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Abstract

A fundamental question is how the cerebral neocortex operates functionally, computa-
tionally. The cerebral neocortex with its superficial and deep layers and highly developed
recurrent collateral systems that provide a basis for memory-related processing might per-
form somewhat different computations in the superficial and deep layers. Here we take into
account the quantitative connectivity within and between laminae. Using integrate-and-fire
neuronal network simulations that incorporate this connectivity, we first show that attractor
networks implemented in the deep layers that are activated by the superficial layers could be
partly independent in that the deep layers might have a different time course, which might be-
cause of adaptation be more transient and useful for outputs from the neocortex. In contrast
the superficial layers could implement more prolonged firing, useful for slow learning and for
short-term memory. Second, we show that a different type of computation could in principle
be performed in the superficial and deep layers, by showing that the superficial layers could
operate as a discrete attractor network useful for categorisation and feeding information for-
ward up a cortical hierarchy, whereas the deep layers could operate as a continuous attractor
network useful for providing a spatially and temporally smooth output to output systems
in the brain. A key advance is that we draw attention to the functions of the recurrent
collateral connections between cortical pyramidal cells, often omitted in canonical models of
the neocortex, and address principles of operation of the neocortex by which the superficial
and deep layers might be specialized for different types of attractor-related memory functions
implemented by the recurrent collaterals.
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1 Introduction

1.1 Conceptual introduction

A key architectural feature of the cerebral neocortex is the presence of short-range recurrent
collateral excitatory connections between pyramidal cells (Harris & Shepherd 2015, Rolls
2016, Lefort, Tomm, Floyd Sarria & Petersen 2009). With their associatively modifiable
synapses, there is considerable evidence that this recurrent collateral connectivity implements
autoassociation or attractor networks that are fundamental in learning and memory (Rolls
2016). The maintenance of activity in the local recurrent networks provides the basis for short-
term memory, and planning (Goldman-Rakic 1996, Rolls 2016). The autoassociation aspect
of the local connectivity provides for long-term memory, in which the whole of a memory can
be recalled from one part (Rolls 2016). Competition between the representations in cortical
attractor networks provides the basis for decision-making, and for maintaining the neuronal
activity in the winner to guide the implementation of the decision (Rolls & Deco 2010, Deco,
Rolls, Albantakis & Romo 2013, Rolls 2016).

However, the superficial and deep pyramidal cell layers of the cerebral neocortex have
somewhat different sets of recurrent collateral connections (Harris & Shepherd 2015, Rolls
2016, Lefort et al. 2009). A key issue that therefore arises in understanding the operation
of the neocortex, in for example learning and memory, is whether the deep layers (especially
layer 5) perform somewhat different computations to the superficial layers (2 and 3). The aim
of this paper is to consider some of the different types of computation that may be performed
in the superficial and deep layers in the light of their anatomy and physiology; and then to
explore the implications of these issues using simulations of the operation of the attractor
networks in the superficial and deep layers of the neocortex. The aim here is to formulate
and then to explore some concepts about how the different connectivity of the superficial and
deep layers may contribute to the major issue of how the cerebral neocortex computes, and
how its computations contribute to learning and memory.

The issues that are explored here are whether different attractor dynamics implement
somewhat different computation in the time domain (e.g. longer in the superficial layers
to promote slow learning useful for learning transform-invariant representations of objects
(Wiskott & Sejnowski 2002, Rolls 2016, Rolls 2012b) vs more temporally precise and limited
for the deep layers to support precise motor function); and in the spatial domain with for
example more continuous spatial representations in the deep layers which may be useful for
smooth motor outputs from the neocortex. Further, if the deep layers operated more as a
continuous attractor network, this could facilitate smooth transitions between outputs that
would be useful especially in low-dimensional motor spaces; could facilitate the feedback of
a more general rather than very discrete signal for top-down attention and recall to previous
cortical areas; and might be quite stable even with stochastically spiking integrate-and-fire
neurons.
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1.2 Cortical connectivity, and recurrent collateral connections within the

superficial and deep layers

1.2.1 Partially separate attractor networks in the superficial and deep layers of

the cerebral cortex?

