7 research outputs found

    Exposure and potential effects of pesticides and pharmaceuticals in protected streams of the US National park Service southeast region

    Get PDF
    Globally, protected areas offer refugia for a broad range of taxa including threatened and endangered species. In the United States (US), the National Park Service (NPS) manages public lands to preserve biodiversity, but increasing park visitation and development of surrounding landscapes increase exposure to and effects from bioactive contaminants. The risk (exposure and hazard) to NPS protected-stream ecosystems within the highly urbanized southeast region (SER) from bioactive contaminants was assessed in five systems based on 334 pesticide and pharmaceutical analytes in water and 119 pesticides in sediment. Contaminant mixtures were common across all sampled systems, with approximately 24% of the unique analytes (80/334) detected at least once and 15% (49/334) detected in half of the surface-water samples. Pharmaceuticals were observed more frequently than pesticides, consistent with riparian buffers and concomitant spatial separation from non-point pesticide sources in four of the systems. To extrapolate exposure data to biological effects space, site-specific cumulative exposure-activity ratios (REAR) were calculated for detected surface-water contaminants with available ToxCast data; common exceedances of a 0.001 REAR effects-screening threshold raise concerns for molecular toxicity and possible, sub-lethal effects to non-target, aquatic vertebrates. The results illustrate the need for continued management of protected resources to reduce contaminant exposure and preserve habitat quality, including prioritization of conservation practices (riparian buffers) near stream corridors and increased engagement with upstream/up-gradient property owners and municipal wastewater facilities

    Assessment of physical, chemical, and hydrologic factors affecting the infiltration of treated wastewater in the New Jersey Coastal Plain, with emphasis on the Hammonton Land Application Facility

    No full text
    This report describes the results of a study, conducted by the U.S. Geological Survey (USGS) in cooperation with the Pinelands Commission and the Town of Hammonton, New Jersey, to identify reasons for reduced infiltration in the infiltration trenches at the Hammonton LAF and to assess the potential for similar conditions to exist elsewhere in the New Jersey Coastal Plain (particularly within the PNR)

    Exposure and potential effects of pesticides and pharmaceuticals in protected streams of the US National park Service southeast region

    Get PDF
    Globally, protected areas offer refugia for a broad range of taxa including threatened and endangered species. In the United States (US), the National Park Service (NPS) manages public lands to preserve biodiversity, but increasing park visitation and development of surrounding landscapes increase exposure to and effects from bioactive contaminants. The risk (exposure and hazard) to NPS protected-stream ecosystems within the highly urbanized southeast region (SER) from bioactive contaminants was assessed in five systems based on 334 pesticide and pharmaceutical analytes in water and 119 pesticides in sediment. Contaminant mixtures were common across all sampled systems, with approximately 24% of the unique analytes (80/334) detected at least once and 15% (49/334) detected in half of the surface-water samples. Pharmaceuticals were observed more frequently than pesticides, consistent with riparian buffers and concomitant spatial separation from non-point pesticide sources in four of the systems. To extrapolate exposure data to biological effects space, site-specific cumulative exposure-activity ratios (REAR) were calculated for detected surface-water contaminants with available ToxCast data; common exceedances of a 0.001 REAR effects-screening threshold raise concerns for molecular toxicity and possible, sub-lethal effects to non-target, aquatic vertebrates. The results illustrate the need for continued management of protected resources to reduce contaminant exposure and preserve habitat quality, including prioritization of conservation practices (riparian buffers) near stream corridors and increased engagement with upstream/up-gradient property owners and municipal wastewater facilities

    Multi-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urban-gradient streams.

    No full text
    Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human health. Pharmaceutical mixtures have been widely reported in larger streams due to historical emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of pharmaceutical exposures and potential effects in smaller headwater streams. In 2014-2017, the United States Geological Survey measured 111 pharmaceutical compounds in 308 headwater streams (261 urban-gradient sites sampled 3-5 times, 47 putative low-impact sites sampled once) in 4 regions across the US. Simultaneous exposures to multiple pharmaceutical compounds (pharmaceutical mixtures) were observed in 91% of streams (248 urban-gradient, 32 low-impact), with 88 analytes detected across all sites and cumulative maximum concentrations up to 36,142 ng/L per site. Cumulative detections and concentrations correlated to urban land use and presence/absence of permitted WWTP discharges, but pharmaceutical mixtures also were common in the 75% of sampled streams without WWTP. Cumulative exposure-activity ratios (EAR) indicated widespread transient exposures with high probability of molecular effects to vertebrates. Considering the potential individual and interactive effects of the detected pharmaceuticals and the recognized analytical underestimation of the pharmaceutical-contaminant (unassessed parent compounds, metabolites, degradates) space, these results demonstrate a nation-wide environmental concern and the need for watershed-scale mitigation of in-stream pharmaceutical contamination

    Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications

    No full text
    Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016–2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available

    Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams

    No full text
    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L<sup>–1</sup> to greater than 10 μg L<sup>–1</sup>, with 77 and 278 having median detected concentrations greater than 100 ng L<sup>–1</sup> and 10 ng L<sup>–1</sup>, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L<sup>–1</sup>, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log<sub>10</sub> concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; <i>p</i>-values: < 0.001–0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L<sup>–1</sup> cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L<sup>–1</sup>

    Tapwater Exposures, Effects Potential, and Residential Risk Management in Northern Plains Nations

    No full text
    In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures
    corecore