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Local cardinal interpolation by C2 cubic B2-splines
with a tunable shape parameter

Lucia Romania,∗

aDipartimento di Matematica, Alma Mater Studiorum Università di Bologna, P.zza di Porta San Donato 5, Bologna, Italy

Abstract

A C2 cubic local interpolating B2-spline, controllable by a shape parameter, is introduced and its properties
analyzed. An algorithm for the automatic selection of the free parameter is developed and tested on several
examples. Finally, a two-phase subdivision scheme for its efficient evaluation at dyadic points is presented.
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1. Introduction

B2-splines [2, 4–6] are piecewise-polynomial, compactly supported fundamental functions for interpo-
lation, that are made of two polynomial pieces between each pair of interpolation nodes. We assume the
interpolation nodes to be placed at j ∈ Z, and we place the joint between the two polynomial pieces defined
on the interval [j, j + 1] at the midpoint j + 1

2 . The main result of this manuscript deals with the proposal
of a new class of B2-spline basis functions for local cardinal interpolation: they are piecewisely defined on
the compact support [−3, 3] by C2-joined cubic polynomial pieces whose expressions generalize those in [6]
by the introduction of a shape parameter. More precisely, in Section 2 we define the new class of funda-
mental functions, we show that each member of the class can be written as a linear combination of shifted
cubic B-splines on the half integer grid, and that the coefficients of the linear combination depend on a free
parameter that can be used to globally modify the shape of the fundamental function. Following the line
of reasoning in [7, Prop.1], we prove that the integer shifts of each fundamental function form a Riesz basis
and, depending on the value of the free parameter, reproduce either linear or cubic polynomials. Then,
in Section 3 we exploit the newly derived fundamental functions for 2D data interpolation, show how the
resulting C2 interpolating curve can be efficiently generated via a two-phase subdivision scheme and develop
an algorithm for the automatic selection of the shape parameter.

2. Parameter-dependent C2 cubic B2-spline basis functions for local cardinal interpolation

We modify the definition of the C2 cubic B2-spline basis function in [6] by making all of its cubic pieces
defined in [−3, 3] depend on a free parameter 0 ≤ v < +∞, so that its explicit expression becomes

φv(t) =
{

φv,`(|t|), `−1
2 ≤ |t| <

`
2 , ` = 1, . . . , 6

0, |t| ≥ 3
(2.1)
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with

φv,1(|t|) = 1
12 (26− 11v)|t|3 + 3

4 (v − 4)|t|2 + 1, 0 ≤ |t| < 1
2 ,

φv,2(|t|) = (|t|−1)
12

(
5(v + 2)|t|2 − 2(5v + 1)|t|+ 2v − 14

)
, 1

2 ≤ |t| < 1,
φv,3(|t|) = (|t|−1)

24
(
(9v − 28)|t|2 + (92− 18v)|t|+ 3v − 76

)
, 1 ≤ |t| < 3

2 ,

φv,4(|t|) = − (|t|−2)
24

(
(15v − 4)|t|2 + (16− 51v)|t|+ 39v − 16

)
, 3

2 ≤ |t| < 2,
φv,5(|t|) = v

24 (7|t|3 − 51|t|2 + 123|t| − 98), 2 ≤ |t| < 5
2 ,

φv,6(|t|) = − v
24 (|t| − 3)3, 5

2 ≤ |t| < 3.

(2.2)

The parameter-dependent cubic polynomial pieces in (2.2) are defined in such a way that, for any value
of v, the fundamental function φv is symmetric with respect to the y-axis (i.e., φv(t) = φv(−t), t ∈ R),
interpolatory (i.e., φv(j) = δ0,j , j ∈ Z with δ0,j the Kronecker delta) and satisfies Propositions 2.1, 2.2, 2.3.

