28 research outputs found

    Stochastic gravitational-wave background on large cosmological scales

    Get PDF
    Aim: To formulate a model capable of distinguishing astrophysical from primordial gravitational-wave signals. Methods: We used a biased tracer formalism valid on large cosmological scales to introduce modeling basics and connected black holes as sources of gravitational wave signal with dark matter. Results: By deriving the model and using the online tool Code for Anisotropies in the Microwave Background (CAMB), we produced the matter power spectrum and used it to construct the gravitational-wave power spectra as a linear biased tracer. The spectra were generated for different Hubble constants and bias parameter values, showing the difference in the amplitude and scale dependence of the spectra. Conclusion: Gravitational-wave background signals can be used as complementary cosmological probes in data from future gravitational-wave space detectors like Laser Interferometer Space Antenna (LISA) and others

    Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    Get PDF
    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammationrelevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols

    Pronkjewails in distant places:Mortuary studies in the eastern Mediterranean by the GIA

    Get PDF
    The Greek Archaeology research group of the GIA specializes in mortuary archaeology, studying sites in the eastern Mediterranean and Middle East that date from the Bronze Age through to the Late Roman period. Our methodology includes theoretical approaches; cemetery excavations; the analysis of legacy data; studies of grave architecture, tombstones and grave goods; osteological analyses; digitization of datasets and digital applications; and DNA analysis, as well as isotopic and biomolecular studies, and we are focused on performing integrated studies with thorough contextual analyses. Our central question is how people dealt with death and what their funerary remains tell us about their lives and their world. Together with our local and international network of researchers and laboratories, our staff and students aim to perform innovative research, reach out to the public, and provide diverse perspectives on life and death in the ancient eastern Mediterranean

    Genetic determinants of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer identified by whole exome sequencing

    Get PDF
    The cornerstone in the treatment of locally advanced rectal cancer (LARC) is neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision. Reliable predictors of response to nCRT in LARC remain an unmet need in colorectal cancer research. This study used high throughput DNA analysis to investigate genetic differences between highly responsive tumors and tumors resistant to nCRT.European Human Genetics Conference Hybrid Conference Glasgow, Scotland, UK JUNE 10–13, 202

    The Nachtlichter app: a citizen science tool for documenting outdoor light sources in public space

    Get PDF
    The relationship between satellite based measurements of city radiance at night and the numbers and types of physical lights installed on the ground is not well understood. Here we present the "Nachtlichter app", which was developed to enable citizen scientists to classify and count light sources along street segments over large spatial scales. The project and app were co-designed: citizen scientists played key roles in the app development, testing, and recruitment, as well as in analysis of the data. In addition to describing the app itself and the data format, we provide a general overview of the project, including training materials, data cleaning, and the result of some basic data consistency checks

    Quantization of electromagnetic field

    No full text
    Kroz povijest je razmišljanje o energiji elektromagnetskog zračenja kao kontinuiranoj veličini stvaralo neslaganje s ekperimentalnim rezultatima pa je Planck došao na ideju da je energija kvantizirana. Kvantizacija zapravo znači da se radi o diskretnoj veličini, a u slučaju energije možemo imati samo vrijednosti koje su cjelobrojni višekratnici od ħω ħω. Cilj ovog rada je analogijom s izrazima za kvantno-mehanički harmonijski oscilator doći do zaključka da je elektromagnetsko polje kvantizirano. Daljnjim analiziranjem problema, obrađujemo pojmove kao što su broj fotona i energija vakuuma, a i temu interakcije polja s atomom. Na kraju, uspoređeno je predviđanje teorije s eksperimentalnim rezultatom gdje je vidljivo prigušenje vjerojatnosti. Važan zaključak ovog rada je da je shvaćanje kvantiziranosti elektromagnetskog polja riješilo mnoge povijesne probleme poput ultraljubičaste katastrofe i fotoelektričnog efekta, ali i neke modernije kao što je Casimirov efekt. Nadalje, posljedice su primjenjive i u razvoju tehnologije, a kvantna računala su samo jedan mali korak prema još širem budućem korištenju.Throughout history, thinking about the energy of electromagnetic radiation as a continuus value made disagreements with experimental results, so Planck came to the conclusion that the energy was quantized. Quantization actually means that we’re talking about a discrete set of values and in case of energy we can have values that are multiple integers of ħω ħω. The main goal of this thesis is to come to the conclusion that the electromagnetic field is quantized, by analogy with the terms of quantum-mechanical harmonic oscillator. By further analyzing the problem, we will go through some concepts such as the number of photons and vacuum energy, but also the subject of interaction between the field and the atom. In the end, theoretical prediction is compared to the experimental results where damping in probability is observed. One very important conclusion to this thesis is that understanding of the quantization of electromagnetic field solved many historical problems such as ultraviolet catastrophe and photoelectric effect but also some more modern ones such as Casimir effect. Moreover, the consequences are applicable to the development of technology, while quantum computers are just a small step towards a more broad future usage

