19 research outputs found

    A Search for Technosignatures Around 31 Sun-like Stars with the Green Bank Telescope at 1.15-1.73 GHz

    Full text link
    We conducted a search for technosignatures in April of 2018 and 2019 with the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. These observations focused on regions surrounding 31 Sun-like stars near the plane of the Galaxy. We present the results of our search for narrowband signals in this data set as well as improvements to our data processing pipeline. Specifically, we applied an improved candidate signal detection procedure that relies on the topographic prominence of the signal power, which nearly doubles the signal detection count of some previously analyzed data sets. We also improved the direction-of-origin filters that remove most radio frequency interference (RFI) to ensure that they uniquely link signals observed in separate scans. We performed a preliminary signal injection and recovery analysis to test the performance of our pipeline. We found that our pipeline recovers 93% of the injected signals over the usable frequency range of the receiver and 98% if we exclude regions with dense RFI. In this analysis, 99.73% of the recovered signals were correctly classified as technosignature candidates. Our improved data processing pipeline classified over 99.84% of the ~26 million signals detected in our data as RFI. Of the remaining candidates, 4539 were detected outside of known RFI frequency regions. The remaining candidates were visually inspected and verified to be of anthropogenic nature. Our search compares favorably to other recent searches in terms of end-to-end sensitivity, frequency drift rate coverage, and signal detection count per unit bandwidth per unit integration time.Comment: 20 pages, 8 figures, in press at the Astronomical Journal (submitted on Sept. 9, 2020; reviews received Nov. 6; re-submitted Nov. 6; accepted Nov. 17

    Heliophysics and Amateur Radio:Citizen Science Collaborations for Atmospheric, Ionospheric, and Space Physics Research and Operations

    Get PDF
    The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities

    Multicenter registry of Impella-assisted high-risk percutaneous coronary interventions and cardiogenic shock in Poland (IMPELLA-PL)

    Get PDF
    Background: Impella is a percutaneous mechanical circulatory support device for treatment of cardiogenic shock (CS) and high-risk percutaneous coronary interventions (HR-PCIs). IMPELLA-PL is a national retrospective registry of Impella-treated CS and HR-PCI patients in 20 Polish interventional cardiological centers, conducted from January 2014 until December 2021.Aims: We aimed to determine the efficacy and safety of Impella using real-world data from IMPELLA-PL and compare these with other registries.Methods: IMPELLA-PL data were analyzed to determine primary endpoints: in-hospital mortality and rates of mortality and major adverse cardiovascular and cerebrovascular events (MACCE) at 12 months post-discharge.Results: Of 308 patients, 18% had CS and 82% underwent HR-PCI. In-hospital mortality rates were 76.4% and 8.3% in the CS and HR-PCI groups, respectively. The 12-month mortality rates were 80.0% and 18.2%, and post-discharge MACCE rates were 9.1% and 22.5%, respectively. Any access site bleeding occurred in 30.9% of CS patients and 14.6% of HR-PCI patients, limb ischemia in 12.7% and 2.4%, and hemolysis in 10.9% and 1.6%, respectively.Conclusions: Impella is safe and effective during HR-PCIs, in accordance with previous registry analyses. The risk profile and mortality in CS patients were higher than in other registries, and the potential benefits of Impella in CS require investigation

    ATP dependence of Na+/H+ exchange: nucleotide specificity and assessment of the role of phospholipids

    No full text
    We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pHi) by microfluorimetry. Na+/H+ exchange activity was measured as the Na+-driven pHi recovery from an acid load, which was imposed via the patch pipette. In Chinese hamster ovary (CHO) fibroblasts stably transfected with NHE-1, omission of ATP from the pipette solution inhibited Na+/H+ exchange. Conversely, ATP perfusion restored exchange activity in cells that had been metabolically depleted by 2-deoxy-D-glucose and oligomycin. In cells dialyzed in the presence of ATP, no “run-down” was observed even after extended periods, suggesting that the nucleotide is the only diffusible factor required for optimal NHE-1 activity. Half-maximal activation of the antiporter was obtained at ∼5 mM Mg-ATP. Submillimolar concentrations failed to sustain Na+/H+ exchange even when an ATP regenerating system was included in the pipette solution. High ATP concentrations are also known to be required for the optimal function of other cation exchangers. In the case of the Na/Ca2+ exchanger, this requirement has been attributed to an aminophospholipid translocase, or “flippase.” The involvement of this enzyme in Na+/H+ exchange was examined using fluorescent phosphatidylserine, which is actively translocated by the flippase. ATP depletion decreased the transmembrane uptake of NBD-labeled phosphatidylserine (NBD-PS), indicating that the flippase was inhibited. Diamide, an agent reported to block the flippase, was as potent as ATP depletion in reducing NBD-PS uptake. However, diamide had no effect on Na+/H+ exchange, implying that the effect of ATP is not mediated by changes in lipid distribution across the plasma membrane. K-ATP and ATPγS were as efficient as Mg-ATP in sustaining NHE-1 activity, while AMP-PNP and AMP-PCP only partially substituted for ATP. In contrast, GTPγS was ineffective. We conclude that ATP is the only soluble factor necessary for optimal activity of the NHE-1 isoform of the antiporter. Mg2+ does not appear to be essential for the stimulatory effect of ATP. We propose that two mechanisms mediate the activation of the antiporter by ATP: one requires hydrolysis and is likely an energy-dependent event. The second process does not involve hydrolysis of the γ-phosphate, excluding mediation by protein or lipid kinases. We suggest that this effect is due to binding of ATP to an as yet unidentified, nondiffusible effector that activates the antiporter
    corecore