310 research outputs found

    Convexity preserving interpolatory subdivision with conic precision

    Full text link
    The paper is concerned with the problem of shape preserving interpolatory subdivision. For arbitrarily spaced, planar input data an efficient non-linear subdivision algorithm is presented that results in G1G^1 limit curves, reproduces conic sections and respects the convexity properties of the initial data. Significant numerical examples illustrate the effectiveness of the proposed method

    Polynomial-based non-uniform interpolatory subdivision with features control

    Get PDF
    Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that the most convenient parameter values may be chosen as well as the intervals for insertion. Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control

    From approximating to interpolatory non-stationary subdivision schemes with the same generation properties

    Full text link
    In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work [C.Conti, L.Gemignani, L.Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971-1987] to full generality by removing additional assumptions on the input symbols. For the so obtained interpolatory schemes we prove that they are capable of reproducing the same exponential polynomial space as the one generated by the original approximating scheme. Moreover, we specialize the computational methods for the case of symbols obtained by shifted non-stationary affine combinations of exponential B-splines, that are at the basis of most non-stationary subdivision schemes. In this case we find that the associated family of interpolatory symbols can be determined to satisfy a suitable set of generalized interpolating conditions at the set of the zeros (with reversed signs) of the input symbol. Finally, we discuss some computational examples by showing that the proposed approach can yield novel smooth non-stationary interpolatory subdivision schemes possessing very interesting reproduction properties

    Ellipse-preserving Hermite interpolation and subdivision

    Get PDF
    We introduce a family of piecewise-exponential functions that have the Hermite interpolation property. Our design is motivated by the search for an effective scheme for the joint interpolation of points and associated tangents on a curve with the ability to perfectly reproduce ellipses. We prove that the proposed Hermite functions form a Riesz basis and that they reproduce prescribed exponential polynomials. We present a method based on Green's functions to unravel their multi-resolution and approximation-theoretic properties. Finally, we derive the corresponding vector and scalar subdivision schemes, which lend themselves to a fast implementation. The proposed vector scheme is interpolatory and level-dependent, but its asymptotic behaviour is the same as the classical cubic Hermite spline algorithm. The same convergence properties---i.e., fourth order of approximation---are hence ensured

    Exponential Splines and Pseudo-Splines: Generation versus reproduction of exponential polynomials

    Full text link
    Subdivision schemes are iterative methods for the design of smooth curves and surfaces. Any linear subdivision scheme can be identified by a sequence of Laurent polynomials, also called subdivision symbols, which describe the linear rules determining successive refinements of coarse initial meshes. One important property of subdivision schemes is their capability of exactly reproducing in the limit specific types of functions from which the data is sampled. Indeed, this property is linked to the approximation order of the scheme and to its regularity. When the capability of reproducing polynomials is required, it is possible to define a family of subdivision schemes that allows to meet various demands for balancing approximation order, regularity and support size. The members of this family are known in the literature with the name of pseudo-splines. In case reproduction of exponential polynomials instead of polynomials is requested, the resulting family turns out to be the non-stationary counterpart of the one of pseudo-splines, that we here call the family of exponential pseudo-splines. The goal of this work is to derive the explicit expressions of the subdivision symbols of exponential pseudo-splines and to study their symmetry properties as well as their convergence and regularity.Comment: 25 page

    Local cardinal interpolation by C^2 cubic B2-splines with a tunable shape parameter

    Get PDF
    A C2C^2 cubic local interpolating B2-spline, controllable by a shape parameter, is introduced and its properties analyzed. An algorithm for the automatic selection of the free parameter is developed and tested on several examples. Finally, a two-phase subdivision scheme for its efficient evaluation at dyadic points is presented

    Interpolating m-refinable functions with compact support: The second generation class

    Get PDF
    We present an algorithm for the construction of a new class of compactly supported interpolating refinable functions that we call the second generation class since, contrary to the existing class, is associated to subdivision schemes with an even-symmetric mask that does not contain the submask 0\u2026,0,1,0,\u20260. As application examples of the proposed algorithm we present interpolating 4-refinable functions that are generated by parameter-dependent, even-symmetric quaternary schemes never considered in the literature so far
    • …
    corecore