310 research outputs found
Convexity preserving interpolatory subdivision with conic precision
The paper is concerned with the problem of shape preserving interpolatory
subdivision. For arbitrarily spaced, planar input data an efficient non-linear
subdivision algorithm is presented that results in limit curves,
reproduces conic sections and respects the convexity properties of the initial
data. Significant numerical examples illustrate the effectiveness of the
proposed method
Polynomial-based non-uniform interpolatory subdivision with features control
Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present
an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge
parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm
that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation
method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique
in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special
features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired
undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that
the most convenient parameter values may be chosen as well as the intervals for insertion.
Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control
From approximating to interpolatory non-stationary subdivision schemes with the same generation properties
In this paper we describe a general, computationally feasible strategy to
deduce a family of interpolatory non-stationary subdivision schemes from a
symmetric non-stationary, non-interpolatory one satisfying quite mild
assumptions. To achieve this result we extend our previous work [C.Conti,
L.Gemignani, L.Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971-1987] to
full generality by removing additional assumptions on the input symbols. For
the so obtained interpolatory schemes we prove that they are capable of
reproducing the same exponential polynomial space as the one generated by the
original approximating scheme. Moreover, we specialize the computational
methods for the case of symbols obtained by shifted non-stationary affine
combinations of exponential B-splines, that are at the basis of most
non-stationary subdivision schemes. In this case we find that the associated
family of interpolatory symbols can be determined to satisfy a suitable set of
generalized interpolating conditions at the set of the zeros (with reversed
signs) of the input symbol. Finally, we discuss some computational examples by
showing that the proposed approach can yield novel smooth non-stationary
interpolatory subdivision schemes possessing very interesting reproduction
properties
Ellipse-preserving Hermite interpolation and subdivision
We introduce a family of piecewise-exponential functions that have the
Hermite interpolation property. Our design is motivated by the search for an
effective scheme for the joint interpolation of points and associated tangents
on a curve with the ability to perfectly reproduce ellipses. We prove that the
proposed Hermite functions form a Riesz basis and that they reproduce
prescribed exponential polynomials. We present a method based on Green's
functions to unravel their multi-resolution and approximation-theoretic
properties. Finally, we derive the corresponding vector and scalar subdivision
schemes, which lend themselves to a fast implementation. The proposed vector
scheme is interpolatory and level-dependent, but its asymptotic behaviour is
the same as the classical cubic Hermite spline algorithm. The same convergence
properties---i.e., fourth order of approximation---are hence ensured
Exponential Splines and Pseudo-Splines: Generation versus reproduction of exponential polynomials
Subdivision schemes are iterative methods for the design of smooth curves and
surfaces. Any linear subdivision scheme can be identified by a sequence of
Laurent polynomials, also called subdivision symbols, which describe the linear
rules determining successive refinements of coarse initial meshes. One
important property of subdivision schemes is their capability of exactly
reproducing in the limit specific types of functions from which the data is
sampled. Indeed, this property is linked to the approximation order of the
scheme and to its regularity. When the capability of reproducing polynomials is
required, it is possible to define a family of subdivision schemes that allows
to meet various demands for balancing approximation order, regularity and
support size. The members of this family are known in the literature with the
name of pseudo-splines. In case reproduction of exponential polynomials instead
of polynomials is requested, the resulting family turns out to be the
non-stationary counterpart of the one of pseudo-splines, that we here call the
family of exponential pseudo-splines. The goal of this work is to derive the
explicit expressions of the subdivision symbols of exponential pseudo-splines
and to study their symmetry properties as well as their convergence and
regularity.Comment: 25 page
Local cardinal interpolation by C^2 cubic B2-splines with a tunable shape parameter
A cubic local interpolating B2-spline, controllable by a shape parameter, is introduced and its properties analyzed.
An algorithm for the automatic selection of the free parameter is developed and tested on several examples.
Finally, a two-phase subdivision scheme for its efficient evaluation at dyadic points is presented
Interpolating m-refinable functions with compact support: The second generation class
We present an algorithm for the construction of a new class of compactly supported interpolating refinable functions that we call the second generation class since, contrary to the existing class, is associated to subdivision schemes with an even-symmetric mask that does not contain the submask 0\u2026,0,1,0,\u20260. As application examples of the proposed algorithm we present interpolating 4-refinable functions that are generated by parameter-dependent, even-symmetric quaternary schemes never considered in the literature so far
- …