    Stohastička pozadina gravitacijskih valova na velikim kozmološkim skalama

    No full text
    The Universe contains approximately 5% of visible matter, 23% of dark matter and 68% of energy in a form of cosmological constant or some other form of dark energy. Amongst these ingredients there are many other physical observables such as gravitational waves. While astrophysical gravitational waves were detected in 2015, primordial gravitational waves, generated in many theoretical models of the early universe, still await observational confirmation. Our goal is to formulate a method that is capable of distinguishing astrophysical from primordial wave signals. To achieve this, we use the biased tracer formalism, valid on large cosmological scales. Using the online tool CAMB, we produce the matter power spectrum and, using this result, construct the gravitational-wave power spectra as a linear biased tracer. We generate spectra for different Hubble constant and bias parameter values, showing the difference in the amplitude and scale dependence of the spectra. Our results thus show how gravitational-wave background signals can be used as complementary cosmological probes in the data from future gravitational-wave space detectors like LISA and others.Svemir kakvog poznajemo, star je otprilike 13.7 milijardi godina, a prosječne je temperature od 2.73 K. Sastav današnjeg svemira čini otprilike 5% vidljive materije, 23% tamne materije i 68% energije u obliku kozmološke konstante ili nekog drugog oblika tamne energije. Postoje razni kozmološki modeli i modeli čestične fizike koji pokušavaju objasniti parametre koje mjerimo postojećim detektorima na Zemlji i u svemiru. Za opaženu strukturu smatra se da je posljedica malih početnih perturbacija koje je zatim inflacija, odnosno naglo širenje svemira, prenijela. Trenutna teorija bazira se na tome da se svemir širi i dalje, što se pripisuje tamnoj energiji. Uz barionsku i tamnu materiju te tamnu energiju, postoje još mnoge fizikalne opservable u svemiru, a jedna od njih su gravitacijski valovi. Gravitacijski valovi su pojam koji neizostavno vežemo uz kozmologiju, a čije je postojanje potvrđeno tek 2015. godine. Uz detektirane astrofizikalne gravitacijske valove, pretpostavljeno je postojanje primordijalnih gravitacijskih valova koji su nastali u razdoblju ranog svemira. U ovom radu, cilj je razviti mehanizam kojim ćemo, pomoću poznate teorije i podataka, moći razlikovati astrofizikalne od primordijalnih valova te time utvrditi njihovo do sada teoretizirano postojanje. Prvo uvodimo pregled standardnog kozmološkog Lambda-CDM modela, a zatim podjelu izvora gravitacijskih valova na astrofizikalne i promordijalne. Slijedi matematički formalizam za opis gravitacijskih valova. U poglavlju 3 uvodimo metodu pristranih (eng. biased) galaktičkih tragača koja se koristi u teoriji formiranja velikih struktura, a koju želimo primijeniti na gravitacijske valove. Uzimamo u obzir samo linearni dio perturbacijske teorije. Sama primjena je u sljedećem poglavlju te dobivamo spektar snage gravitacijskih valova u odnosu na spektar snage tamne materije. Na ovaj način, tretirajući gravitacijske valove kao skalare, dobijemo distribuciju tamne materije na velikim skalama. Simuliran je graf spektra snage materije, pomoću internetskog alata CAMB, a koristeći taj rezultat konstruiramo spektar snage gravitacijskih valova kao linearnog tragača pristranosti (eng. bias). Generiramo spektar za različite vrijednosti Hubbleove konstante i parametra pristranosti (eng. bias), pokazujući različitosti amplituda i ovisnosti o skali. Naši rezultati se stoga mogu koristiti kao komplementarne kozmološke probe u podacima za buduće svemirske detektore gravitacijskih valova poput LISA-e i drugi

