126 research outputs found

    Dust Abundance Variations in the Magellanic Clouds: Probing the Lifecycle of Metals with All-Sky Surveys

    Full text link
    Observations and modeling suggest that the dust abundance (gas-to-dust ratio, G/D) depends on (surface) density. The variations of the G/D provide constraints on the timescales for the different processes involved in the lifecycle of metals in galaxies. Recent G/D measurements based on Herschel data suggest a factor 5---10 decrease in the dust abundance between the dense and diffuse interstellar medium (ISM) in the Magellanic Clouds. However, the relative nature of the Herschel measurements precludes definitive conclusions on the magnitude of those variations. We investigate the variations of the dust abundance in the LMC and SMC using all-sky far-infrared surveys, which do not suffer from the limitations of Herschel on their zero-point calibration. We stack the dust spectral energy distribution (SED) at 100, 350, 550, and 850 microns from IRAS and Planck in intervals of gas surface density, model the stacked SEDs to derive the dust surface density, and constrain the relation between G/D and gas surface density in the range 10---100 \Msu pc−2^{-2} on ∼\sim 80 pc scales. We find that G/D decreases by factors of 3 (from 1500 to 500) in the LMC and 7 (from 1.5×104\times 10^4 to 2000) in the SMC between the diffuse and dense ISM. The surface density dependence of G/D is consistent with elemental depletions and with simple modeling of the accretion of gas-phase metals onto dust grains. This result has important implications for the sub-grid modeling of galaxy evolution, and for the calibration of dust-based gas mass estimates, both locally and at high-redshift.Comment: 20 pages, 14 figure

    The Turbulence Spectrum of Molecular Clouds in the Galactic Ring Survey: A Density-Dependent PCA Calibration

    Get PDF
    Turbulence plays a major role in the formation and evolution of molecular clouds. The problem is that turbulent velocities are convolved with the density of an observed region. To correct for this convolution, we investigate the relation between the turbulence spectrum of model clouds, and the statistics of their synthetic observations obtained from Principal Component Analysis (PCA). We apply PCA to spectral maps generated from simulated density and velocity fields, obtained from hydrodynamic simulations of supersonic turbulence, and from fractional Brownian motion fields with varying velocity, density spectra, and density dispersion. We examine the dependence of the slope of the PCA structure function, alpha_PCA, on intermittency, on the turbulence velocity (beta_v) and density (beta_n) spectral indexes, and on density dispersion. We find that PCA is insensitive to beta_n and to the log-density dispersion sigma_s, provided sigma_s 2, alpha_PCA increases with sigma_s due to the intermittent sampling of the velocity field by the density field. The PCA calibration also depends on intermittency. We derive a PCA calibration based on fBms with sigma_s<2 and apply it to 367 CO spectral maps of molecular clouds in the Galactic Ring Survey. The average slope of the PCA structure function, =0.62\pm0.2, is consistent with the hydrodynamic simulations and leads to a turbulence velocity exponent =2.06\pm0.6 for a non-intermittent, low density dispersion flow. Accounting for intermittency and density dispersion, the coincidence between the PCA slope of the GRS clouds and the hydrodynamic simulations suggests beta_v~1.9, consistent with both Burgers and compressible intermittent turbulence

    Dust Destruction Rates and Lifetimes in the Magellanic Clouds

    Get PDF
    The nature, composition, abundance, and size distribution of dust in galaxies is determined by the rate at which it is created in the different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetime and destruction efficiencies of silicate and carbon dust in these galaxies. We find dust lifetimes of 22 +- 13 Myr (30 +- 17 Myr) for silicate (carbon) grains in the LMC, and 54 +- 32 Myr (72 +- 43 Myr) for silicate (carbon) grains in the SMC. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass, and the fact that the dust-destroying isolated SNe in the MCs seem to be preferentially occurring in regions with higher than average dust-to-gas (D2G) mass ratios. We also calculate the supernova rate and the current star formation rate in the MCs, and use them to derive maximum dust injection rates by asymptotic giant branch stars and core collapse supernovae. We find that the injection rates are an order of magnitude lower than the dust destruction rates by the SNRs. This supports the conclusion that, unless the dust destruction rates have been considerably overestimated, most of the dust must be reconstituted from surviving grains in dense molecular clouds. More generally, we also discuss the dependence of the dust destruction rate on the local D2G mass ratio, the ambient gas density and metallicity, as well as the application of our results to other galaxies and dust evolution models.Comment: 15 pages, 8 figures, 5 tables, accepted to Ap

    Principal Component Analysis of Molecular Clouds: Can CO reveal the dynamics?