Proposition 2.1. Denoting by N4(2t) the cubic B-spline supported on [−1, 1] and having knots at −1, − 1
2 ,

0, 1
2 , 1, we can rewrite the fundamental function φv in (2.1)-(2.2) in terms of the integer shifts of N4(2t) as

φv(t) =
4∑

j=−4
cv,j N4(2t− j), (2.3)

with cv,±4 = v

32 , cv,±3 = −v8 , cv,±2 = −1
8 , cv,±1 = 1

2 + v

8 , cv,0 = 5
4 −

v

16 . (2.4)

Proof: Since φv(t) = φv(−t), ∀t ∈ R, we can confine the proof to the case t ≥ 0. If, for each i = 0, . . . , 8,
we denote the four polynomial pieces of the cubic B-spline having support [−3 + i

2 ,−1 + i
2 ] by

S−3+ i
2 ,1

(t) := 4
3 t

3 − 2(i− 6)t2 + (i− 6)2t− 1
6 (i− 6)3,

S−3+ i
2 ,2

(t) := −4t3 + 2(3i− 14)t2 − (3i− 16)(i− 4)t+ 1
2 (i− 4)2(i− 6) + 2

3 ,

S−3+ i
2 ,3

(t) := 4t3 − 2(3i− 10)t2 + (3i− 8)(i− 4)t− 1
2 (i− 4)2(i− 2) + 2

3 ,

S−3+ i
2 ,4

(t) := − 4
3 t

3 + 2(i− 2)t2 − (i− 2)2t+ 1
6 (i− 2)3,

then we can express the six polynomial pieces of φv defined for t ≥ 0 as

φv(t) =



( 1
2 + v

8 )S− 3
2 ,4(t) + ( 5

4 −
v
16 )S−1,3(t) + ( 1

2 + v
8 )S− 1

2 ,2(t)− 1
8S0,1(t), 0 ≤ t < 1

2 ,

( 5
4 −

v
16 )S−1,4(t) + ( 1

2 + v
8 )S− 1

2 ,3(t)− 1
8S0,2(t)− v

8S 1
2 ,1(t), 1

2 ≤ t < 1,
( 1

2 + v
8 )S− 1

2 ,4(t)− 1
8S0,3(t)− v

8S 1
2 ,2(t) + v

32S1,1(t), 1 ≤ t < 3
2 ,

− 1
8S0,4(t)− v

8S 1
2 ,3(t) + v

32S1,2(t), 3
2 ≤ t < 2,

− v8S 1
2 ,4(t) + v

32S1,3(t), 2 ≤ t < 5
2 ,

v
32S1,4(t), 5

2 ≤ t < 3,

so obtaining the claimed result.

Proposition 2.2. The family of functions {φv(· − n)}n∈Z forms a Riesz basis for the space V (φv) ={
s(t) =

∑
n∈Z qn φv(t− n) : q = (qn)n∈Z ∈ `2(Z)

}
, and thus the integer shifts of the fundamental function

φv in (2.1)-(2.2) are linearly independent.

Proof: The family of functions {φv(· − n)}n∈Z forms a Riesz basis for the space V (φv) if and only if there
exist two constants Av > 0 and Bv < +∞ such that

Av‖q‖`2(Z) ≤

∥∥∥∥∥∑
n∈Z

qnφv(· − n)

∥∥∥∥∥
L2(R)

≤ Bv‖q‖`2(Z) (2.5)

for any sequence q = (qn)n∈Z ∈ `2(Z). Condition (2.5) is equivalent to the Fourier-domain condition

A2
v ≤

∑
h∈Z

∣∣∣φ̂v(ω − 2hπ)
∣∣∣2 ≤ B2

v , ∀ω ∈ R, (2.6)
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where f̂(ω) :=
∫ +∞
−∞ f(t)e−iωtdt denotes the Fourier transform of f(t) [8]. Let cv = (cv,n)n∈Z be the sequence

obtained from the coefficients in (2.4) by considering also cv,n = 0 if |n| ≥ 5. To prove (2.6), we first write
the Fourier transform of (2.3) as

φ̂v(ω) = 1
2G(ω)N̂4

(ω
2

)
with G(ω) :=

∑
n∈Z

cv,n e
−iω n

2 , (2.7)

and then we focus separately on the existence of the lower bound Av and the upper bound Bv. As we will
see, the existence of an upper bound relies on the one for cubic B-splines, while the existence of a lower
bound is based on the fact that φv is interpolatory.
Upper bound. We start by observing that G(ω − 2hπ) =