Both the superficial and the deep layers of the cerebral cortex have a highly developed excita-
tory recurrent collateral system, with thousands of synapses on the dendrites of each neuron
for the recurrent collaterals from nearby neurons (Harris & Shepherd 2015, Rolls 2016, Lefort
et al. 2009) (see Fig. 1). Evidence that these recurrent collaterals can support attractor states
that help to implement short-term memory, long-term memory, and decision-making has been
described (Rolls 2016).

A fundamental question is why there are somewhat separate superficial and deep layers
of the cerebral cortex. The advantages include the different outputs that may be appropriate
for sending to the next stage of the cortical hierarchy to build higher level representations
(with their origin in the superficial layer 2 and 3 pyramidal cells), whereas the deep layer
pyramidal cells in layer 5 may provide an output more suitable for driving the often motor-
related target systems such as the striatum and in the case of V1 the superior colliculus
(Rolls 2016). For example, the representations in the superficial pyramidal cells (L2/L3) may
be more sparse than the deep pyramidal cells (L5/L6) (Harris & Shepherd 2015), and Rolls
(2016) hypothesizes that this helps the neocortex to increase the memory capacity of what
can be stored in discrete autoassociation networks in the superficial layers. The superficial
cortical layers are hypothesized to perform the main computationally useful functions of the
cerebral neocortex, which involve feedforward operations to form non-linear combinations
of the inputs from previous cortical areas utilizing the convergence from stage to stage to
construct useful combinations essential for cortical computation, and to implement using the
attractor properties of the recurrent collaterals useful functions such as information storage
and retrieval (long-term memory, short-term memory, decision-making, etc). According to the
hypotheses being developed, these feedforward competitive learning computations performed
by the superficial layers are the computationally useful aspects of the design of the neocortex
for building new representations (Rolls 2016).

The L5A pyramidal cells have a well-developed recurrent collateral system, and the hy-
pothesis has been proposed that the deep layers may operate as a partly separate attractor
from that in the superficial layers, for the L2/L3 pyramidal cell dendrites do not descend into
the deep layers of the cerebral cortex in which the deep layer neuron recurrent collaterals
make their main local connections with nearby layer 5 pyramidal cells (Rolls 2016) (Fig. 1).

1.2.2 The connectivity of the superficial and deep layers of the neocortex

Quantitative evidence is now becoming available on the distribution of cortical connections
within and between cortical laminae (Lefort et al. 2009, Hooks, Hires, Zhang, Huber, Petreanu,
Svoboda & Shepherd 2011, Holmgren, Harkany, Svennenfors & Zilberter 2003). Some of the
evidence is shown in Fig. 2, obtained by multiple simultaneous single neuron recording in
the mouse whisker barrel cortex (Lefort et al. 2009). Fig. 2a shows that there is a relatively
high probability of a connection between pyramidal neurons in layer 3 (0.19), and between
neurons in layer 5A (0.19), and that this is higher than the connection probability from L3
neurons to L5A neurons (0.06). Fig. 2b estimates the overall strength of the synaptic effects
from neurons in one layer (the columns) to neurons in another layer (the rows), by weighting
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the probability of synaptic connections between pyramidal cells in different laminae by the
strength of the synaptic connections between neurons in the different laminae, based on data
from Lefort et al. (2009). The quantitative aspects of this connectivity are consistent with
the hypothesis that the superficial pyramidal cells with their recurrent collateral connections
could form an attractor network, and that the deep pyramidal cells could form a separate
attractor network, which receives its inputs from the L3 network in such a way that the L5A
network can be driven into activity by the superficial network, and that then the deep network
can operate somewhat independently as the coupling between the networks is weaker than
the coupling within the networks (Renart, Parga & Rolls 1999a).