    Quantization of electromagnetic field

    No full text
    Kroz povijest je razmišljanje o energiji elektromagnetskog zračenja kao kontinuiranoj veličini stvaralo neslaganje s ekperimentalnim rezultatima pa je Planck došao na ideju da je energija kvantizirana. Kvantizacija zapravo znači da se radi o diskretnoj veličini, a u slučaju energije možemo imati samo vrijednosti koje su cjelobrojni višekratnici od ħω ħω. Cilj ovog rada je analogijom s izrazima za kvantno-mehanički harmonijski oscilator doći do zaključka da je elektromagnetsko polje kvantizirano. Daljnjim analiziranjem problema, obrađujemo pojmove kao što su broj fotona i energija vakuuma, a i temu interakcije polja s atomom. Na kraju, uspoređeno je predviđanje teorije s eksperimentalnim rezultatom gdje je vidljivo prigušenje vjerojatnosti. Važan zaključak ovog rada je da je shvaćanje kvantiziranosti elektromagnetskog polja riješilo mnoge povijesne probleme poput ultraljubičaste katastrofe i fotoelektričnog efekta, ali i neke modernije kao što je Casimirov efekt. Nadalje, posljedice su primjenjive i u razvoju tehnologije, a kvantna računala su samo jedan mali korak prema još širem budućem korištenju.Throughout history, thinking about the energy of electromagnetic radiation as a continuus value made disagreements with experimental results, so Planck came to the conclusion that the energy was quantized. Quantization actually means that we’re talking about a discrete set of values and in case of energy we can have values that are multiple integers of ħω ħω. The main goal of this thesis is to come to the conclusion that the electromagnetic field is quantized, by analogy with the terms of quantum-mechanical harmonic oscillator. By further analyzing the problem, we will go through some concepts such as the number of photons and vacuum energy, but also the subject of interaction between the field and the atom. In the end, theoretical prediction is compared to the experimental results where damping in probability is observed. One very important conclusion to this thesis is that understanding of the quantization of electromagnetic field solved many historical problems such as ultraviolet catastrophe and photoelectric effect but also some more modern ones such as Casimir effect. Moreover, the consequences are applicable to the development of technology, while quantum computers are just a small step towards a more broad future usage

    Quantization of electromagnetic field

    No full text
    Kroz povijest je razmišljanje o energiji elektromagnetskog zračenja kao kontinuiranoj veličini stvaralo neslaganje s ekperimentalnim rezultatima pa je Planck došao na ideju da je energija kvantizirana. Kvantizacija zapravo znači da se radi o diskretnoj veličini, a u slučaju energije možemo imati samo vrijednosti koje su cjelobrojni višekratnici od ħω ħω. Cilj ovog rada je analogijom s izrazima za kvantno-mehanički harmonijski oscilator doći do zaključka da je elektromagnetsko polje kvantizirano. Daljnjim analiziranjem problema, obrađujemo pojmove kao što su broj fotona i energija vakuuma, a i temu interakcije polja s atomom. Na kraju, uspoređeno je predviđanje teorije s eksperimentalnim rezultatom gdje je vidljivo prigušenje vjerojatnosti. Važan zaključak ovog rada je da je shvaćanje kvantiziranosti elektromagnetskog polja riješilo mnoge povijesne probleme poput ultraljubičaste katastrofe i fotoelektričnog efekta, ali i neke modernije kao što je Casimirov efekt. Nadalje, posljedice su primjenjive i u razvoju tehnologije, a kvantna računala su samo jedan mali korak prema još širem budućem korištenju.Throughout history, thinking about the energy of electromagnetic radiation as a continuus value made disagreements with experimental results, so Planck came to the conclusion that the energy was quantized. Quantization actually means that we’re talking about a discrete set of values and in case of energy we can have values that are multiple integers of ħω ħω. The main goal of this thesis is to come to the conclusion that the electromagnetic field is quantized, by analogy with the terms of quantum-mechanical harmonic oscillator. By further analyzing the problem, we will go through some concepts such as the number of photons and vacuum energy, but also the subject of interaction between the field and the atom. In the end, theoretical prediction is compared to the experimental results where damping in probability is observed. One very important conclusion to this thesis is that understanding of the quantization of electromagnetic field solved many historical problems such as ultraviolet catastrophe and photoelectric effect but also some more modern ones such as Casimir effect. Moreover, the consequences are applicable to the development of technology, while quantum computers are just a small step towards a more broad future usage