∑
n∈Z((−1)h)n cv,n e−iω n

2 for all h ∈ Z. Thus,

G(ω − 2hπ) =


∑
n∈Z

cv,n e
−iω n

2 =: G0(ω), if h even integer,∑
n∈Z

(−1)n cv,n e−iω n
2 =: G1(ω), if h odd integer,

and, exploiting (2.7), we can write∑
h∈Z

∣∣∣φ̂v(ω − 2hπ)
∣∣∣2 = 1

4 |G0(ω)|2
∑
h∈Z

∣∣∣N̂4

(ω
2 − 2hπ

)∣∣∣2 + 1
4 |G1(ω)|2

∑
h∈Z

∣∣∣N̂4

(ω
2 − (2h+ 1)π

)∣∣∣2 .
Taking into account that |Gl(ω)| ≤

∑
n∈Z |cv,n| = ‖cv‖`1(Z), for l = 0, 1, we obtain the inequality∑

h∈Z

∣∣∣φ̂v(ω − 2hπ)
∣∣∣2 ≤ 1

4‖cv‖
2
`1(Z)

∑
h∈Z

∣∣∣N̂4

(ω
2 − hπ

)∣∣∣2 .
Now let b = (bn)n∈Z with bn = (N4 ∗N−4 )(n) and N−4 (t) = N4(−t). Since

̂(N4 ∗N−4 )(ω) = N̂4(ω) N̂−4 (ω) = N̂4(ω) N̂4(−ω) = N̂4(ω) N̂4(ω) = |N̂4(ω)|2,

then recalling Poisson’s summation formula
∑
h∈Z f̂

(
ω − 2hπ

T

)
= T

∑
n∈Z f(nT )e−iωnT for ω ∈ R, T > 0,

we can write∑
h∈Z

∣∣∣N̂4

(ω
2 − hπ

)∣∣∣2 =
∑
h∈Z

̂(N4 ∗N−4 )
(ω

2 − hπ
)

= 2
∑
n∈Z

b2ne
−iωn ≤ 2‖b‖`1(Z) =: B2.

In view of the fact that the function N4 ∗ N−4 is continuous and compactly supported, it follows that the
sequence b of its samples is in `1(Z) and then B2 < +∞. In light of (2.4) also ‖cv‖2

`1(Z) < +∞ for any

0 ≤ v < +∞. As a consequence,
∑
h∈Z

∣∣∣φ̂v(ω − 2hπ)
∣∣∣2 ≤ 1

4‖cv‖
2
`1(Z)B

2 =: B2
v , and thus the constant

Bv = 1
2‖cv‖`1(Z)B < +∞ acts as an upper bound in (2.6).

Lower bound. Exploiting the fact that φv is interpolatory, we know that its Fourier transform satisfies [9]∑
h∈Z

φ̂v(ω − 2hπ) = 1, ∀ω ∈ R. (2.8)

In addition, the functionH(ω) :=
∑
h∈Z

∣∣∣φ̂v(ω − 2hπ)
∣∣∣2 is continuous and periodic since the functions G0(ω),

G1(ω) and ω 7→
∑
h∈Z

∣∣∣N̂4
(
ω
2 − hπ

)∣∣∣2 are all continuous and periodic. There follows that H(ω) reaches its
minimum at some ω0 ∈ [0, 2π]. Thus, we can define the constant A2

v := H(ω0) which clearly satisfies the
inequality A2

v ≥ 0. But, if we assume Av = 0, then we have φ̂v(ω0−2hπ) = 0 for all h ∈ Z, which contradicts
(2.8). Hence it must necessarily be Av > 0. This proves the existence of the lower bound in (2.6).

Within the class of parameter-dependent C2 cubic B2-spline basis functions, we can identify two special
members:
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• the one having the shortest support (i.e., [−2, 2]), which is obtained for v = 0 (already studied in [5]);

• the optimal one in the sense of Dahmen-Goodman-Micchelli [4], which is the one having approximation
order 4 and is obtained for v = 2

3 (already studied in [4, 6]).

