24 research outputs found

    Multi-functional oilfield production chemicals: maleic-based polymers for gas hydrate and corrosion inhibition

    Get PDF
    Several chemical problems can occur during the production of oil and gas through flow lines. This includes corrosion, scale deposition and gas hydrate plugging. Three separate chemicals may be needed to treat these issues. Kinetic hydrate inhibitors (KHIs) are used in cold oil or natural gas production flow lines to prevent the formation and plugging of the line with gas hydrates. They are often injected concomitantly with other production chemicals such as corrosion and scale inhibitors. KHIs are specific low molecular weight water-soluble polymers with amphiphilic groups formulated with synergists and solvents. However, many corrosion inhibitors (CIs) are antagonistic to the KHI polymer, severely reducing the KHI performance. It would be preferable and economic if the KHI also could act as a CI. We have explored the use of maleic-based copolymers as KHIs as well as their use as film-forming CIs. KHIs were tested using a natural gas mixture in high pressure rocking cells using the slow constant cooling test method. A terpolymer from reaction of vinyl acetate:maleic anhydride copolymer with cyclohexy lamine and 3,3-di-n-butylaminopropylamine (VA:MA-60% cHex-40% DBAPA), gave excellent performance as a KHI, better than the commercially available poly(N-vinyl caprolactam) (PVCap). CO2 corrosion inhibition was measured by Linear Polarization Resistance (LPR) in a 1 litre CO2 bubble test equipment using C1018 steel coupons. The new terpolymer gave good CO2 corrosion inhibition in 3.6 wt% brine, significantly better than PVCap, but not as good as a commercial imidazoline-based surfactant corrosion inhibitor. The terpolymer also showed good corrosion inhibition efficiency at high salinity conditions, (density 1.12 g/cm3). VA:MA-60% cHex-40% DBAPA shifted the open-circuit potential to more positive values and significantly decreased the corrosion rate.publishedVersio

    Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments

    Get PDF
    The design of new dual-function inhibitors simultaneously preventing hydrate formation and corrosion is a relevant issue for the oil and gas industry. The structure-property relationship for a promising class of hybrid inhibitors based on waterborne polyurethanes (WPU) was studied in this work. Variation of diethanolamines differing in the size and branching of N-substituents (methyl, n-butyl, and tert-butyl), as well as the amount of these groups, allowed the structure of polymer molecules to be preset during their synthesis. To assess the hydrate and corrosion inhibition efficiency of developed reagents pressurized rocking cells, electrochemistry and weight-loss techniques were used. A distinct effect of these variables altering the hydrophobicity of obtained compounds on their target properties was revealed. Polymers with increased content of diethanolamine fragments with n- or tert-butyl as N-substituent (WPU-6 and WPU-7, respectively) worked as dual-function inhibitors, showing nearly the same efficiency as commercial ones at low concentration (0.25 wt%), with the branched one (tert-butyl; WPU-7) turning out to be more effective as a corrosion inhibitor. Commercial kinetic hydrate inhibitor Luvicap 55 W and corrosion inhibitor Armohib CI-28 were taken as reference samples. Preliminary study reveals that WPU-6 and WPU-7 polyurethanes as well as Luvicap 55 W are all poorly biodegradable compounds; BODt/CODcr (ratio of Biochemical oxygen demand and Chemical oxygen demand) value is 0.234 and 0.294 for WPU-6 and WPU-7, respectively, compared to 0.251 for commercial kinetic hydrate inhibitor Luvicap 55 W. Since the obtained polyurethanes have a bifunctional effect and operate at low enough concentrations, their employment is expected to reduce both operating costs and environmental impact.publishedVersio

    Fluconazole-Pyridoxine Bis-Triazolium Compounds with Potent Activity against Pathogenic Bacteria and Fungi Including Their Biofilm-Embedded Forms

    Get PDF
    Two novel quaternary ammonium salts, bis-triazolium derivatives of fluconazole and pyridoxine, were synthesized by reaction of fluconazole with pyridoxine-based synthetic intermediates. The leading compound demonstrated pronounced antimycotic and antibacterial in vitro activity, comparable to or exceeding that of the reference antifungal (fluconazole, terbinafine) and antibacterial/antiseptic (miramistin, benzalkonium chloride) agents. In contrast to many antimicrobials, the leading compound was also active against biofilm-embedded staphylococci and Escherichia coli. While no biofilm structure destruction occurred, all compounds were able to diffuse into the matrix and reduce the number of colony-forming units by three orders of magnitude at 16 × MBC. The leading compound was significantly less toxic than miramistin and benzalkonium chloride and more toxic than the reference antifungal drugs. The obtained results make the described chemotype a promising starting point for the development of new broad-spectrum antimicrobial therapies with powerful effect on fungal and bacterial pathogens including their biofilm-embedded forms

