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The expansion of the universe is often viewed as a uniform stretching of space that would affect

compact objects such as atoms and stars, as well as the separation of galaxies. One usually hears

that bound systems do not take part in the general expansion, but a much more subtle question is

whether bound systems expand partially. In this paper, a definitive answer is given for a very

simple system: a classical “atom” bound by electrical attraction. With a mathematical

description appropriate for undergraduate physics majors, we show that this bound system either

completely follows the cosmological expansion, or, after initial transients, completely ignores it.

This all-or-nothing behavior can be understood using analysis techniques used in junior-level

mechanics. We also demonstrate that this simple description is a justifiable approximation of the

relativistically correct formulation of the problem. VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.3699245]

I. INTRODUCTION

It is not hard to explain to students that the galaxies are
moving apart like pennies glued to the surface of an expand-
ing balloon or raisins in an expanding loaf of raisin bread.1–6

The expanding material represents the uniform stretching of
space. But if space itself is stretching, does this mean that
everything in it is stretching? Are galaxies growing larger?
Are atoms? The usual answer is that “bound” systems do not
take part in the cosmological expansion. But if space itself is
stretching, how can these systems not be at least slightly
affected? And what would it mean for a bound system to be
“slightly affected?” Would the bound system expand at a
reduced rate? That is, if the universe expands by a factor of
106, would a galaxy expand by, say, a factor of 103 ? Would
less bound systems expand more closely to the full cosmo-
logical rate?

It turns out that these questions get a spectrum of different
answers from experts caught unprepared. Part of the confusion
is the indeterminacy of just what the question means. In this ar-
ticle, we will put aside some subtleties so that we can focus on
a clear and simple question; in so doing, we will find a clear
and interesting answer. (See Ref. 7 for the effects of cosmolog-
ical expansion on clusters of galaxies; see Refs. 8 and 9 for
more mathematical detail and for additional recent references.)

To try to answer our question, we consider the following
simple model: a classical “atom” composed of a negative
charge of negligible mass (the “electron”) going around a
much more massive oppositely charged “nucleus.” The Cou-
lomb binding of the atom is physically no different from the
gravitational binding of a small astronomical “object,” such
as a solar system or a galaxy, but it allows certain technical
simplifications.10 We will place this classical atom in a ho-
mogeneous universe in which expansion is described by an
expansion factor a(t), where t is time. Our goal is to find the
extent to which the growth of a(t) causes the atom to grow,
i.e., causes the electron’s orbital distance to increase.

In the description of the atom, it will be useful to use
two sets of spatial coordinates, both of them spherical polar

coordinates with the massive nucleus at the origin. The first
system consists of the physical coordinates (r; h;/) in which
r is the proper distance from the nucleus to the electron at a
given moment of time. The second is a set of cosmological
coordinates (R; h;/); a point at fixed values of (R; h;/) is a
point fixed in the stretching space of the universe that takes
part in the cosmological expansion. The two coordinate sys-
tems are related by

r ¼ aðtÞR: (1)

The angular coordinates h and / are the same in both the
physical and the cosmological coordinates because we can
think of the cosmological expansion as proceeding radially
outward from the (arbitrarily chosen) origin. The question of
whether the atom takes part in the cosmological expansion
then boils down to whether the electron follows a trajectory
of bounded r (no significant atomic expansion), approxi-
mately constant R (full cosmological expansion of the atom),
or something in between?

The nature of the expansion is encoded in the functional
form of a(t), and the choice of this function is the choice of
the kinematics of the expanding universe. The question of
what does or does not expand is a kinematical question fun-
damentally unrelated to the physics that constrains the form
of a(t). For this reason, we will choose functions that lead to
the clearest insights even if such choices do not correspond
to perfectly realistic expansion factors.

As we shall show, the answers given by our model contain
both expected and unexpected features. An expected feature is
that the comparative strengths of the expansion and of the
electrical binding determine whether the atom expands. An
unexpected feature is that our atom undergoes expansion in an
“all-or-nothing” manner. That is, a sufficiently loosely bound
electron will expand with the universe and move with approx-
imately constant R, whereas a more tightly bound electron
will, after some initial disturbance of its orbit, ignore the
continuing expansion and maintain a bounded r. We will see
that there is no intermediate behavior. Importantly, we will
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find that this all-or-nothing behavior makes good physical
sense.