The basis functions φ0 and φ2/3 are illustrated in Figure 1 together with the shifts of the cubic B-spline
N4(2·) involved in their construction.
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Figure 1: The B2-spline basis functions φ0 (left) and φ2/3 (right) with their cubic polynomial pieces, and the underlined shifts
of the cubic B-spline dilated by a factor of 2.

The property of optimality is based on the result proven in the next proposition.
Proposition 2.3. Let Πd denote the set or linear space of all polynomials of degree ≤ d. The integer shifts
of the fundamental function φv in (2.1)-(2.2) can reproduce Π1 for all 0 ≤ v < +∞ and Π3 for v = 2

3 .
Proof: We start by writing

3∑
i=−2

i` φv(t− i) =
{

f
[`]
L (t) if t ∈ [0, 1

2 ),
f

[`]
R (t) if t ∈ [ 1

2 , 1]
with

f
[`]
L (t) =

0∑
i=−2

i` φv,1−2i(t− i) +
3∑
i=1

i` φv,2i(−t+ i),

f
[`]
R (t) =

0∑
i=−2

i` φv,2−2i(t− i) +
3∑
i=1

i` φv,2i−1(−t+ i).

These expressions, together with (2.2), yield f [0]
L (t) = f

[0]
R (t) = 1, f [1]

L (t) = f
[1]
R (t) = t for all 0 ≤ v < +∞,

and
f

[2]
L (t) = − 1

3 t
2(4(2− 3v)t+ 9(v − 1)

)
, f

[2]
R (t) = − 1

3
(
4(3v − 2)t3 + 3(5− 9v)t2 + 6(3v − 2)t− 3v + 2

)
,

f
[3]
L (t) = − 1

2 t
(
2(1− 3v)t2 + 3v − 2

)
, f

[3]
R (t) = − 1

2
(
2(9v − 7)t3 + 12(2− 3v)t2 + 7(3v − 2)t− 3v + 2

)
.

There follows that f [2]
L (t) = f

[2]
R (t) = t2 ⇔ v = 2

3 and f [3]
L (t) = f

[3]
R (t) = t3 ⇔ v = 2

3 .

3. C2 cubic B2-spline interpolating curves with variable shape parameter

Denoting by {P̄ 0
i , i ∈ Z} the vertices of a given polygon, we can construct the interpolating curve based

on the B2-spline fundamental function φv as

s(t) =
∑
i∈Z

P̄ 0
i φv(t− i), t ∈ I ⊂ R. (3.1)

Due to the special expression of the compactly supported function φv, we can write s(t) =
⋃
i∈Z si(t), where

each curve piece si(t), t ∈ [0, 1], is confined between the pair of consecutive vertices P̄ 0
i , P̄

0
i+1 and reads as

si(t) =
{

si,L(t), if t ∈ [0, 1
2 ),

si,R(t), if t ∈ [ 1
2 , 1]

with

si,L(t) =
0∑

i=−2
P̄ 0
i+` φv,1−2i(t− i) +

3∑
i=1

P̄ 0
i+` φv,2i(−t+ i),

si,R(t) =
0∑

i=−2
P̄ 0
i+` φv,2−2i(t− i) +

3∑
i=1

P̄ 0
i+` φv,2i−1(−t+ i).

In particular, si,L(0) = P̄ 0
i and si,R(1) = P̄ 0

i+1.
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3.1. A two-phase subdivision scheme for generating cubic B2-spline interpolants of variable shape
Substituting in (3.1) the expression of φv given in (2.3), we can rewrite the spline curve s as

s(t) =
∑
i∈Z

(
v

32 P̄
0
i−2 −

1
8 P̄

0
i−1 +

(
5
4 −

v

16

)
P̄ 0
i −

1
8 P̄

0
i+1 + v

32 P̄
0
i+2

)
N4(2t− 2i)

+
∑
i∈Z

(
−v8 P̄

0
i−1 +

(
1
2 + v

8

)
P̄ 0
i +

(
1
2 + v

8

)
P̄ 0
i+1 −

v

8 P̄
0
i+2

)
N4(2t− 2i− 1).

