53 research outputs found

    Single particle electron microscopy

    Get PDF
    Electron microscopy (EM) in combination with image analysis is a powerful technique to study protein structures at low, medium, and high resolution. Since electron micrographs of biological objects are very noisy, improvement of the signal-to-noise ratio by image processing is an integral part of EM, and this is performed by averaging large numbers of individual projections. Averaging procedures can be divided into crystallographic and non-crystallographic methods. The crystallographic averaging method, based on two-dimensional (2D) crystals of (membrane) proteins, yielded in solving atomic protein structures in the last century. More recently, single particle analysis could be extended to solve atomic structures as well. It is a suitable method for large proteins, viruses, and proteins that are difficult to crystallize. Because it is also a fast method to reveal the low-to-medium resolution structures, the impact of its application is growing rapidly. Technical aspects, results, and possibilities are presented

    Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana

    Get PDF
    Diatoms are a large group of marine algae that are responsible for about one-quarter of global carbon fixation. Light-harvesting complexes of diatoms are formed by the fucoxanthin chlorophyll a/c proteins and their overall organization around core complexes of photosystems (PSs) I and II is unique in the plant kingdom. Using cryo-electron tomography, we have elucidated the structural organization of PSII and PSI supercomplexes and their spatial segregation in the thylakoid membrane of the model diatom species Thalassiosira pseudonana. 3D sub-volume averaging revealed that the PSII supercomplex of T. pseudonana incorporates a trimeric form of light-harvesting antenna, which differs from the tetrameric antenna observed previously in another diatom, Chaetoceros gracilis. Surprisingly, the organization of the PSI supercomplex is conserved in both diatom species. These results strongly suggest that different diatom classes have various architectures of PSII as an adaptation strategy, whilst a convergent evolution occurred concerning PSI and the overall plastid structure

    Reputation Based Trust Management System Supporting Collaboration in a Medical Application

    Get PDF
    In a small group of people it is quite easy to start a collaboration based on shared trust, because people quickly recognize quality of each other. But this is not true when we move to the highly distributed environment with hundreds of users, not only from one institution or town, but even from different countries. It becomes very complicated task to distinguish experienced an trusted people from malicious users. In the paper a reputation system proposed particularly for a medical environment supporting collaboration among physicians is presented. The system provides tools for sharing knowledge and expertize in form of modules which can be seamlessly connected to each other provided more advanced functionality. The reputation system is designed to help physicians selecting the right (the most reliable) module from set of all modules within the system. The selection is made on trust being managed by the proposed reputation system

    Lipid polymorphism of the subchloroplast—granum and stroma thylakoid membrane–particles. II. structure and functions

    Get PDF
    In Part I, by using (31)P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (H(II)) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments—in line with the low susceptibility of the bilayer against the same treatment, as reflected by our (31)P-NMR spectroscopy. Signatures of H(II)-phase could not be discerned with small-angle X-ray scattering—but traces of H(II) structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts

    Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH

    Get PDF
    Photosystem I (PSI) is a pigment-protein complex required for the light-dependent reactions of photosynthesis and participates in light-harvesting and redox-driven chloroplast metabolism. Assembly of PSI into supercomplexes with light harvesting complex (LHC) II, cytochrome b6f (Cytb6f) or NAD(P)H dehydrogenase complex (NDH) has been proposed as a means for regulating photosynthesis. However, structural details about the binding positions in plant PSI are lacking. We analyzed large data sets of electron microscopy single particle projections of supercomplexes obtained from the stroma membrane of Arabidopsis thaliana. By single particle analysis, we established the binding position of Cytb6f at the antenna side of PSI. The rectangular-shaped Cytb6f dimer binds at the side where Lhca1 is located. The complex binds with its short side rather than its long side to PSI, which may explain why these supercomplexes are difficult to purify and easily disrupted. Refined analysis of the interaction between PSI and the NDH complex indicates that in total up to 6 copies of PSI can arrange with one NDH complex. Most PSI-NDH supercomplexes appeared to have 1-3 PSI copies associated. Finally, the PSI-LHCII supercomplex was found to bind an additional LHCII trimer at two positions on the LHCI side in Arabidopsis. The organization of PSI, either in a complex with NDH or with Cytb6f, may improve regulation of electron transport by the control of binding partners and distances in small domains

    Origin of Chlorophyll Fluorescence in Plants at 55–75°C ¶

    Full text link
    The origin of heat-induced chlorophyll fluorescence rise that appears at about 55–60°C during linear heating of leaves, chloroplasts or thylakoids (especially with a reduced content of grana thylakoids) was studied. This fluorescence rise was earlier attributed to photosystem I (PSI) emission. Our data show that the fluorescence rise originates from chlorophyll a (Chl a ) molecules released from chlorophyll-containing protein complexes denaturing at 55–60°C. This conclusion results mainly from Chl a fluorescence lifetime measurements with barley leaves of different Chl a content and absorption and emission spectra measurements with barley leaves preheated to selected temperatures. These data, supported by measurements of liposomes with different Chl a /lipid ratios, suggest that the released Chl a is dissolved in lipids of thylakoid membranes and that with increasing Chl a content in the lipid phase, the released Chl a tends to form low-fluorescing aggregates. This is probably the reason for the suppressed fluorescence rise at 55–60°C and the decreasing fluorescence course at 60–75°C, which are observable during linear heating of plant material with a high Chl a /lipid ratio ( e.g. green leaves, grana thylakoids, isolated PSII particles).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74574/1/0031-8655_2003_0770068OOCFIP2.0.CO2.pd

    Case report: Susac syndrome—two ends of the spectrum, single center case reports and review of the literature

    Get PDF
    Susac syndrome is a rare and enigmatic complex neurological disorder primarily affecting small blood vessels in the brain, retina, and inner ear. Diagnosing Susac syndrome may be extremely challenging not only due to its rarity, but also due to the variability of its clinical presentation. This paper describes two vastly different cases—one with mild symptoms and good response to therapy, the other with severe, complicated course, relapses and long-term sequelae despite multiple therapeutic interventions. Building upon the available guidelines, we highlight the utility of black blood MRI in this disease and provide a comprehensive review of available clinical experience in clinical presentation, diagnosis and therapy of this disease. Despite its rarity, the awareness of Susac syndrome may be of uttermost importance since it ultimately is a treatable condition. If diagnosed in a timely manner, early intervention can substantially improve the outcomes of our patients
    • …
    corecore