This paper analyzes the expanding atom at two different
levels. In Sec. II, our description uses only Newtonian
mechanics and basic electrostatics and should be accessible
to physics students in the junior year. Expansion effects are
introduced in this model through a plausible heuristic
stretching force in the relatively simple differential equation
for the orbital radius r(t). This model leads to particularly
clear graphical insights in the case of cosmological expan-
sion that is exponential in time. Numerical results for this
and another model expansion are provided to reinforce the
all-or-nothing feature of the atomic expansion. In Sec. III,
the same classical atom is analyzed using the kinematics of
general relativity and Maxwell electrodynamics in a curved
spacetime.11 The result of this analysis is a differential equa-
tion for r(t) that differs only slightly from the one in Sec. II.
We show, however, that the difference is not significant. If
the atom is chosen to be initially nonrelativistic, then subse-
quent relativistic effects are unimportant. Section IV summa-
rizes our conclusions.

II. NEWTONIAN ANALYSIS

A. Equation of motion

Our model consists of an unmoving massive nucleus fixed
at the origin of a spherical polar coordinate system (r; h;/).
The position of an electron of mass m orbiting in the equato-
rial plane h ¼ p=2 is described by the functions r(t) and
/ðtÞ. Because only radial forces act on the electron, its angu-
lar momentum mr2d/=dt is conserved and we define the
constant of motion

L � r2 d/
dt

(2)

to be the electron angular momentum per unit mass. In the
absence of cosmological expansion effects, the equation of
motion for r(t) is derived in the usual way and takes the fa-
miliar form

d2r

dt2
� L2

r3
¼ � C

r2
: (3)

In SI units, the constant of electrostatic attraction is
C ¼ Qq=ð4p�0mÞ, where Qq is the magnitude of the product
of the nuclear and electron charges.

Next, we need to introduce the effect of expansion.
According to Eq. (1), a point fixed in the cosmological
expansion—a point of constant (R; h;/)—has a radial accel-
eration of12

d2r

dt2

����
expansion

¼ r

a

d2a

dt2
: (4)

It seems plausible, therefore, to treat this term as a radial
force per unit mass, and add it to Eq. (3) to arrive at

d2r

dt2
� L2

r3
¼ � C

r2
þ r

a

d2a

dt2
: (5)

From the solution of this equation and the chosen expansion
factor a(t), we can find the radial (cosmological) position
R(t) of the electron using Eq. (1). If we combine r(t) or

R(t) with /ðtÞ from the integration of Eq. (2), we arrive at a
complete description of the orbit in either physical or cosmo-
logical coordinates.

The comparative strengths of the electrostatic and cosmo-
logical terms in Eq. (5) can be usefully cast as a comparison
of time scales for atomic and expansion effects. We define a
characteristic atomic time scale Tatom as a combination of the
parameters (L and C) relevant to the electron’s motion

Tatom ¼ L3=C2 ; (6)

and note that the time for the electron to complete a circular
orbit, in the absence of expansion effects, is 2pTatom.

B. Exponential expansion

We first choose the cosmological expansion kinematics to
be exponential

aðtÞ ¼ et=Texp ; (7)

where Texp is a characteristic time for expansion. Such an
expansion, a “de Sitter” cosmology,13 is of interest in con-
nection with inflationary models and mathematical relativity,
but it is our first choice for a very different reason—such a
model results in a form of Eq. (5) with no explicit time
dependence:

d2r

dt2
¼ L2

r3
� C

r2
þ r

T2
exp

: (8)

This equation is identical to the equation of motion of a
particle moving in one dimension under the influence of an
r-dependent potential. This view is based on the fact that
Eq. (8) guarantees that the energy-like quantity

E � 1

2

dr

dt

� �2

þ L2

2r2
� C

r
� r2

2T2
exp

(9)

is constant, so the electron can be viewed as moving in an
effective potential given by

VðrÞ � L2

2r2
� C

r
� r2

2T2
exp

: (10)

A thorough (qualitative) understanding of the motion of the
electron can be obtained from a graphical analysis. A graph
of the potential for various Tatom=Texp is shown in Fig. 1,
where we plot the dimensionless potential (L2V=C2) versus
the dimensionless radial distance (Cr=L2). Each curve is la-
beled with the value of the parameter Tatom=Texp that deter-
mines how strongly the cosmological expansion affects the
evolution of the atom. The larger the value of Tatom=Texp, the
larger is the effect of expansion.

Expansion is absent for the top curve, for which
Tatom=Texp ¼ 0. In this case, the electron is always trapped in
the potential well, i.e., it is permanently bound. If the elec-
tron begins at the bottom of the well (r ¼ L2=C or
E ¼ �C2=2L2), it will remain in a circular orbit at that radius
for all time. For any larger value of E, the electron will orbit
in an ellipse. For nonzero values of Tatom=Texp, the potential
at large r eventually becomes negative and decreasing, thus
representing a dominant outward force. Consequently, an
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electron at a sufficiently large distance from the nucleus will
be driven to an even larger distance. The important question
is whether the electron will ever get to this region of domi-
nant outward force. The answer is contained in the shapes of
the curves in Fig. 1.