Therefore, if we introduce the notation

P 0
2i := v

32 P̄
0
i−2 −

1
8 P̄

0
i−1 +

(
5
4 −

v

16

)
P̄ 0
i −

1
8 P̄

0
i+1 + v

32 P̄
0
i+2,

P 0
2i+1 := −v8 P̄

0
i−1 +

(
1
2 + v

8

)
P̄ 0
i +

(
1
2 + v

8

)
P̄ 0
i+1 −

v

8 P̄
0
i+2,

(3.2)

we can represent the interpolating curve s as a cubic spline curve with control points {P 0
i , i ∈ Z}, i.e., as

s(t) =
∑
i∈Z

P 0
i N4(2t− i).

As a consequence, exploiting the refinement equation of cubic B-splines, we can efficiently represent the
B2-spline curve interpolating {P̄ 0

i , i ∈ Z} via a subdivision scheme that evaluates it at dyadic points. The
subdivision scheme is a two-phase subdivision scheme that applies in the first iteration the preprocessing
step in (3.2) yielding the new vertex sequence {P 0

i , i ∈ Z}, and in all subsequent iterations the standard
refinement rules for cubic splines (see, e.g., [3, Section 2.1]) starting from {P 0

i , i ∈ Z} (see Figure 3).

3.2. Automatic selection of the global shape parameter v
By varying the free parameter v, the B2-spline basis function φv is represented by a different graph (see

Figure 2 left) and the shape of the interpolating curve in (3.1) changes accordingly (see Figure 2 right). The
goal of this section is to propose an automatic selection of the global shape parameter v that, in addition
to being driven only by the data to be interpolated, allows one to generate interpolating curves that do not
exhibit ugly undulations. Specifically, for any given closed polygon, the algorithm we propose for selecting the
shape parameter v in an automatic way, proceeds as described hereafter. Let {P̄ 0

i = (xi, yi), i = 1, . . . ,M}
be the distinct vertices of the closed polygon P̄ 0. Then, the control polygon P 0 obtained via (3.2) will consist
of 2M distinct vertices. We will thus make our selection of v from a set of 2M values that is constructed
as follows. For all r = 1, . . . ,M , assume that the coordinate components of each subset of three consecutive
vertices P 0

j = (x0
j , y

0
j ), j = 2r, 2r + 1, 2r + 2 depend on a different parameter vr, and compute

f(vr) :=
( 〈
P 0

2r+1 − P 0
2r, P

0
2r+2 − P 0

2r+1
〉 )2
− ‖P 0

2r+1 − P 0
2r‖2

2 ‖P 0
2r+2 − P 0

2r+1‖2
2. (3.3)

The function in (3.3) has the explicit expression f(vr) = −2−20 (a v2
r + 4b vr + 16c)2 with

a := (5xr−1 − 4xr − 6xr+1 + 4xr+2 + xr+3)yr−2 + (−5xr−2 + 14xr − 4xr+1 − 9xr+2 + 4xr+3)yr−1
+ (4xr−2 − 14xr−1 + 20xr+1 − 4xr+2 − 6xr+3)yr + (6xr−2 + 4xr−1 − 20xr + 14xr+2 − 4xr+3)yr+1
+ (−4xr−2 + 9xr−1 + 4xr − 14xr+1 + 5xr+3)yr+2 + (−xr−2 − 4xr−1 + 6xr + 4xr+1 − 5xr+2)yr+3,

b := (−5xr + 6xr+1 − xr+2)yr−2 + (−46xr + 55xr+1 − 8xr+2 − xr+3)yr−1
+ (5xr−2 + 46xr−1 − 112xr+1 + 55xr+2 + 6xr+3)yr + (−6xr−2 − 55xr−1 + 112xr − 46xr+2 − 5xr+3)yr+1
+ (xr−2 + 8xr−1 − 55xr + 46xr+1)yr+2 + (xr−1 − 6xr + 5xr+1)yr+3,

c := (5xr − 6xr+1 + xr+2)yr−1 + (−5xr−1 + 11xr+1 − 6xr+2)yr + (6xr−1 − 11xr + 5xr+2)yr+1
+ (−xr−1 + 6xr − 5xr+1)yr+2.