Now, this is the case even for rodent whisker barrel somatosensory cortex (Lefort et al.
2009), which is highly dominated by the layer 4 inputs, and in higher cortical areas of primates
involved for example in memory the recurrent collateral connections in the superficial and
deep layers may be much more highly developed (Elston, Benavides-Piccione, Elston, Zietsch,
Defelipe, Manger, Casagrande & Kaas 2006). In this context, it is interesting to note from Fig.
2 that in whisker barrel cortex, layer 4 intralaminar connectivity dominates the intralaminar
connectivity, but this will not be the case in most higher cortical areas, for layer 4 become
progressively more minimal as one progresses further up a cortical hierarchy (Pandya, Seltzer,
Petrides & Cipolloni 2015). It is likely that when frontal and related areas of the cortex
involved in memory are investigated, the dominance of the recurrent collateral systems within
a cortical layer will become even more apparent, and it will then be of interest to assess
quantitatively the relative value of the connectivity from superficial to deep layers compared
to that within cortical layers.

Putting together what is shown in Fig. 2 (based on data from Lefort et al. (2009)) with
key findings on cortical connectivity (Pandya et al. 2015, Harris & Shepherd 2015, Markov,
Vezoli, Chameau, Falchier, Quilodran, Huissoud, Lamy, Misery, Giroud, Ullman, Barone,
Dehay, Knoblauch & Kennedy 2014, Lefort et al. 2009, Hooks et al. 2011, Holmgren et al.
2003, Rockland & Pandya 1979) leads to what is shown in Fig. 1, which is amplified in the
following text. Some authors refer to L2 in Fig. 1 as L2/3A; and to L3 as L3B (Harris &
Shepherd 2015). The quantitative aspects of the connectivity in higher cortical areas are
likely to be much less influenced by L4 than what is shown in Fig. 2, which is for rodent
whisker barrel (primary somatosensory) cortex (Lefort et al. 2009).

The L4 granule cells receive strong thalamic inputs, which also reach to a smaller extent
neurons in other cortical layers. L4 projects on to neurons in other layers as shown in Fig. 2.
L4 becomes progressively smaller up each cortical hierarchy (Pandya et al. 2015), for as one
progresses up the hierarchy, the inputs that dominate the processing come more and more
from neurons in L3 of the preceding cortical area. L4 has strong onward connections to L3 and
L2, and somewhat weaker to neurons in deeper cortical layers (Fig. 2). As shown in Fig. 2 the
L4 neurons in whisker barrel cortex have many connections with each other. This may reflect
the operation of a L4 attractor network used to help minimize noise and perform constraint
satisfaction (Rolls 2016) to produce a population code that best represents the inputs from
the sensory receptors associated with a single whisker. In whisker barrel cortex, L6 does not
project back to L4, though it does in some other cortical areas (Harris & Shepherd 2015).

L2 receives its inputs from L4 > L3 > L2 (where > should be read as ‘more strongly
than’). L2 projects to L5A and L2 > L3 and L5B. L2 neurons provide weak cortico-cortical
feedback to L1 of the preceding cortical area in a hierarchy.

L3 has a highly developed recurrent collateral system to other L3 neurons, and this
provides the basis for a cortical attractor network in the superficial layers of the neocortex
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(Rolls 2016). L3 has strong forward projections to the middle layers of the next layer in the
cortical hierarchy, and these are precisely directed to primarily the next cortical area. L3 has
strong connections to L5A and L5B pyramidal cells.

L5A has a highly developed recurrent collateral system to other L5A neurons, and this
provides the basis for a cortical attractor network in the deep layers of the neocortex (Rolls
2016). Because L5A does not have strong projections to the superficial layers, it could not
contribute to and be fully part of any attractor process implemented by the L3 neurons. L5A
receives its main inputs from L2, L3, and L4. It has weak forward projections to the middle
layers of the next layer in the hierarchy, and these are precisely directed to the next cortical
area. L5A neurons have outputs to the striatum (caudate, putamen, and ventral striatum),
which is an evolutionarily old region. An interesting hypothesis is that in the evolution of the
cortex, the deep layers evolved early in order to provide essential outputs for the cortex; and
that the superficial layers developed progressively later to provide for feedforward cortico-
cortical computation up the hierarchy as new areas were added in evolution at the end of the
existing hierarchy.