We first consider the situation where the electron sits at the
bottom of the no-expansion potential well and is “surprised”
when the expansion is suddenly turned on. Thus, the electron
has energy E ¼ �C2=2L2 and finds itself under the influence
of one of the expansion potential curves with Tatom=Texp > 0.
In this scenario, there is a critical value of Tatom=Texp ¼ 0:25,
above which the electron will be accelerated outward by the
cosmological expansion. As shown by the dashed line in
Fig. 1, this critical value occurs when the local peak in an
expansion potential has the same value as the lowest point
in the no-expansion well. For 0 < Tatom=Texp < 0:25, the elec-
tron will remain trapped in an approximately elliptical orbit.

A different scenario can also be envisioned. Imagine the
electron is sitting at the bottom of an expansion potential well.
In this case, the electron will remain at a fixed r (the bottom
of the well), assuming such a local minimum actually exists.

However, as shown in Fig. 1, there is a critical curve that sep-
arates potentials that have a local minimum from those that do
not. This curve has Tatom=Texp ¼ 3

ffiffiffiffi
3
p

=16 � 0:3248.
Such a qualitative analysis allows us to understand why

the atom has an all-or-nothing behavior. The electron either
is, or is not, trapped in the potential well. Correspondingly,
the atom either expands or does not; there is no “partial
expansion” possible. Underlying this graphical understand-
ing is a broader but less precise heuristic explanation of the
all-or-nothing effect, an explanation that applies regardless
of the specific form of the expansion. The cosmological
expansion term rðd2a=dt2Þ=a increases at large physical dis-
tances r from the nucleus, whereas the centrifugal and elec-
trical forces both decrease. This implies a sort of instability
with respect to expansion. If the electron moves sufficiently
far from the nucleus, the expansion term becomes more im-
portant and this pushes the electron even further away.

We can get yet another viewpoint on the bound/unbound
issue by numerically solving Eq. (8). If we start the computa-
tion with the electron at the bottom of an expansion well, the
results are in agreement with the predictions of the analysis
based on Fig. 1—the electron remains at fixed r. More inter-
esting is the “surprised electron” scenario discussed above
(with E ¼ �C2=2L2). The results, shown in Fig. 2, are in
accord with the analysis based on Fig. 1. For Tatom=Texp

slightly greater than the 0.25 critical value, the physical ra-
dius r of the atom grows exponentially after an initial hesita-
tion. In contrast, for Tatom=Texp slightly less than this critical
value, the electron remains trapped in an approximately
elliptical orbit and is not dramatically affected by the expo-
nential expansion.

C. Other expansion laws

It is important to check that our understanding, based on
exponential expansion, applies for other expansion laws as
well. For convenience, we choose an expansion law given by

aðtÞ ¼ 1þ t

Texp

� �2

tanhðt=TexpÞ: (11)

For t=Texp � 1, this expansion factor is proportional to t2,
but its properties at t¼ 0 simplify our analysis. Both da/dt

Fig. 1. Effective potential for exponential expansion. Curves are marked by

the value of the parameter Tatom=Texp. The curve labeled 0 is the no-

expansion potential, for which Tatom=Texp ¼ 0. The dashed line shows the

alignment of the minimum for the no-expansion potential with the local

maximum of the potential for Tatom=Texp ¼ 0:25.

Fig. 2. Radial coordinates as a function of time for exponential expansion. On the left is the case for Tatom=Texp ¼ 0:2505 for which the electron’s cosmologi-

cal radius R remains approximately constant after an initial decrease to about 2% of its initial value. Due to the exponential increase in a(t), the physical radius

r grows without bound. On the right is the radial kinetics for a slightly smaller value of Tatom=Texp ¼ 0:2495. In this case, the electron remains bound in an

approximately elliptical orbit with the physical radius oscillating between values near the original atomic radius. The coordinate radius R in this case falls off

exponentially.
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and d2a=dt2 vanish at t¼ 0, so we can start the expansion
with both dr/dt¼ 0 and dR/dt¼ 0. In addition, the expansion
term in Eq. (5) vanishes at t¼ 0, so there is no initial cosmo-
logical acceleration. Furthermore, if we choose r ¼ L2=C to
balance the Coulomb and centripetal forces, then there will
be no initial acceleration.

