18 research outputs found

    TSFZ Growth of Eu-Substituted Large-Size LSCO Crystals

    Get PDF
    The travelling solvent floating zone (TSFZ) growth of Eu-substituted LSCO (La1.81−xEuxSr0.19CuO4, with nominal x = 0 ÷ 0.4) single crystals was systematically explored for the first time. The substitution of La with Eu considerably decreased the decomposition temperature. Optimal growth parameters were found to be: oxygen pressure 9.0–9.5 bars; Eu-free CuO-poor solvent (66 mol% CuO) with a molar ratio of La2O3:SrCO3:CuO = 4:4.5:16.5 and growth rate 0.6 mm/hour. The obtained single crystals were characterized with optical polarized microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analysis. The solubility of Eu in LSCO appeared to be limited to x~0.36–0.38 under the used conditions. The substitution of La3+ with smaller Eu3+ ions led to a structural transition from tetragonal with space group I4/mmm for La1.81Sr0.19CuO4 (x = 0) to orthorhombic with space group Fmmm for La1.81−xSr0.19EuxCuO4 (x = 0.2, 0.3, 0.4), and to a substantial shrinking of the c-axis from 13.2446 Å (x = 0.0) to 13.1257 Å (x = 0.4). Such structural changes were accompanied by a dramatic decrease in the superconducting critical temperature, Tc, from 29.5 K for x = 0 to 13.8 K for 0.2. For x ≥ 0.3, no superconductivity was detected down to 4 K

    Anomalous Hall effect and magnetoresistance in micro-ribbons of the magnetic Weyl semimetal candidate PrRhC2

    Full text link
    PrRhC2 belongs to the rare-earth carbides family whose properties are of special interest among topological semimetals due to the simultaneous breaking of both inversion and time-reversal symmetry. The concomitant absence of both symmetries grants the possibility to tune the Weyl nodes chirality and to enhance topological effects like the chiral anomaly. In this work, we report on the synthesis and compare the magnetotransport measurements of a poly- and single crystalline PrRhC2 sample. Using a remarkable and sophisticated technique, the PrRhC2 single crystal is prepared via focused ion beam cutting from the polycrystalline material. Our magnetometric and specific heat analyses reveal a non-collinear antiferromagnetic state below 20K, as well as short-range magnetic correlations and/or magnetic fluctuations well above the onset of the magnetic transition. The transport measurements on the PrRhC2 single crystal display an electrical resistivity peak at 3K and an anomalous Hall effect below 6K indicative of a net magnetization component in the ordered state. Furthermore, we study the angular variation of magnetoresistivities as a function of the angle between the in-plane magnetic field and the injected electrical current. We find that both the transverse and the longitudinal resistivities exhibit fourfold angular dependencies due to higher-order terms in the resistivity tensor, consistent with the orthorhombic crystal symmetry of PrRhC2. Our experimental results may be interpreted as features of topological Weyl semimetallic behavior in the magnetotransport properties

    Structure and superconducting characteristics of magnesium diboride, substitution of boron atoms by oxygen and carbon

    Get PDF
    An x-ray analysis of MgB2-based materials shows that they contain MgB2 and MgO phases. According to a quantitative Auger analysis (taken after removing the oxidized surface layer by Ar ion etching in the microscope chamber) the MgB2 phase contains some amount of oxygen that approximately corresponds to the composition MgB2.2-1.7O0.4-0.6. Rietveld refinement of the MgB2 phase, based on EDX data with varying B/O content, leads to the composition MgB1.68-1.8O0.2-0.32. Ab-initio modelling of boron substitution by oxygen in MgB2 ([Delta]Hf =-150.6 meV/atom) shows that this is energetically favourable up to the composition MgB1.75O0.25 ([Delta]Hf =-191.4 meV/atom). In contrast to carbon substitution, where very small levels of doping can dramatically affect the superconducting characteristics of the material with concomitant changes in the electron density, oxygen substitution results in very little change in the superconducting properties of MgB2. The formation of vacancies at the Mg site of both MgB2 and substituted MgB1.75O0.25 was modelled as well, but has shown that such processes are energetically disadvantageous ([Delta]Hf of Mg0.875B2 and Mg0.75B1.75O0.25 are equal to -45.5 and -93.5 meV/atom, respectively)

