3,485 research outputs found

    GSFC Space Simulation Laboratory Contamination Philosophy: Efficient Space Simulation Chamber Cleaning Techniques

    Get PDF
    This paper will provide a general overview of the molecular contamination philosophy of the Space Simulation Test Engineering Section and how the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) space simulation laboratory controls and maintains the cleanliness of all its facilities, thereby, minimizing down time between tests. It will also briefly cover the proper selection and safety precautions needed when using some chemical solvents for wiping, washing, or spraying thermal shrouds when molecular contaminants increase to unacceptable background levels

    Innovation @ NASA

    Get PDF
    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly

    Renormalization: the observable-state model

    Get PDF
    The usual mathematical formalism of quantum field theory is non-rigorous because it contains divergences that can only be renormalized by non-rigorous mathematical methods. The purpose of this paper is to present a method of subtraction of this divergences using the formalism of decoherence. This is achieved by replacing the standard renormalization method by a projector on a well defined Hilbert subspace. In this way a list of problems of the standard formalism disappears while the physical results of QFT remains valid. From it own nature, this formalism can be used in non-renormalizable theories.Comment: 23 page

    Mapping the Constrained Coding Regions in the human genome to their corresponding proteins

    Get PDF
    Constrained Coding Regions (CCRs) in the human genome have been derived from DNA sequencing data of large cohorts of healthy control populations, available in the Genome Aggregation Database (gnomAD) [1]. They identify regions depleted of protein-changing variants and thus identify segments of the genome that have been constrained during human evolution. By mapping these DNA-defined regions from genomic coordinates onto the corresponding protein positions and combining this information with protein annotations, we have explored the distribution of CCRs and compared their co-occurrence with different protein functional features, previously annotated at the amino acid level in public databases. As expected, our results reveal that functional amino acids involved in interactions with DNA/RNA, protein-protein contacts and catalytic sites are the protein features most likely to be highly constrained for variation in the control population. More surprisingly, we also found that linear motifs, linear interacting peptides (LIPs), disorder-order transitions upon binding with other protein partners and liquid-liquid phase separating (LLPS) regions are also strongly associated with high constraint for variability. We also compared intra-species constraints in the human CCRs with inter-species conservation and functional residues to explore how such CCRs may contribute to the analysis of protein variants. As has been previously observed, CCRs are only weakly correlated with conservation, suggesting that intraspecies constraints complement interspecies conservation and can provide more information to interpret variant effects

    J-PLUS: A wide-field multi-band study of the M15 globular cluster. Evidence of multiple stellar populations in the RGB

    Full text link
    The Javalambre Photometric Local Universe Survey (J-PLUS) provides wide field-of-view images in 12 narrow, intermediate and broad-band filters optimized for stellar photometry. Here we have applied J-PLUS data for the first time for the study of Galactic GCs using science verification data obtained for the very metal-poor GC M\,15. Our J-PLUS data provide low-resolution spectral energy distributions covering the near-UV to the near-IR, allowing us to search for MPs based on pseudo-spectral fitting diagnostics. J-PLUS CMDs are found to be particularly useful to search for splits in the sequences formed by the upper red giant branch (RGB) and asymptotic giant branch (AGB) stars. We interpret these split sequences as evidence for the presence of MPs. This demonstrates that the J-PLUS survey will have sufficient spatial coverage and spectral resolution to perform a large statistical study of GCs through multi-band photometry in the coming years.Comment: 11 pages, 11 figures. Accepted for publication @ A&

    Employee Involvement and Job Satisfaction: A Tale of the Millennial Generation

    Get PDF
    The purpose of this paper is to empirically study the effect of employee involvement in the workplace on job satisfaction for millennial workers in Colombia. Data were obtained from a sample of 2103 millennial employees working in 11 companies of different sectors located in the five main cities of Colombia. Ordered probit models were estimated to study the effect of employee involvement on job satisfaction, in general, and how different forms of participative decision-making in the workplace produce different impacts on individual satisfaction with objective and intrinsic aspects of the job, in particular. The empirical results show that, for millennial workers, there is a positive link between employee involvement and job satisfaction. Moreover, there is a higher positive impact on job satisfaction when millennial workers participate in decisions on general aspects of the company than when they participate in specific decisions such as those concerning teamwork or main tasks at work. Another interesting result is that millennial workers attach high importance to intrinsic aspects of their jobs (such as the possibility to use their knowledge in the work), which may improve their satisfaction in a higher participative environment

    Selective Synthesis of α-, β-, and γ-Ag2WO4 Polymorphs: Promising Platforms for Photocatalytic and Antibacterial Materials

    Get PDF
    Silver tungstate (Ag2WO4) shows structural polymorphism with different crystalline phases, namely, orthorhombic, hexagonal, and cubic structures that are commonly known as α, β, and γ, respectively. In this work, these Ag2WO4 polymorphs were selectively and successfully synthesized through a simple precipitation route at ambient temperature. The polymorph-controlled synthesis was conducted by means of the volumetric ratios of the silver nitrate/tungstate sodium dehydrate precursors in solution. The structural and electronic properties of the as-synthesized Ag2WO4 polymorphs were investigated by using a combination of X-ray diffraction and Rietveld refinements, X-ray absorption spectroscopy, X-ray absorption near-edge structure spectroscopy, field-emission scanning electron microscopy images, and photoluminescence. To complement and rationalize the experimental results, first-principles calculations, at the density functional theory level, were carried out, leading to an unprecedented glimpse into the atomic-level properties of the morphology and the exposed surfaces of Ag2WO4 polymorphs. Following the analysis of the local coordination of Ag and W cations (clusters) at each exposed surface of the three polymorphs, the structure–property relationship between the morphology and the photocatalytic and antibacterial activities against amiloride degradation under ultraviolet light irradiation and methicillin-resistant Staphylococcus aureus, respectively, was investigated. A possible mechanism of the photocatalytic and antibacterial activity as well the formation process and growth of the polymorphs is also explored and proposed
    • …
    corecore