    Performance of Waterborne Polyurethanes in Inhibition of Gas Hydrate Formation and Corrosion: Influence of Hydrophobic Fragments

    No full text
    The design of new dual-function inhibitors simultaneously preventing hydrate formation and corrosion is a relevant issue for the oil and gas industry. The structure-property relationship for a promising class of hybrid inhibitors based on waterborne polyurethanes (WPU) was studied in this work. Variation of diethanolamines differing in the size and branching of N-substituents (methyl, n-butyl, and tert-butyl), as well as the amount of these groups, allowed the structure of polymer molecules to be preset during their synthesis. To assess the hydrate and corrosion inhibition efficiency of developed reagents pressurized rocking cells, electrochemistry and weight-loss techniques were used. A distinct effect of these variables altering the hydrophobicity of obtained compounds on their target properties was revealed. Polymers with increased content of diethanolamine fragments with n- or tert-butyl as N-substituent (WPU-6 and WPU-7, respectively) worked as dual-function inhibitors, showing nearly the same efficiency as commercial ones at low concentration (0.25 wt%), with the branched one (tert-butyl; WPU-7) turning out to be more effective as a corrosion inhibitor. Commercial kinetic hydrate inhibitor Luvicap 55 W and corrosion inhibitor Armohib CI-28 were taken as reference samples. Preliminary study reveals that WPU-6 and WPU-7 polyurethanes as well as Luvicap 55 W are all poorly biodegradable compounds; BODt/CODcr (ratio of Biochemical oxygen demand and Chemical oxygen demand) value is 0.234 and 0.294 for WPU-6 and WPU-7, respectively, compared to 0.251 for commercial kinetic hydrate inhibitor Luvicap 55 W. Since the obtained polyurethanes have a bifunctional effect and operate at low enough concentrations, their employment is expected to reduce both operating costs and environmental impact

    Promising Hydrate Formation Promoters Based on Sodium Sulfosuccinates of Polyols

    No full text
    The use of natural gas as an energy source is increasing significantly due to its low greenhouse gas emissions. However, the common methods of natural gas storage and transportation, such as liquefied or compressed natural gas, are limited in their applications because they require extreme conditions. Gas hydrate technology can be a promising alternative to conventional approaches, as artificially synthesized hydrates provide an economical, environmentally friendly, and safe medium to store energy. Nevertheless, the low rate of hydrate formation is a critical problem that hinders the industrial application of this technology. Therefore, chemical promoters are being developed to accelerate the kinetics of gas hydrate formation. In this paper, the effect of new sodium sulfosuccinate compounds, synthesized based on glycerol and pentaerythritol, on methane hydrate formation was studied. Experiments under dynamic conditions using high-pressure autoclaves demonstrated that the conversion of water-to-hydrate forms increased from 62 ± 5% in pure water to 86 ± 4% for the best promoter at concentration 500 ppm. In addition, the rate of hydrate formation increases 2–4 times for different concentrations. Moreover, none of the synthesized reagents formed foam, compared to sodium dodecyl sulfate, in which the foam rate was 3.7 ± 0.2. The obtained reagents showed good promotional properties and did not form foam, which makes them promising promoters for gas hydrate technology

    Effective Inhibition of Carbon Steel Corrosion by Waterborne Polyurethane Based on N-<i>tert</i>-Butyl Diethanolamine in 2M HCl: Experimental and Computational Findings

    No full text
    The efficiency of corrosion inhibition for waterborne polyurethane based on N-tert-butyl diethanolamine (tB-WPU) is investigated using different techniques. Corrosion weight loss, open circuit potential experiments, electrochemical impedance spectroscopy, and potentiodynamic polarization measurements show that both a commercial reagent and a polyurethane-based inhibitor prevent corrosion at increasing temperature to 50 °C. At 75 °C, the activity of both reagents is reduced. In stirring conditions, the effectiveness of acid corrosion inhibition (25 °C, 500 ppm) drops abruptly from 89.5% to 60.7%, which is related presumably to the complexity of binding the polymer molecules to the metal surface. As follows from thermodynamic calculations, the adsorption of tB-WPU on the metal surface in 2M HCl can be treated as a physisorption. Model quantum–chemical calculations support the experimental studies and elucidate the nature of steel surface–inhibitor molecule chemical bond, which is realized mainly by carboxyl and amino groups. It is concluded that WPUs can be considered as a perspective alternative to commercial oilfield reagents due to their versatility

    Anticancer Potential of Pyridoxine-Based Doxorubicin Derivatives: An In Vitro Study