    Structure and superconducting characteristics of magnesium diboride, substitution of boron atoms by oxygen and carbon

    Get PDF
    An x-ray analysis of MgB2-based materials shows that they contain MgB2 and MgO phases. According to a quantitative Auger analysis (taken after removing the oxidized surface layer by Ar ion etching in the microscope chamber) the MgB2 phase contains some amount of oxygen that approximately corresponds to the composition MgB2.2-1.7O0.4-0.6. Rietveld refinement of the MgB2 phase, based on EDX data with varying B/O content, leads to the composition MgB1.68-1.8O0.2-0.32. Ab-initio modelling of boron substitution by oxygen in MgB2 ([Delta]Hf =-150.6 meV/atom) shows that this is energetically favourable up to the composition MgB1.75O0.25 ([Delta]Hf =-191.4 meV/atom). In contrast to carbon substitution, where very small levels of doping can dramatically affect the superconducting characteristics of the material with concomitant changes in the electron density, oxygen substitution results in very little change in the superconducting properties of MgB2. The formation of vacancies at the Mg site of both MgB2 and substituted MgB1.75O0.25 was modelled as well, but has shown that such processes are energetically disadvantageous ([Delta]Hf of Mg0.875B2 and Mg0.75B1.75O0.25 are equal to -45.5 and -93.5 meV/atom, respectively)

    Investigation of structural, thermodynamic and energy state characteristics of the ZrNi1-xRhxSn solid solution

    Get PDF
    The peculiarities of crystal and electronic structures, thermodynamic and energy state characteristics of the ZrNi1-xRhxSn semiconductive solid solution were investigated. It has been shown that in the ZrNiSn compound simultaneously exist two types of structural defects of the donor nature which generate two donor bands with different ionization energy in the band gap: a) the donor band ɛD1, formed as a result of a partial, up to ~ 1%, occupation of 4a position of Zr atoms by Ni atoms (mechanism of “a priori doping”) and deep donor band ɛD2, formed as a result of partial occupation of the tetrahedral voids by Ni atoms (Vac). The substitution in 4c position of the Ni atoms by Rh ones in ZrNi1-xRhxSn generates structural defects of acceptor nature and creates an impurity acceptor band ɛA in the band gap, which, in addition to the existence of ɛD1 та ɛD2 donor bands, makes semiconductor highly doped and strongly compensated. The obtained results allow to understand the mechanisms of electrical conductivity of thermoelectric materials based on n-ZrNiSn and the ways of conscious optimization of their characteristics for obtaining the maximum efficiency of conversion of thermal energy into electric.</p

    TSFZ Growth of Eu-Substituted Large-Size LSCO Crystals

    No full text
    The travelling solvent floating zone (TSFZ) growth of Eu-substituted LSCO (La1.81&minus;xEuxSr0.19CuO4, with nominal x = 0 &divide; 0.4) single crystals was systematically explored for the first time. The substitution of La with Eu considerably decreased the decomposition temperature. Optimal growth parameters were found to be: oxygen pressure 9.0&ndash;9.5 bars; Eu-free CuO-poor solvent (66 mol% CuO) with a molar ratio of La2O3:SrCO3:CuO = 4:4.5:16.5 and growth rate 0.6 mm/hour. The obtained single crystals were characterized with optical polarized microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy analysis. The solubility of Eu in LSCO appeared to be limited to x~0.36&ndash;0.38 under the used conditions. The substitution of La3+ with smaller Eu3+ ions led to a structural transition from tetragonal with space group I4/mmm for La1.81Sr0.19CuO4 (x = 0) to orthorhombic with space group Fmmm for La1.81&minus;xSr0.19EuxCuO4 (x = 0.2, 0.3, 0.4), and to a substantial shrinking of the c-axis from 13.2446 &Aring; (x = 0.0) to 13.1257 &Aring; (x = 0.4). Such structural changes were accompanied by a dramatic decrease in the superconducting critical temperature, Tc, from 29.5 K for x = 0 to 13.8 K for 0.2. For x &ge; 0.3, no superconductivity was detected down to 4 K
    corecore