32 research outputs found

    Syndepositional diagenetic control of molybdenum isotope variations in carbonate sediments from the Bahamas

    Get PDF
    © 2016 Elsevier B.V. Molybdenum (Mo) isotope variations recorded in black shales provide important constraints on marine paleoredox conditions. However, suitable shales are not ubiquitous in the geologic record. Moreover, reliable reconstruction of Mo isotope records from shales requires deposition from a water column containing very high concentrations of sulfide-a condition which is both rare and difficult to verify with certainty when examining preserved sediments. The utility of Mo isotopic records could be improved if reconstructions were possible using alternative lithologies, such as marine carbonates, which are more abundant in the geologic record.Here, we focus on the role of early diagenesis in determining the Mo isotopic composition preserved in shallow-water carbonate sediments from four push cores collected in different shallow-water depositional environments in the Bahamas. In contrast with carbonate primary precipitates, which generally contain 10 ppm Mo). The extent of this authigenic enrichment appears to be driven by high concentrations of hydrogen sulfide in the porewaters. In cores with the least authigenic Mo enrichment and lowest pore water sulfide, Mo isotopes are ~1-1.2‰ lighter than seawater, while cores with greater Mo enrichments and higher pore water sulfide approach seawater Mo isotope values (2.2-2.5‰), even under oxic bottom water conditions. However, the sensitivity of bulk carbonate ÎŽ98Mo to syndepositional diagenetic conditions potentially complicates interpretation of a carbonate Mo isotope paleoredox proxy. Robust reconstruction of seawater Mo isotopic composition from carbonates will thus require the ability to place constraints on early diagenetic conditions of pore waters at the time of deposition. We show that in order to record seawater Mo isotope values, carbonate pore waters must contain 50-100 ÎŒM H2Saq, which is achieved only in organic- and sulfide-rich carbonate sediments

    Biological effects on uranium isotope fractionation (\u3csup\u3e238\u3c/sup\u3eU/\u3csup\u3e235\u3c/sup\u3eU) in primary biogenic carbonates

    Get PDF
    © 2018 Elsevier Ltd Determining whether U isotopes are fractionated during incorporation into biogenic carbonates could help to refine the application of 238U/235U in CaCO3 as a robust paleoredox proxy. Recent laboratory experiments have demonstrated that heavy uranium (U) isotopes were preferentially incorporated into abiotic aragonite, with an isotope fractionation of ∌0.10‰ (238U/235U). In contrast, no detectable U isotope fractionation has been observed in most natural primary biogenic carbonates, but the typical measurement precision of these studies was ±0.10‰ and so could not resolve a fractionation of the magnitude observed in the laboratory. To resolve this issue, we have developed a high precision 238U/235U method (±0.02‰ 2 SD) and utilized it to investigate 238U/235U in primary biogenic carbonates including scleractinian corals, calcareous green and red algae, echinoderms, and mollusks, as well as ooids from the Bahamas, Gulf of California, and French Polynesia. Our results reveal that many primary biogenic carbonates indeed fractionate U isotopes during U incorporation, and that this fractionation is in the same direction as observed in abiotic CaCO3 coprecipitation experiments. However, the magnitude of isotope fractionation in biogenic carbonates is often smaller than that predicted by abiotic CaCO3 coprecipitation experiments (0.00–0.09‰ vs. 0.11 ± 0.02‰), suggesting that one or more processes suppress U isotope fractionation during U incorporation into biogenic carbonates. We propose that closed-system behavior due to the isolation of the local calcificiation sites from ambient seawater, and/or kinetic/disequilibrium isotope fractionation caused by carbonate growth kinetics, explains this observation. Our results indicate that U isotope fractionation between biogenic carbonates and seawater might help to constrain U partition coefficients, carbonate growth rates, or seawater chemistry during coprecipitation

    Uranium isotope fractionation during coprecipitation with aragonite and calcite

    Get PDF
    © 2016 Elsevier Ltd. Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ~7.5 and ~8.5 to study possible U isotope fractionation during incorporation into these minerals.Small but significant U isotope fractionation was observed in aragonite experiments at pH ~8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism.These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2, Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (\u3c0.13‰), but are nevertheless potentially significant because of the small natural range of variation of 238U/235U

    Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, A. C., Ostrander, C. M., Romaniello, S. J., Reinhard, C. T., Greaney, A. T., Lyons, T. W., & Anbar, A. D. Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth. Science Advances, 7(40), (2021): eabj0108, https://doi.org/10.1126/sciadv.abj0108.Evidence continues to emerge for the production and low-level accumulation of molecular oxygen (O2) at Earth’s surface before the Great Oxidation Event. Quantifying this early O2 has proven difficult. Here, we use the distribution and isotopic composition of molybdenum in the ancient sedimentary record to quantify Archean Mo cycling, which allows us to calculate lower limits for atmospheric O2 partial pressures (PO2) and O2 production fluxes during the Archean. We consider two end-member scenarios. First, if O2 was evenly distributed throughout the atmosphere, then PO2 > 10–6.9 present atmospheric level was required for large periods of time during the Archean eon. Alternatively, if O2 accumulation was instead spatially restricted (e.g., occurring only near the sites of O2 production), then O2 production fluxes >0.01 Tmol O2/year were required. Archean O2 levels were vanishingly low according to our calculations but substantially above those predicted for an abiotic Earth system.We would like to thank our funding sources, including FESD “Dynamics of Earth System Oxygenation” (NSF EAR 1338810 to A.D.A.), NASA Earth and Space Science Fellowship awarded to A.C.J. (80NSSC17K0498), NSF EAR PF to A.C.J. (1952809), and WHOI Postdoctoral Fellowship to C.M.O. C.T.R. acknowledges support from the NASA Astrobiology Institute. We also acknowledge support from the Metal Utilization and Selection across Eons (MUSE) Interdisciplinary Consortium for Astrobiology Research, sponsored by the National Aeronautics and Space Administration Science Mission Directorate (19-ICAR19_2-0007)

    Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction

    Get PDF
    Copyright © 2018 The Authors. Explaining the ∌5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quantitative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution U-isotope (ÎŽ238U) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to characterize the timing and global extent of ocean redox variation during the Early Triassic. Our ÎŽ238U record reveals multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian, the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition. Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO43- concentration curve for the Early Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction

    Uranium Isotopes Fingerprint Biotic Reduction

    Get PDF
    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium

    Uranium Isotopes Fingerprint Biotic Reduction

    Get PDF
    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium

    Extensive marine anoxia during the terminal Ediacaran Period

    Get PDF
    Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).The terminal Ediacaran Period witnessed the decline of the Ediacara biota (which may have included many stemgroup animals). To test whether oceanic anoxia might have played a role in this evolutionary event, we measured U isotope compositions (d238U) in sedimentary carbonates from the Dengying Formation of South China to obtain new constraints on the extent of global redox change during the terminal Ediacaran. We found the most negative carbonate d238U values yet reported (−0.95 per mil), which were reproduced in two widely spaced coeval sections spanning the terminal Ediacaran Period (551 to 541 million years ago). Mass balance modeling indicates an episode of extensive oceanic anoxia, during which anoxia covered >21% of the seafloor and most U entering the oceans was removed into sediments below anoxic waters. The results suggest that an expansion of oceanic anoxia and temporal-spatial redox heterogeneity, independent of other environmental and ecological factors, may have contributed to the decline of the Ediacara biota and may have also stimulated animal motility.NASA Exobiology Program || (no. NNX13AJ71G) NSF Frontiers in Earth System Dynamics program || (award EAR-1338810) NASA grant || (no. NNX15AL27G) Natural Sciences and Engineering Research Council of Canada Discovery Grant || (RGPIN-435930). American Association of Petroleum Geologists Grants-In-Aid Program Explorers Club Washington Group Exploration Field Research Grant Carnegie Institution for Scienc

    Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.gca.2015.02.025 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/To improve estimates of the extent of ocean oxygenation during the late Ediacaran Period, we measured the U and Mo isotope compositions of euxinic (anoxic and sulfidic) organic-rich mudrocks (ORM) of Member IV, upper Doushantuo Formation, South China. The average d238U of most samples is 0.24 ± 0.16& (2SD; relative to standard CRM145), which is slightly higher than the average d238U of 0.02 ± 0.12& for restricted Black Sea (deep-water Unit I) euxinic sediments and is similar to a modeled d238U value of 0.2& for open ocean euxinic sediments in the modern well-oxygenated oceans. Because 238U is preferentially removed to euxinic sediments compared to 235U, expanded ocean anoxia will deplete seawater of 238U relative to 235U, ultimately leading to deposition of ORM with low d238U. Hence, the high d238U of Member IV ORM points to a common occurrence of extensive ocean oxygenation ca. 560 to 551 Myr ago. The Mo isotope composition of sediments deposited from strongly euxinic bottom waters ([H2S]aq >11 lM) either directly records the global seawater Mo isotope composition (if Mo removal from deep waters is quantitative) or represents a minimum value for seawater (if Mo removal is not quantitative). Near the top of Member IV, d98Mo approaches the modern seawater value of 2.34 ± 0.10&. High d98Mo points to widespread ocean oxygenation because the preferential removal of isotopically light Mo to sediments occurs to a greater extent in O2-rich compared to O2-deficient marine environments. However, the d98Mo value for most Member IV ORM is near 0&(relative to standard NIST SRM 3134 = 0.25&), suggesting extensive anoxia. The low d98Mo is at odds with the high Mo concentrations of Member IV ORM, which suggest a large seawater Mo inventory in well-oxygenated oceans, and the high d238U. Hence, we propose that the low d98Mo of most Member IV ORM was fractionated from contemporaneous seawater. Possible mechanisms driving this isotope fractionation include: (1) inadequate dissolved sulfide for quantitative thiomolybdate formation and capture of a seawater-like d98Mo signature in sediments or (2) delivery of isotopically light Mo to sediments via a particulate Fe–Mn oxyhydroxide shuttle. A compilation of Mo isotope data from euxinic ORM suggests that there were transient episodes of extensive ocean oxygenation that break up intervals of less oxygenated oceans during late Neoproterozoic and early Paleozoic time. Hence, Member IV does not capture irreversible deep ocean oxygenation. Instead, complex ocean redox variations likely marked the transition from O2-deficient Proterozoic oceans to widely oxygenated later Phanerozoic oceans.National Science Foundation NASA Astrobiology Institute Agouron Institute Natural Sciences and Engineering Research Council of Canada Discovery Gran
    corecore