    No full text
    Doxorubicin (DOX) is a prevalent anticancer agent; however, it is unfortunately characterized by high cardiotoxicity, myelosuppression, and multiple other side effects. To overcome DOX limitations, two novel pyridoxine-derived doxorubicin derivatives were synthesized (DOX-1 and DOX-2). In the present study, their antitumor activity and mechanism of action were investigated. Of these two compounds, DOX-2, in which the pyridoxine fragment is attached to the doxorubicin molecule via a C3 linker, revealed higher selectivity against specific cancer cell types compared to doxorubicin and a promising safety profile for conditionally normal cells. However, the compound with a C1 linker (DOX-1) was not characterized by selectivity of antitumor action. It was revealed that DOX-2 obstructs cell cycle progression, induces apoptosis via the mitochondrial pathway without the development of necrosis, and showcases antioxidant capabilities, underlining its cell-regulatory roles. In contrast to doxorubicin’s DNA-centric mechanism, DOX-2 does not interact with nuclear DNA. Given these findings, DOX-2 presents a new promising direction in cancer therapeutics, which is deserving of further in vivo exploration

    Novel Amino Acid Derivatives for Efficient Methane Solidification Storage via Clathrate Hydrates without Foam Formation

    No full text
    Although anionic surfactants are considered the most efficient kinetic gas hydrate promoters for gas storage applications, gas recovery and reuse of surfactants are difficult due to high foam formation during hydrate melting. Additionally, most anionic surfactants are toxic, which has an intense environmental effect. In this study, novel amino acid derivatives (ACDs) were developed as the first class of superior promoters compared to surfactants without foaming during the formation and recovery of gas hydrates. The results of high-pressure autoclave experiments indicated that all ACDs significantly enhanced the kinetics of methane hydrate formation at 500 ppm. ACD5 derived from leucine showed the best promotion effect in distilled water by providing a total mole consumption of 436.1 mmol. ACD5 increased the degree of water-to-hydrate conversion from 39.6% in pure water to 94.3%, which was higher than in sodium dodecyl sulfate (SDS) solution (87.8%). Moreover, differential scanning calorimetry experiments demonstrated that ACDs could form methane hydrates at relatively lower temperatures than pure water. They increased the onset temperature of methane hydrate formation from −15 °C in pure water to −12 °C at 500 ppm. A higher promotion activity than SDS was also observed for ACDs in salt water, suggesting that seawater can be used to produce methane hydrate instead of pure water to reduce gas storage costs. Besides, visual observations revealed that no foam was formed during melting hydrates and releasing methane in the presence of ACDs. These findings show that a slight modification of amino acids makes them efficient candidates for improving gas hydrate formation for seawater desalination and gas storage applications

    Synthesis and Antitumor Activity of Novel Pyridoxine-Based Bioisosteric Analogs of trans-Stilbenes

    Get PDF
    A series of trans-6-phenylethenyl substituted pyridoxine derivatives, novel bioisosteric analogs of drugs based on trans-stilbene scaffold, were synthesized using the Wittig reaction of a bis-triphenylphosphonium pyridoxine derivative with various aromatic aldehydes. Two compounds demonstrated high activity against the estrogen-dependent MCF-7 (breast cancer) cell line with IC50 in the range of 1.9–7.9 µM and very good selectivity for other studied normal and tumor cells, including the estrogen receptor negative MDA-MB-231 breast cancer cells. The active compounds possessed an intense blue fluorescence, and this feature allowed us to effectively visualize them in cytoplasm and in nucleus. The obtained results make the described chemotype a promising starting point for the development of new anticancer agents for the therapy of estrogen-dependent malignancies

    Nonylphenol Ethoxylate Surfactants Modified by Carboxyl Groups for Foam EOR at High-Salinity Conditions

    No full text
    High mineralization of water complicates the use of foam in reservoir conditions. Anionic–nonionic surfactants are one of the best candidates for these conditions since they have both high surface activity and salt tolerance. One of the ways to obtain anionic–nonionic surfactants is to modify nonionic surfactants by an anionic group. The type of the group and its chemical structure can strongly affect the properties of the surfactant. In this work, widely-produced nonionic surfactant nonylphenol (12) ethoxylate (NP12EO) was modified by new types of carboxylic groups through the implementation of maleic (NP12EO-MA) and succinic (NP12EO-SA) anhydrides with different saturation levels. The main objectives of this work were to compare synthesized surfactants with nonionic precursor and to reveal the influence of unsaturated bonds in the carboxyl group on the properties of the foam. NaCl concentration up to 20 wt% was used to simulate high mineralization conditions, as well as to assess the effect of unsaturated bonds on foam properties. Synthesized anionic–nonionic surfactants retained surfactant solubility and long-term stability in high-salinity water, but have better foaming ability, as well as higher apparent viscosity, in porous media. The presence of an unsaturated bond in NP12EO-MA surfactant lowers foaming ability at high mineralization
    corecore