    Stohastička pozadina gravitacijskih valova na velikim kozmološkim skalama

    No full text
    The Universe contains approximately 5% of visible matter, 23% of dark matter and 68% of energy in a form of cosmological constant or some other form of dark energy. Amongst these ingredients there are many other physical observables such as gravitational waves. While astrophysical gravitational waves were detected in 2015, primordial gravitational waves, generated in many theoretical models of the early universe, still await observational confirmation. Our goal is to formulate a method that is capable of distinguishing astrophysical from primordial wave signals. To achieve this, we use the biased tracer formalism, valid on large cosmological scales. Using the online tool CAMB, we produce the matter power spectrum and, using this result, construct the gravitational-wave power spectra as a linear biased tracer. We generate spectra for different Hubble constant and bias parameter values, showing the difference in the amplitude and scale dependence of the spectra. Our results thus show how gravitational-wave background signals can be used as complementary cosmological probes in the data from future gravitational-wave space detectors like LISA and others.Svemir kakvog poznajemo, star je otprilike 13.7 milijardi godina, a prosječne je temperature od 2.73 K. Sastav današnjeg svemira čini otprilike 5% vidljive materije, 23% tamne materije i 68% energije u obliku kozmološke konstante ili nekog drugog oblika tamne energije. Postoje razni kozmološki modeli i modeli čestične fizike koji pokušavaju objasniti parametre koje mjerimo postojećim detektorima na Zemlji i u svemiru. Za opaženu strukturu smatra se da je posljedica malih početnih perturbacija koje je zatim inflacija, odnosno naglo širenje svemira, prenijela. Trenutna teorija bazira se na tome da se svemir širi i dalje, što se pripisuje tamnoj energiji. Uz barionsku i tamnu materiju te tamnu energiju, postoje još mnoge fizikalne opservable u svemiru, a jedna od njih su gravitacijski valovi. Gravitacijski valovi su pojam koji neizostavno vežemo uz kozmologiju, a čije je postojanje potvrđeno tek 2015. godine. Uz detektirane astrofizikalne gravitacijske valove, pretpostavljeno je postojanje primordijalnih gravitacijskih valova koji su nastali u razdoblju ranog svemira. U ovom radu, cilj je razviti mehanizam kojim ćemo, pomoću poznate teorije i podataka, moći razlikovati astrofizikalne od primordijalnih valova te time utvrditi njihovo do sada teoretizirano postojanje. Prvo uvodimo pregled standardnog kozmološkog Lambda-CDM modela, a zatim podjelu izvora gravitacijskih valova na astrofizikalne i promordijalne. Slijedi matematički formalizam za opis gravitacijskih valova. U poglavlju 3 uvodimo metodu pristranih (eng. biased) galaktičkih tragača koja se koristi u teoriji formiranja velikih struktura, a koju želimo primijeniti na gravitacijske valove. Uzimamo u obzir samo linearni dio perturbacijske teorije. Sama primjena je u sljedećem poglavlju te dobivamo spektar snage gravitacijskih valova u odnosu na spektar snage tamne materije. Na ovaj način, tretirajući gravitacijske valove kao skalare, dobijemo distribuciju tamne materije na velikim skalama. Simuliran je graf spektra snage materije, pomoću internetskog alata CAMB, a koristeći taj rezultat konstruiramo spektar snage gravitacijskih valova kao linearnog tragača pristranosti (eng. bias). Generiramo spektar za različite vrijednosti Hubbleove konstante i parametra pristranosti (eng. bias), pokazujući različitosti amplituda i ovisnosti o skali. Naši rezultati se stoga mogu koristiti kao komplementarne kozmološke probe u podacima za buduće svemirske detektore gravitacijskih valova poput LISA-e i drugi
    corecore