L5B is unlikely to implement an attractor network, as it does not have a high probability
of recurrent collateral connections to other L5B neurons (Fig. 2). The main inputs to L5B
pyramidal neurons are from L3 > L4 = L5A. (This L5B does receive from an attractor, L3.)
L5B has pyramidal tract (PT) outputs, which may be evolutionarily newer than the striatal
outputs of L5A. L5B may act as a relay for L3, L4, and L5A (which are both attractors,
so it may not need to be an attractor in its own right). L5B is the source of the strong
cortico-cortical backprojections, which end mainly in layer 1 of the preceding cortical area,
but all backprojections tend to be diffuse in that they project also to earlier cortical areas in
the hierarchy (Pandya et al. 2015, Markov et al. 2014).

L6 is cortico-thalamic. Its inputs come from L4 and L5B. So L6 is not strongly influ-
enced by an attractor. It may primarily implement a negative feedback to the thalamus,
implementing gain control.

The average connectivity between pyramidal cells in mouse whisker barrel cortex is 0.10%,
but this is a small column of approximately 300 µm in diameter (Lefort et al. 2009), and in
more typical cortex the connectivity may not be restricted by the presence of a barrel de-
voted to a single whisker. Indeed, in rat visual and somatosensory neocortex layers L2–L3 the
probability of a connection between pyramidal cells in these superficial layers decreases from
0.09 to 0.01 over a radial distance of 25-200 µm (Holmgren et al. 2003). The connections with
inhibitory interneurons are somewhat more widely distributed (Holmgren et al. 2003), consis-
tent with the hypothesis that the interneurons provide for feedback inhibition to maintain the
stability of the excitatory networks and to control the sparseness of the representation, that
is, the proportion of the neurons that are active to any one stimulus or event (Rolls 2016).

Further evidence on somewhat separate computations in superficial and deep layers is
that different tuning has been found for neurons in superficial vs deep layers of the macaque
striate cortex, with the deep layer neurons suggested to be more appropriate for generating
eye movements such as vergence eye movements (Bauer & Dow 1991).

Further evidence on somewhat separate computations in superficial and deep layers is
that the deep layers are described as showing greater adaptation than superficial layers,
with adaptation differing between different classes of cortical neuron (Markram et al (2015)).
Consistent with this, more adaptation was found in deep cortical layers than in superficial
layers of the rat auditory cortex to tones (Szymanski, Garcia-Lazaro & Schnupp 2009).

6



1.3 Hypotheses: partly separate attractor networks in superficial and deep

layers

The evidence just described and other evidence led to the hypothesis that the deep layers may
operate as a partly separate attractor network from that in the superficial layers (Rolls 2016).
What computational function might a separate attractor network perform in the deep layers?

1.3.1 Different time courses in the superficial and deep layers

One hypothesis is that an attractor network in the deep layers might have a different time
course, with the potential for a shorter time course of firing, consistent with the more bursty
firing sometimes reported in the deep layers (Harris & Shepherd 2015), and which may be more
suitable for precise temporally accurate motor control (Rolls 2016). The hypothesis is that
the deep layers might be temporally faster, as the premium is now on what may sometimes be
a requirement for fast but brief output to suddenly drive motor systems when necessary. In
contrast, the superficial layers may benefit from slower integration of information, to help build
useful new categories, and to allow representations to be influenced by not only the recurrent
collaterals, but also by what may be being backprojected from the next cortical stage in
the hierarchy (Rolls 2016, Rolls 2012b). This hypothesis is investigated in Experiment 1 by
introducing adaptation into the neurons in the deep layer attractor network. The hypothesis
that is tested is that the L5A attractor network may have more neuronal adaptation, or
synaptic adaptation in its recurrent collaterals, than is the case for L3 neurons, and that
this may enable L5A neurons to have shorter periods of attractor-related firing to implement
temporally exact motor control; whereas the L3 attractor network with less adaptation in
its recurrent collaterals may produce a typically longer time course of its firing, helping to
provide a more prolonged input to help the next cortical area learn and to implement processes
such as slow learning which are believed to be important in learning transform-invariant
representations, and also short-term memory by prolonged firing (Rolls 2016, Rolls 2012b).