Figure 3 shows the results of numerically solving Eq. (5)
using expansion law (11) for two values of the parameter
Tatom=Texp that are nearly the same. We see the same qualita-
tive phenomenon as with an exponential expansion: the atom
either fully takes part in the cosmological expansion and
grows without bound; or, for a slightly smaller value of
Tatom=Texp, the atom does not take part in the expansion and
its (physical) size remains bounded.

III. RELATIVISTIC ANALYSIS

The analysis in Sec. II is based on a heuristic term in Eq. (5)
representing the effect of expansion. Here, we analyze the
problem using relativistic cosmology and Maxwell-Einstein
theory. We start with a standard form14 for the spacetime
metric of a homogeneous, isotropic universe

ds2¼�c2dt2þa2ðtÞ dR2

1�kR2
þR2 dh2þsin2hd/2

� �� 	
: (12)

Here, as in Sec. II, a(t) is the expansion factor and R is the cos-
mological radial coordinate, with r¼ a(t)R the physical radial
coordinate. As explained in more detail below, the presence of
the speed of light c in the line element introduces an additional
parameter for relativistic motion. For our classical atom, this
parameter is the ratio of the initial orbital speed of the electron
to the speed of light. The constant k in Eq. (12) can be positive,

negative, or zero, and has a magnitude of order 1=R2
c , where

Rc is a characteristic cosmological distance. If R2=R2
c is not

negligibly small, it means our atom occupies a significant frac-
tion of the universe. For our purposes, we want the atom to be
very small compared to the size of the universe. Thus, we omit

the kR2 term in Eq. (12) (i.e., we set k¼ 0).
The first step in the relativistic analysis is to find the

correct description of the electrical attraction. For the spheri-
cally symmetric electromagnetic field of the nucleus
there can only be a component F0R of the electromagnetic

tensor Fl� . The Maxwell equations Fab
;b ¼ 0, with a ¼ 0 and

with a ¼ R, give

1

R2
F0RR2
� �

;R
¼ 0 ¼ 1

a3ðtÞ F0Ra3ðtÞ
� �

; t
(13)

so that the solution must have the form

F0R ¼ Q

R2a3
: (14)

The R equation of motion of the electron’s 4-velocity Ua is

UaUR
;a ¼

q

m
U0F0R ; (15)

where q is the magnitude of the charge of the electron. For
motion in the h ¼ p=2 plane this becomes, after some
manipulations,

d

dt
a2 U0

c

dR

dt

� �
� L2

a2R3ðU0=cÞ ¼ �
C

aR2
: (16)

Here L � U/ ¼ r2ðU0=cÞd/=dt is a constant of the motion,
and C is the same symbol as in Eq. (5). We now note that
Eq. (5), with r¼ a(t)R, can be written in the form

d

dt
a2 dR

dt

� �
� L2

a2R3
¼ � C

aR2
; (17)

which is quite similar to Eq. (16). The adequacy of the New-
tonian analysis, therefore, depends on the extent to which
U0=c differs from unity.

To compute motion for a relativistic model, Eq. (16)
must be solved simultaneously with an expression for U0=c.
This additional expression is obtained by normalizing the
4-velocity UlUl ¼ �c2, which leads to

U0

c
¼ 1� a

c

dR

dt

� �2

� aR

c

d/
dt

� �2
" #�1=2

: (18)

An implicit expression for U0=c that is useful for under-
standing the subsequent time-evolution is

Fig. 3. Radial coordinates as a function of time for the modified a / t2 expansion described in the text. The figure on the left is for Tatom=Texp ¼ 0:289, for

which the electron is unbound. In this case, the cosmological radius R remains constant for large times at about 4% of its initial value, while the physical radius r
expands proportional to t2. On the right is shown a bound electron for Tatom=Texp ¼ 0:288. Here, the cosmological radius R decreases asymptotically to zero

roughly as t�2, while the physical radius oscillates as the electron orbits in a bound, approximately elliptical, orbit.
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U0

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

c

U0

c

dR

dt

� �2

þ L

aRc

� �2
s

: (19)

In the Newtonian case, a model for the classical atom
required only the choice of the expansion law and a value of
a single dimensionless parameter Tatom=Texp. For relativistic
motion, there is an important difference: we must choose a
second dimensionless parameter b0 ¼ v0=c, where v0 ¼ C=L
is the initial orbital speed of the electron times 2p. This need
for a second parameter is instructive. If we were to fix, say,
Tatom ¼ Texp, then this could correspond to slow electron
motion (compared to c) and slow expansion, or to fast elec-
tron motion and fast expansion. But only in the second case
would relativistic effects be important.

