and visual imaging ability.

    Get PDF
    We report a rare case of a patient unable to read (alexic) and write (agraphic) after a mild head injury. He had preserved speech and comprehension, could spell aloud, identify words spelt aloud and copy letter features. He was unable to visualise letters but showed no problems with digits. Neuropsychological testing revealed general visual memory, processing speed and imaging deficits. Imaging data revealed an 8 mm colloid cyst of the third ventricle that splayed the fornix. Little is known about functions mediated by fornical connectivity, but this region is thought to contribute to memory recall. Other regions thought to mediate letter recognition and letter imagery, visual word form area and visual pathways were intact. We remediated reading and writing by multimodal letter retraining. The study raises issues about the neural substrates of reading, role of fornical tracts to selective memory in the absence of other pathology, and effective remediation strategies for selective functional deficits

    Herbicide selectivity trials with bananas (Musa spp.) in Hawaii

    Get PDF

    Timing of Locomotor Activity Circadian Rhythms in Caenorhabditis elegans

    Get PDF
    Circadian rhythms are driven by endogenous biological clocks and are synchronized to environmental cues. The chronobiological study of Caenorhabditis elegans, an extensively used animal model for developmental and genetic research, might provide fundamental information about the basis of circadian rhythmicity in eukaryotes, due to its ease of use and manipulations, as well as availability of genetic data and mutant strains. The aim of this study is to fully characterize the circadian rhythm of locomotor activity in C. elegans, as well as a means for genetic screening in this nematode and the identification of circadian mutants. We have developed an infrared method to measure locomotor activity in C. elegans and found that, under constant conditions, although inter-individual variability is present, circadian periodicity shows a population distribution of periods centered at 23.9±0.4 h and is temperature-compensated. Locomotor activity is entrainable by light-dark cycles and by low-amplitude temperature cycles, peaking around the night-day transition and day, respectively. In addition, lin-42(mg152) or lin-42(n1089) mutants (bearing a mutation in the lin-42 gene, homolog to the per gene) exhibit a significantly longer circadian period of 25.2±0.4 h or 25.6±0.5 h, respectively. Our results represent a complete description of the locomotor activity rhythm in C. elegans, with a methodology that allowed us to uncover three of the key features of circadian systems: entrainment, free-running and temperature compensation. In addition, abnormal circadian periods in clock mutants suggest a common molecular machinery responsible for circadian rhythmicity. Our analysis of circadian rhythmicity in C. elegans opens the possibility for further screening for circadian mutations in this species

    Zebrafish immunoglobulin IgD: Unusual exon usage and quantitative expression profiles with IgM and IgZ/T heavy chain isotypes

    Get PDF
    The zebrafish is an emerging model for comparative immunology and biomedical research. In contrast to the five heavy chain isotype system of mice and human (IgD, IgM, IgA, IgG, IgE), zebrafish harbor gene segments for IgD, IgM, and novel heavy chain isotype called IgZ/T which appears restricted to bony fishes. The purpose of this study was to design and validate a suite of quantitative real time RT-PCR protocols to measure IgH expression in a vertebrate model which has considerable promise for modeling both pathogenic infection and chronic conditions leading to immune dysfunction. Specific primers were designed and following verification of their specificty, relative expression levels of IgD, IgM, and IgZ/T were measured in triplicate for zebrafish raised under standard laboratory conditions. During embryonic stages, low levels of each heavy chain isotype (IgH) were detected with each increasing steadily between 2 and 17 weeks post fertilization. Overall IgM > IgZ > IgD throughout zebrafish development with the copy number of IgM being several fold higher than that of IgD or IgZ/T. IgD exon usage was also characterized, as its extremely long size and presence of a stop codon in the second IgD exon in zebrafish, raised questions as to how this antibody might be expressed. Zebrafish IgD was found to be a chimeric immunoglobulin, with the third IgD exon spliced to the first IgM constant exon thereby circumventing the first and second IgD exons. Collectively, the qRT-PCR results represent the first comparative profile of IgD, IgM, IgZ/T expression over the lifespan of any fish species and the primers and assay parameters reported should prove useful in enabling researchers to rapidly quantify changes in IgH expression in zebrafish models of disease where altered IgH expression is manifested.National Institutes of Health (U.S.

    Near-infrared luminescence of rare earth ions in oxyfluoride lead borate glasses and transparent glass-ceramic materials

    Get PDF
    Oxyfluoride lead borate glasses singly doped with Nd3+ and Er3+ ions have been studied before and after thermal treatment. The orthorhombic PbF2 crystallites are formed during thermal treatment, which was evidenced by X-ray diffraction analysis. Near-infrared luminescence spectra at 1.06 ÎŒm and 1.53 ÎŒm have been registered for samples before and after annealing, which correspond to the main 4F3/2–4I11/2 and 4I13/2–4I15/2 laser transitions of Nd3+ and Er3+ ions, respectively. Luminescence decays from 4F3/2 state of Nd3+ and 4I13/2 state of Er3+ have been analyzed in detail. Contrary to Nd-doped samples, the luminescence lines obtained for Er-doped transparent oxyfluoride glass-ceramics are more intense and narrowed, whereas the luminescence decays from 4I13/2 state of Er3+ are slightly longer in comparison to precursor glasses

    Physical properties of InF3-based glasses

    Get PDF
    Results of X-ray diffraction (XRD), differential scanning calorymetry (DSC), electron probe microanalysis (EPMA) and optical absorption of InF3-based glasses are reported. Different concentrations of rare earth ions have been added to a base glass. XRD results show that no crystalline phases are formed. Characteristic temperatures were determined by DSC and values of glass stability parameters were calculated. Also, the effect of rare earth ions on the thermal stability of InF3-based glasses has been investigated. From the optical absorption measurements and Judd- Ofelt method the intensity parameters have been calculated. In consequence the trends of the intensity parameters are discussed as a function of the number of 4/electrons

    Circadian rhythms identified in Caenorhabditis elegans by in vivo long-term monitoring of a bioluminescent reporter

    Get PDF
    Circadian rhythms are based on endogenous clocks that allow organisms to adjust their physiology and behavior by entrainment to the solar day and, in turn, to select the optimal times for most biological variables. Diverse model systems-including mice, flies, fungi, plants, and bacteria-have provided important insights into the mechanisms of circadian rhythmicity. However, the general principles that govern the circadian clock of Caenorhabditis elegans have remained largely elusive. Here we report robust molecular circadian rhythms in C elegans recorded with a bioluminescence assay in vivo and demonstrate the main features of the circadian system of the nematode. By constructing a luciferase-based reporter coupled to the promoter of the suppressor of activated let-60 Ras (sur-5) gene, we show in both population and single-nematode assays that C elegans expresses approximately 24-h rhythms that can be entrained by light/dark and temperature cycles. We provide evidence that these rhythms are temperature-compensated and can be re-entrained after phase changes of the synchronizing agents. In addition, we demonstrate that light and temperature sensing requires the photoreceptors LITE and GUR-3, and the cyclic nucleotide-gated channel subunit TAX-2. Our results shed light on C elegans circadian biology and demonstrate evolutionarily conserved features in the circadian system of the nematode
    • 

    corecore