1,348 research outputs found

    Quantifying forest growth uncertainty on carbon payback times in a simple biomass carbon model

    Get PDF
    In 2018 Sterman et al (2018a) published a simple dynamic lifecycle analysis(DLCA) model for forest-sourced bioenergy. The model has been widely cited since its publication, including widespread reporting of the model’s headline results within the media. In adapting a successful replication of the Sterman et al (2018a) model with open-source software, we identified a number of changes to input parameters which improved the fit of the model’s forest site growth function with its training data. These relatively small changes to the input parameters result in relatively large changes to the model predictions of forest site carbon uptake: up to 92 tC.ha−1 or 18% of total site carbon at year 500. This change in estimated site carbon resulted in calculated payback periods (carbon sequestration parity) which differed by up to 54 years in a clear-fell scenario when compared with results obtained using previously published parameters. Notably, this uncertainty was confined to forests which were slower growing and where the model’s training dataset was not sufficiently long for forests to reach maturity. We provide improved parameterisations for all forest types used within the original Sterman et al (2018a) paper, and propose that these provide better fits to the underlying data. We also provide margins of error for the generated growth curves to indicate the wide range of possible results possible with the model for some forest types. We conclude that, while the revised model is able to reproduce the earlier Sterman et al (2018a)results, the headline figures from that paper depend heavily on how the forest growth curve is fitted to the training data. The resulting uncertainty in payback periods could be reduced by either obtaining more extensive training data (including mature forests of all types) or by modification of the forest growth function

    Selenium immersed thermistor bolometer study

    Get PDF
    The noise characteristics of thermistor bolometers immersed in layers of arsenic/selenium glass uniform in composition were examined. Using a controlled deposition technique, layers of glass were deposited, thermistor bolometers immersed, and their electrical characteristics measured after various thermal treatments. Markedly improved stability of the detector noise was observed using this new technique

    Representational capacity of a set of independent neurons

    Full text link
    The capacity with which a system of independent neuron-like units represents a given set of stimuli is studied by calculating the mutual information between the stimuli and the neural responses. Both discrete noiseless and continuous noisy neurons are analyzed. In both cases, the information grows monotonically with the number of neurons considered. Under the assumption that neurons are independent, the mutual information rises linearly from zero, and approaches exponentially its maximum value. We find the dependence of the initial slope on the number of stimuli and on the sparseness of the representation.Comment: 19 pages, 6 figures, Phys. Rev. E, vol 63, 11910 - 11924 (2000

    The texture and taste of food in the brain

    Get PDF
    Oral texture is represented in the brain areas that represent taste, including the primary taste cortex, the orbitofrontal cortex, and the amygdala. Some neurons represent viscosity, and their responses correlate with the subjective thickness of a food. Other neurons represent fat in the mouth, and represent it by its texture not by its chemical composition, in that they also respond to paraffin oil and silicone in the mouth. The discovery has been made that these fat-responsive neurons encode the coefficient of sliding friction and not viscosity, and this opens the way for the development of new foods with the pleasant mouth feel of fat and with health-promoting designed nutritional properties. A few other neurons respond to free fatty acids (such as linoleic acid), do not respond to fat in the mouth, and may contribute to some 'off' tastes in the mouth. Some other neurons code for astringency. Others neurons respond to other aspects of texture such as the crisp fresh texture of a slice of apple vs the same apple after blending. Different neurons respond to different combinations of these texture properties, oral temperature, taste, and in the orbitofrontal cortex to olfactory and visual properties of food. In the orbitofrontal cortex, the pleasantness and reward value of the food is represented, but the primary taste cortex represents taste and texture independently of value. These discoveries were made in macaques that have similar cortical brain areas for taste and texture processing as humans, and complementary human functional neuroimaging studies are described. This article is protected by copyright. All rights reserved. [Abstract copyright: This article is protected by copyright. All rights reserved.

    Computations in the deep vs superficial layers of the cerebral cortex

    Get PDF
    A fundamental question is how the cerebral neocortex operates functionally, computationally. The cerebral neocortex with its superficial and deep layers and highly developed recurrent collateral systems that provide a basis for memory-related processing might perform somewhat different computations in the superficial and deep layers. Here we take into account the quantitative connectivity within and between laminae. Using integrate-and-fire neuronal network simulations that incorporate this connectivity, we first show that attractor networks implemented in the deep layers that are activated by the superficial layers could be partly independent in that the deep layers might have a different time course, which might because of adaptation be more transient and useful for outputs from the neocortex. In contrast the superficial layers could implement more prolonged firing, useful for slow learning and for short-term memory. Second, we show that a different type of computation could in principle be performed in the superficial and deep layers, by showing that the superficial layers could operate as a discrete attractor network useful for categorisation and feeding information forward up a cortical hierarchy, whereas the deep layers could operate as a continuous attractor network useful for providing a spatially and temporally smooth output to output systems in the brain. A key advance is that we draw attention to the functions of the recurrent collateral connections between cortical pyramidal cells, often omitted in canonical models of the neocortex, and address principles of operation of the neocortex by which the superficial and deep layers might be specialized for different types of attractor-related memory functions implemented by the recurrent collaterals. [Abstract copyright: Copyright © 2017 Elsevier Inc. All rights reserved.

    A theoretical model of neuronal population coding of stimuli with both continuous and discrete dimensions

    Full text link
    In a recent study the initial rise of the mutual information between the firing rates of N neurons and a set of p discrete stimuli has been analytically evaluated, under the assumption that neurons fire independently of one another to each stimulus and that each conditional distribution of firing rates is gaussian. Yet real stimuli or behavioural correlates are high-dimensional, with both discrete and continuously varying features.Moreover, the gaussian approximation implies negative firing rates, which is biologically implausible. Here, we generalize the analysis to the case where the stimulus or behavioural correlate has both a discrete and a continuous dimension. In the case of large noise we evaluate the mutual information up to the quadratic approximation as a function of population size. Then we consider a more realistic distribution of firing rates, truncated at zero, and we prove that the resulting correction, with respect to the gaussian firing rates, can be expressed simply as a renormalization of the noise parameter. Finally, we demonstrate the effect of averaging the distribution across the discrete dimension, evaluating the mutual information only with respect to the continuously varying correlate.Comment: 20 pages, 10 figure

    Functional connectivity decreases in autism in emotion, self, and face circuits identified by knowledge-based enrichment analysis

    Get PDF
    A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    Nicotinamide is an Endogenous Agonist for a C. elegans TRPV OSM-9 and OCR-4 Channel

    Get PDF
    TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity
    • …
    corecore