120 research outputs found

    Uniform bounds for higher-order semilinear problems in conformal dimension

    Full text link
    We establish uniform a-priori estimates for solutions of the semilinear Dirichlet problem \begin{equation} \begin{cases} (-\Delta)^m u=h(x,u)\quad&\mbox{in }\Omega,\\ u=\partial_nu=\cdots=\partial_n^{m-1}u=0\quad&\mbox{on }\partial\Omega, \end{cases} \end{equation} where hh is a positive superlinear and subcritical nonlinearity in the sense of the Trudinger-Moser-Adams inequality, either when Ω\Omega is a ball or, provided an energy control on solutions is prescribed, when Ω\Omega is a smooth bounded domain. The analogue problem with Navier boundary conditions is also studied. Finally, as a consequence of our results, existence of a positive solution is shown by degree theory.Comment: Minor correction

    Polynomial-based non-uniform interpolatory subdivision with features control

    Get PDF
    Starting from a well-known construction of polynomial-based interpolatory 4-point schemes, in this paper we present an original affine combination of quadratic polynomial samples that leads to a non-uniform 4-point scheme with edge parameters. This blending-type formulation is then further generalized to provide a powerful subdivision algorithm that combines the fairing curve of a non-uniform refinement with the advantages of a shape-controlled interpolation method and an arbitrary point insertion rule. The result is a non-uniform interpolatory 4-point scheme that is unique in combining a number of distinctive properties. In fact it generates visually-pleasing limit curves where special features ranging from cusps and flat edges to point/edge tension effects may be included without creating undesired undulations. Moreover such a scheme is capable of inserting new points at any positions of existing intervals, so that the most convenient parameter values may be chosen as well as the intervals for insertion. Such a fully flexible curve scheme is a fundamental step towards the construction of high-quality interpolatory subdivision surfaces with features control

    Eigenvalue Bifurcation in Doubly Nonlinear Problems with an Application to Surface Plasmon Polaritons

    Full text link
    We consider a class of generally non-self-adjoint eigenvalue problems which are nonlinear in the solution as well as in the eigenvalue parameter ("doubly" nonlinear). We prove a bifurcation result from simple isolated eigenvalues of the linear problem using a Lyapunov-Schmidt reduction and provide an expansion of both the nonlinear eigenvalue and the solution. We further prove that if the linear eigenvalue is real and the nonlinear problem PT\mathcal P\mathcal T-symmetric, then the bifurcating nonlinear eigenvalue remains real. These general results are then applied in the context of surface plasmon polaritons (SPPs), i.e. localized solutions for the nonlinear Maxwell's equations in the presence of one or more interfaces between dielectric and metal layers. We obtain the existence of transverse electric SPPs in certain PT\mathcal P\mathcal T-symmetric configurations.Comment: Minor corrections in accordance to the referees' suggestion

    Nonlocal planar Schr\"odinger-Poisson systems in the fractional Sobolev limiting case

    Full text link
    We study the nonlinear Schr\"odinger equation for the s−s-fractional p−p-Laplacian strongly coupled with the Poisson equation in dimension two and with p=2sp=\frac2s, which is the limiting case for the embedding of the fractional Sobolev space Ws,p(R2)W^{s,p}(\mathbb{R}^2). We prove existence of solutions by means of a variational approximating procedure for an auxiliary Choquard equation in which the uniformly approximated sign-changing logarithmic kernel competes with the exponential nonlinearity. Qualitative properties of solutions such as symmetry and decay are also established by exploiting a suitable moving planes technique

    A practical method for computing with piecewise Chebyshevian splines

    Get PDF
    A piecewise Chebyshevian spline space is good for design when it possesses a B-spline basis and this property is preserved under knot insertion. The interest in such kind of spaces is justified by the fact that, similarly as for polynomial splines, the related parametric curves exhibit the desired properties of convex hull inclusion, variation diminution and intuitive relation between the curve shape and the location of the control points. For a good-for-design space, in this paper we construct a set of functions, called transition functions, which allow for efficient computation of the B-spline basis, even in the case of nonuniform and multiple knots. Moreover, we show how the spline coefficients of the representations associated with a refined knot partition and with a raised order can conveniently be expressed by means of transition functions. This result allows us to provide effective procedures that generalize the classical knot insertion and degree raising algorithms for polynomial splines. We further discuss how the approach can straightforwardly be generalized to deal with geometrically continuous piecewise Chebyshevian splines as well as with splines having section spaces of different dimensions. From a numerical point of view, we show that the proposed evaluation method is easier to implement and has higher accuracy than other existing algorithms

    HMGB1 Attenuates Cardiac Remodelling in the Failing Heart via Enhanced Cardiac Regeneration and miR-206-Mediated Inhibition of TIMP-3

    Get PDF
    Aims: HMGB1 injection into the mouse heart, acutely after myocardial infarction (MI), improves left ventricular (LV) function and prevents remodeling. Here, we examined the effect of HMGB1 in chronically failing hearts. Methods and Results: Adult C57 BL16 female mice underwent coronary artery ligation; three weeks later 200 ng HMGB1 or denatured HMGB1 (control) were injected in the peri-infarcted region of mouse failing hearts. Four weeks after treatment, both echocardiography and hemodynamics demonstrated a significant improvement in LV function in HMGB1-treated mice. Further, HMGB1-treated mice exhibited a,23 % reduction in LV volume, a,48 % increase in infarcted wall thickness and a,14 % reduction in collagen deposition. HMGB1 induced cardiac regeneration and, within the infarcted region, it was found a,2-fold increase in c-kit + cell number, a,13-fold increase in newly formed myocytes and a,2-fold increase in arteriole length density. HMGB1 also enhanced MMP2 and MMP9 activity and decreased TIMP-3 levels. Importantly, miR-206 expression 3 days after HMGB1 treatment was 4-5-fold higher than in control hearts and 20–25 fold higher that in sham operated hearts. HMGB1 ability to increase miR-206 was confirmed in vitro, in cardiac fibroblasts. TIMP3 was identified as a potential miR-206 target by TargetScan prediction analysis; further, in cultured cardiac fibroblasts, miR-206 gain- and loss-offunction studies and luciferase reporter assays showed that TIMP3 is a direct target of miR-206. Conclusions: HMGB1 injected into chronically failing hearts enhanced LV function and attenuated LV remodelling; thes

    Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. Thanks to the tight requirements on its optical and radio-purity properties, it will be able to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range from tens of keV to hundreds of MeV. A key requirement for the success of the experiment is an unprecedented 3% energy resolution, guaranteed by its large active mass (20 kton) and the use of more than 20,000 20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution sampling electronics located very close to the PMTs. As the Front-End and Read-Out electronics is expected to continuously run underwater for 30 years, a reliable readout acquisition system capable of handling the timestamped data stream coming from the Large-PMTs and permitting to simultaneously monitor and operate remotely the inaccessible electronics had to be developed. In this contribution, the firmware and hardware implementation of the IPbus based readout protocol will be presented, together with the performances measured on final modules during the mass production of the electronics

    Mass testing of the JUNO experiment 20-inch PMTs readout electronics

    Full text link
    The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose, large size, liquid scintillator experiment under construction in China. JUNO will perform leading measurements detecting neutrinos from different sources (reactor, terrestrial and astrophysical neutrinos) covering a wide energy range (from 200 keV to several GeV). This paper focuses on the design and development of a test protocol for the 20-inch PMT underwater readout electronics, performed in parallel to the mass production line. In a time period of about ten months, a total number of 6950 electronic boards were tested with an acceptance yield of 99.1%
    • …
    corecore