If b0 is not chosen small compared to unity, then relativis-
tic effects will be important even initially. Such effects,
while interesting in their own right, are not related to cosmo-
logical expansion and are beyond the scope of this paper.
Rather, what is of primary interest is the question of whether
an atom that is not initially relativistic can become relativis-
tic when it is cosmologically expanding. We investigate this
numerically for a universe following the exponential expan-
sion in Eq. (7). We start with dR/dt¼ 0 and choose b0 ¼ 0:1
so that the electron starts out mildly relativistic. Since we
want the atom to be unbounded, we take Tatom=Texp to be
0.252 (it turns out that with b0 6¼ 0 the unbounded behavior
requires a slightly larger value of Tatom=Texp than in the New-
tonian case).

Results for this model are shown in Fig. 4. This plot shows
the unbounded growth of the physical coordinate r and also
shows that ðU0=c� 1Þ, the measure of the relativistic nature
of the electron, decreases with the expansion of the atom.
The mathematical basis for this decrease is not hard to
understand from Eq. (19). At large expansion, Eq. (16) tells
us that the combination a2ðU0=cÞdR=dt is approximately
constant. This means that the middle term inside the square
root of Eq. (19) must fall off as a�2. The last term in the
square root also falls off with the expansion. The implica-
tion, validated by Fig. 4, is that ðU0=c� 1Þ ! 0 with
unbounded expansion.

The mathematical “how” is then clear, but the physical
“why” must be explained. To this end, it is interesting to
consider the velocity of an unbound electron relative to the

“fabric of the universe,”—the velocity vloc that would be
measured in the local Minkowski frame of an observer
comoving with the cosmological expansion,15 i.e., an ob-
server with constant (R; h;/). This velocity can be shown
to be

vloc ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc=U0Þ2

q
; (20)

demonstrating that as the expansion proceeds, the particle is,
in some sense, becoming less relativistic.

IV. CONCLUSION

In this paper, we have presented a simple definitive ques-
tion about the influence of the expansion of the universe on a
very particular physical system: a classical “atom.” Our anal-
ysis provides a simple definitive answer: expansion forces
increase with increasing atomic radius, while atomic forces
decrease. This amounts to an instability with respect to the
disruption of an atom. If the atomic accelerations are initially
larger than the cosmological accelerations, then the subse-
quent expansion will become less and less important. The
atom will not “partially” take part in the expansion. If, on
the other hand, the cosmological effect is initially stronger,
the atomic radius will increase and the atomic forces will
become less and less important, and the atom will fully take
part in the expansion.

In analyzing this problem, we have relied on a simple
description of expansion, described in Eq. (5), which avoids
relativistic effects. A major pedagogical point is the simple
way in which the “what expands” question can be graphi-
cally understood for the special case of exponential cosmo-
logical expansion.

Using a fully general relativistic calculation, we have
shown that the simple nonrelativistic model is fully
adequate. We have also shown that for an atom that expands
with the universe, relativistic effects become less important
as the atom gets larger.

We end with a practical consideration. Our quantification
of the relative strengths of atomic and expansion forces is
given in terms of a characteristic time Tatom for the motion of
electrons in atoms, and a cosmological expansion time
Texp (e.g., the Hubble time). Our analyses show that atomic
forces are initially stronger if Tatom=Texp is less than order
unity. Because Tatom � 10�16 s and Texp � 4� 1017 s, we
see that atoms are in no danger of being disrupted by cosmo-
logical expansion.
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valid approximation only for distances from the nucleus small compared

to a characteristic cosmological distance. As shown in Sec. III, our Eq. (5)

applies without such a constraint.
13See, e.g., Sec. 27.11 of Ref. 6.
14Ref. 6, Chap. 27.
15This viewpoint has been stressed by E. F. Bunn and D. W. Hogg, “The

kinematic origin of the cosmological redshift,” Am. J. Phys. 77, 688–694
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381 Am. J. Phys., Vol. 80, No. 5, May 2012 R. H. Price and J. D. Romano 381

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

206.196.186.149 On: Tue, 02 Dec 2014 23:13:57

http://dx.doi.org/10.1119/1.1287354
http://dx.doi.org/10.1086/151054
http://dx.doi.org/10.1103/PhysRevLett.75.3602
http://dx.doi.org/10.1103/PhysRevLett.75.3602
http://dx.doi.org/10.1086/305956
http://dx.doi.org/10.1119/1.3129103

	In an expanding universe, what doesn’t expand?
	tmp.1669915420.pdf._XmpI