    Full text link
    We use Principal Component Analysis (PCA) to study the gas dynamics in numerical simulations of typical MCs. Our simulations account for the non-isothermal nature of the gas and include a simplified treatment of the time-dependent gas chemistry. We model the CO line emission in a post-processing step using a 3D radiative transfer code. We consider mean number densities n_0 = 30, 100, 300 cm^{-3} that span the range of values typical for MCs in the solar neighbourhood and investigate the slope \alpha_{PCA} of the pseudo structure function computed by PCA for several components: the total density, H2 density, 12CO density, 12CO J = 1 -> 0 intensity and 13CO J = 1 -> 0 intensity. We estimate power-law indices \alpha_{PCA} for different chemical species that range from 0.5 to 0.9, in good agreement with observations, and demonstrate that optical depth effects can influence the PCA. We show that when the PCA succeeds, the combination of chemical inhomogeneity and radiative transfer effects can influence the observed PCA slopes by as much as ~ +/- 0.1. The method can fail if the CO distribution is very intermittent, e.g. in low-density clouds where CO is confined to small fragments.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    Principal component analysis of molecular clouds: Can CO reveal the dynamics?

    Get PDF
    We use principal component analysis (PCA) to study the gas dynamics in numerical simulations of typical molecular clouds (MCs). Our simulations account for the non-isothermal nature of the gas and include a simplified treatment of the time-dependent gas chemistry. We model the CO line emission in a post-processing step using a 3D radiative transfer code. We consider mean number densities n0 = 30, 100, 300 cm−3 that span the range of values typical for MCs in the solar neighbourhood and investigate the slope αPCA of the pseudo-structure function computed by PCA for several components: the total density, H2 density, 12CO density, 12CO J = 1 → 0 intensity and 13CO J = 1 → 0 intensity. We estimate power-law indices αPCA for different chemical species that range from 0.5 to 0.9, in good agreement with observations, and demonstrate that optical depth effects can influence the PCA. We show that when the PCA succeeds, the combination of chemical inhomogeneity and radiative transfer effects can influence the observed PCA slopes by as much as ≈±0.1. The method can fail if the CO distribution is very intermittent, e.g. in low-density clouds where CO is confined to small fragments

    The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): The Dust Extinction Curve from Red Clump Stars

    Get PDF
    We use Hubble Space Telescope (HST) observations of red clump stars taken as part of the Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE) program to measure the average dust extinction curve in a ~ 200 pc x 100 pc region in the southwest bar of the Small Magellanic Cloud (SMC). The rich information provided by our 8-band ultra-violet through near-infrared photometry allows us to model the color-magnitude diagram of the red clump accounting for the extinction curve shape, a log-normal distribution of AVA_{V}, and the depth of the stellar distribution along the line of sight. We measure an extinction curve with R475=A475/(A475−A814)R_{475} = A_{475}/(A_{475}-A_{814}) = 2.65 ±\pm 0.11. This measurement is significantly larger than the equivalent values of published Milky Way RVR_{V} = 3.1 (R475=1.83R_{475} = 1.83) and SMC Bar RVR_{V} = 2.74 (R475=1.86R_{475} = 1.86) extinction curves. Similar extinction curve offsets in the Large Magellanic Cloud (LMC) have been interpreted as the effect of large dust grains. We demonstrate that the line-of-sight depth of the SMC (and LMC) introduces an apparent "gray" contribution to the extinction curve inferred from the morphology of the red clump. We show that no gray dust component is needed to explain extinction curve measurements when a full-width half-max depth of 10 ±\pm 2 kpc in the stellar distribution of the SMC (5 ±\pm 1 kpc for the LMC) is considered, which agrees with recent studies of Magellanic Cloud stellar structure. The results of our work demonstrate the power of broad-band HST imaging for simultaneously constraining dust and galactic structure outside the Milky Way.Comment: 16 pages, 12 figures, 5 tables. Accepted for publication in Ap
    • …
    corecore