11,346 research outputs found

    Radiation therapy calculations using an on-demand virtual cluster via cloud computing

    Full text link
    Computer hardware costs are the limiting factor in producing highly accurate radiation dose calculations on convenient time scales. Because of this, large-scale, full Monte Carlo simulations and other resource intensive algorithms are often considered infeasible for clinical settings. The emerging cloud computing paradigm promises to fundamentally alter the economics of such calculations by providing relatively cheap, on-demand, pay-as-you-go computing resources over the Internet. We believe that cloud computing will usher in a new era, in which very large scale calculations will be routinely performed by clinics and researchers using cloud-based resources. In this research, several proof-of-concept radiation therapy calculations were successfully performed on a cloud-based virtual Monte Carlo cluster. Performance evaluations were made of a distributed processing framework developed specifically for this project. The expected 1/n performance was observed with some caveats. The economics of cloud-based virtual computing clusters versus traditional in-house hardware is also discussed. For most situations, cloud computing can provide a substantial cost savings for distributed calculations.Comment: 12 pages, 4 figure

    In an expanding universe, what doesn't expand?

    Get PDF
    The expansion of the universe is often viewed as a uniform stretching of space that would affect compact objects, atoms and stars, as well as the separation of galaxies. One usually hears that bound systems do not take part in the general expansion, but a much more subtle question is whether bound systems expand partially. In this paper, a very definitive answer is given for a very simple system: a classical "atom" bound by electrical attraction. With a mathemical description appropriate for undergraduate physics majors, we show that this bound system either completely follows the cosmological expansion, or -- after initial transients -- completely ignores it. This "all or nothing" behavior can be understood with techniques of junior-level mechanics. Lastly, the simple description is shown to be a justifiable approximation of the relativistically correct formulation of the problem.Comment: 8 pages, 9 eps figure

    Control of spin relaxation in semiconductor double quantum dots

    Full text link
    We propose a scheme to manipulate the spin relaxation in vertically coupled semiconductor double quantum dots. Up to {\em twelve} orders of magnitude variation of the spin relaxation time can be achieved by a small gate voltage applied vertically on the double dot. Different effects such as the dot size, barrier height, inter-dot distance, and magnetic field on the spin relaxation are investigated in detail. The condition to achieve a large variation is discussed.Comment: 5 pages, 4 figures, to be published in PR

    Multimodal Hazard Rate for Relapse in Breast Cancer: Quality of Data and Calibration of Computer Simulation

    Get PDF
    Much has occurred since our 2010 report in Cancers. In the past few years we published several extensive reviews of our research so a brief review is all that will be provided here. We proposed in the earlier reports that most relapses in breast cancer occur within 5 years of surgery and seem to be associated with some unspecified manner of surgery-induced metastatic initiation. These events can be identified in relapse data and are correlated with clinical data. In the last few years an unexpected mechanism has become apparent. Retrospective analysis of relapse events by a Brussels anesthesiology group reported that a perioperative NSAID analgesic seems to reduce early relapses five-fold. We then proposed that primary surgery produces a transient period of systemic inflammation. This has now been identified by inflammatory markers in serum post mastectomy. That could explain the early relapses. It is possible that an inexpensive and non-toxic NSAID can reduce breast cancer relapses significantly. We want to take this opportunity to discuss database quality issues and our relapse hazard data in some detail. We also present a demonstration that the computer simulation can be calibrated with Adjuvant-on-line, an often used clinical tool for prognosis in breast cancer

    Approximate analytical description of the nonaffine response of amorphous solids

    Get PDF
    An approximation scheme for model disordered solids is proposed that leads to the fully analytical evaluation of the elastic constants under explicit account of the inhomogeneity (nonaffinity) of the atomic displacements. The theory is in quantitative agreement with simulations for central-force systems and predicts the vanishing of the shear modulus at the isostatic point with the linear law {\mu} ~ (z - 2d), where z is the coordination number. The vanishing of rigidity at the isostatic point is shown to be a consequence of the canceling out of positive affine and negative nonaffine terms

    Long-term predictability of mean daily temperature data

    Get PDF
    International audienceWe quantify the long-term predictability of global mean daily temperature data by means of the Rényi entropy of second order K2. We are interested in the yearly amplitude fluctuations of the temperature. Hence, the data are low-pass filtered. The obtained oscillatory signal has a more or less constant frequency, depending on the geographical coordinates, but its amplitude fluctuates irregularly. Our estimate of K2 quantifies the complexity of these amplitude fluctuations. We compare the results obtained for the CRU data set (interpolated measured temperature in the years 1901-2003 with 0.5° resolution, Mitchell et al., 2005)with the ones obtained for the temperature data from a coupled ocean-atmosphere global circulation model (AOGCM, calculated at DKRZ). Furthermore, we compare the results obtained by means of K2 with the linear variance of the temperature data
    corecore