5



If b2 − 4ac ≥ 0, then vr = 2−b±
√
b2−4ac
a are real roots of f , which can be conveniently distinguished by

introducing the notation vr,1 := 2−b+
√
b2−4ac
a and vr,2 := 2−b−

√
b2−4ac
a . Note that, in light of (3.3), if vr

takes one of these values, then the consecutive control points P 0
2r, P

0
2r+1, P

0
2r+2 are aligned. Conversely, if

b2 − 4ac < 0, we assume that two real values are assigned to vr,1 and vr,2 by the user. For instance, the
special values 2

3 and 0, respectively providing the B2-spline basis function with the highest approximation
order and the smallest support could be selected, as well as the mean value of the two. Once all the 2M
values {vr,1, vr,2}r=1,...,M are known, we select the global shape parameter v in a different way depending if
P̄ 0 is a globally convex polygon or a non-convex polygon (for the meaning of these terms we refer the reader
to [1]). Specifically, in the case of globally convex data we simply select

v = max
r∈{1,...,M}

{vr,2 : 0 ≤ vr,2 < 1}.

Differently, in the case of non-convex data, let P̄ 0
m = (xm, ym) be the vertex that satisfies ∠(P̄ 0

m−1, P̄
0
m, P̄

0
m+1) =

max
i=1,...,M

∠(P̄ 0
i−1, P̄

0
i , P̄

0
i+1) where P̄ 0

0 := P̄ 0
M and P̄ 0

M+1 := P̄ 0
1 . Then, we define

r∗ =
{

m, if ‖P̄ 0
m+1 − P̄ 0

m‖2 ≤ ‖P̄ 0
m − P̄ 0

m−1‖2

m− 1, otherwise
and v =

{
max{vr∗,1, vr∗,2}, if vr∗,1vr∗,2 ≤ 0
min{vr∗,1, vr∗,2}, if vr∗,1vr∗,2 > 0.

Examples of closed curves interpolating non-convex data and globally convex data, for which the shape pa-
rameter v is computed via the previously described algorithm, are displayed in Figures 3 and 4, respectively.
Although we cannot claim that the interpolants obtained from the computed values of v always preserve
the local/global convexity of the data, our numerical experiments have shown that they do not exhibit ugly
undulations and, in many cases, they behave also better than the C2 cubic B2-spline interpolants proposed
in [4–6] (see Figure 5).
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Figure 2: Comparison of B2-spline basis functions (left) and corresponding data interpolation (right) for the following values
of v (from inner to outer): 0 (blue), 1

3 (yellow), 2
3 (red), 1 (black), 4

3 (green), 5
3 (magenta), 2 (cyan).
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(a) v = 1.2770 (b) v = 1.1429 (c) v = 0.4330 (d) v = 0.3980

Figure 3: Interpolation data {P̄ 0
i , i = 1, . . . ,M} (black bullets), initial vertices of the subdivision process {P 0

i , i = 1, . . . , 2M}
(blue squares), interpolating curve generated via cubic spline refinement of {P 0

i , i = 1, . . . , 2M} with automatically computed
parameter v (red).

(a) v = 0.3865 (b) v = 0.3857 (c) v = 0.4102 (d) v = 0.3908
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Figure 4: First row: globally convex interpolation data {P̄ 0
i , i = 1, . . . ,M} (black bullets), initial vertices of the subdivision

process {P 0
i , i = 1, . . . , 2M} (blue squares), convex interpolating curve generated via cubic spline refinement of {P 0

i , i =
1, . . . , 2M} with automatically computed parameter v (red). Second row: corresponding curvature plot of constant sign.

Figure 5: First row: Interpolating curves obtained from the data in Figure 3(d) and Figure 4(b,d) when using v = 0 (green),
v = 2

3 (magenta) and v provided by the automatic algorithm (red). (For interpretation of the references to color and for a
better comparison between the curves, the reader is referred to the electronic version of this paper.) Second row: enlargement
of a detail from each figure in the first row.
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