1.3.2 Discrete vs spatially continuous attractors in the superficial and deep lay-

ers

A second hypothesis is that layer 5A operates as an attractor network, but of a different type
to the attractor network in the L3 superficial pyramidal cells. For example, the L3 pyramidal
neurons may often need to support discrete attractor states, such as whether it is this object,
or that object, especially in the ventral cortical areas involved in ‘what’ representations for
visual, auditory, taste, and olfactory stimuli (Rolls 2016). (Discrete representations involve
different subsets of neurons firing to represent different objects. The subsets may overlap, but
separate objects are represented, without smooth continuity over the representational space
(Rolls 2016, Rolls & Treves 2011).) The following proposal follows from the evidence that the
pyramidal cells of L5A project to motor structures such as the striatum (Fig. 1).

The space of movements is essentially continuous: an arm can move to any position in
3D space, and the eyes can move to any position in their 3D space, without discrete stable
positions. The suggestion on this basis is that the L5A pyramidal cells support a separate
attractor network from that in L3, and in any case does not contribute to the L3 attractor
network. One possibility is that L5A operates as a continuous attractor network, which as
described by Rolls (2016) can be stable at any position in a continuous space. A potential
advantage of having a continuous attractor here is that all the neurons that are active for any
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position in the space can become associated with each other, thus smoothing the transitions
through the space by making sure that all neurons relevant to a particular position in the
space based on previous experience are recruited into activity.

In this context, it should be noted that networks with associatively modifiable recurrent
collateral synapses do not necessarily need to have a positive feedback gain sufficiently high
to maintain the activity in a high firing rate attractor state even when there is no input.
The network with the structure of an attractor network can nevertheless perform constraint
satisfaction, by providing a moderate input from other neurons in the network to add to and
smooth whatever inputs are providing the main driving input to the network, which in this
case would be a L2/L3 input driving the L5 pyramidal cell firing. This would help to provide
a smooth trajectory through the continuous attractor space of movements, without jerks and
incompatible motor commands being produced, as described by Rolls (2016).

An interesting implication of this hypothesis is that the L3 attractor networks which may
often (especially in the ‘what’ and semantic memory cortical areas) support discrete attrac-
tors, may operate as a largely separate attractor system from the L5A continuous attractor
network system, as the computational spaces that they encode are different. Consistent with
this at least partial separation of superficial and deep layer attractor network system, the
dendrites of deep pyramidal cells are largely confined to the deep layers of the neocortex
apart from the branches in layer 1 where backprojections are received; and the dendrites of
superficial layer pyramidal cells are largely confined to the superficial layers of the cortex, as
illustrated in Fig. 1. The main relation it is proposed between the superficial layer discrete
and the deep layer continuous attractor systems of the neocortex is that the superficial cor-
tical layers should provide the main driving input to the deep cortical layers. Treves (2003)
and Montagnini & Treves (2003) also pointed to the computational advantage to having cor-
tical layers with sparse distributed encoding of a discrete or ‘what’ representation of stimulus
identity, separate from a ‘where’ topographically mapped more spatially continuous repre-
sentation. The relation between what and where information in a cortical patch has also
been considered by Roudi & Treves (2008), though in that study they did not consider the
possibility of separate attractor networks in the superficial and deep layers of the neocortex.

In this context, the second hypothesis investigated here in Experiment 2 by integrate-and-
fire simulations is that the superficial and deep layers support somewhat different attractors,
with the superficial layers being specialised for feedforward processing involving categorisation
into discrete representations using competitive learning to discover new categories, based on
the convergence of inputs from different parts of the preceding cortical area. As a result, the
superficial layers would implement discrete attractor networks with the recurrent collaterals.
In contrast, the deep layers, in particular layer 5A with its outputs to motor systems includ-
ing via the striatum / basal ganglia may need a different type of attractor, which though
initiated by the superficial layers, might be smoother spatially to make movements smooth,
by implementing what is more like a continuous attractor network. In Experiment 2, the
way in which the deep layers of the neocortex are set up to produce these somewhat different
types of representation is investigated. Although tested with continuous attractor dynamics
in the deep layer, the aim of Experiment 2 is to show more generally whether the superficial
and deep layers could support somewhat different representations implemented by differences
in the connectivity between the neurons.

8



2 Experiment 1: The effects of adaptation in the deep layers

of the neocortex on the time course of the firing

The faster time course of the deeper layers might be implemented by having relatively fast
synaptic or neuronal adaptation (Rolls (2016), cf. Markram et al (2015) who show that adap-
tation varies greatly between different classes of cortical neuron). In this experiment, both
the superficial and the deep layers were discrete attractor networks, but neuronal adaptation
was present in the deep layer attractor network to investigate the hypothesis. A faster time
course in deep layers might also be produced by a relatively higher proportion of AMPA or
kainate receptors with their short time constant (5–10 ms) in the deep layers, with relatively
more NMDA receptors with their relatively long time constants (100 ms) in superficial layers.
Consistent with this hypothesis, NMDA receptors are present in relatively higher densities in
superficial layers (L2/L3), and kainate receptors in relatively higher densities in deep layers
(L5 and L6) of the human fusiform gyrus, a ventral stream visual area involved in face and
object processing (Caspers, Palomero-Gallagher, Caspers, Schleicher, Amunts & Zilles 2015).
In addition, the pyramidal cells in the deep layers probably have different time constants, for
they tend to be large, related in part to the fact that many of their axons have to travel long
distances to reach their motor targets and therefore need fast conduction velocities.

2.1 Methods

Two attractor networks were implemented as illustrated in Fig. 3. The two networks are
connected by synapses from the superficial to the deep layer network with strength wSD.

The aim is to investigate the operation of the system in a biophysically realistic attractor
framework, so that the properties of receptors, synaptic currents and the statistical effects
related to the probabilistic spiking of the neurons can be part of the model. We use a minimal
architecture, a single attractor or autoassociation network (Hopfield 1982, Amit 1989, Hertz,
Krogh & Palmer 1991, Rolls & Treves 1998, Rolls & Deco 2002, Rolls 2008) for each module.
A recurrent (attractor) integrate-and-fire network model which includes synaptic channels for
AMPA, NMDA and GABAA receptors (Brunel & Wang 2001, Rolls & Deco 2010) was used.

The single superficial and the deep discrete attractor networks each contained 800 excita-
tory, and 200 inhibitory neurons, which is consistent with the observed proportions of pyra-
midal cells and interneurons in the cerebral cortex (Abeles 1991, Braitenberg & Schütz 1991).
The connection strengths are adjusted using mean-field analysis (Brunel & Wang 2001, Deco
& Rolls 2006, Rolls & Deco 2010, Rolls 2016), so that the excitatory and inhibitory neu-
rons exhibit a spontaneous activity of 3 Hz and 9 Hz, respectively (Wilson, O’Scalaidhe &
Goldman-Rakic 1994, Koch & Fuster 1989). The recurrent excitation mediated by the AMPA
and NMDA receptors is dominated by the NMDA current to avoid instabilities during delay
periods (Wang 2002).

The architecture of the cortical network module which is the architecture of both the
superficial and the deep attractor networks as illustrated in Fig. 4 has 10 selective pools each
with 80 excitatory neurons. The connection weights between the neurons within each pool or
population are called the intra-pool connection strengths w+, which were set to values in the
range 1.9–2.2 for the simulations described. All other weights including winh were set to 1.

All the excitatory neurons in each attractor pool S1, S2 ... SN receive an external bias
input λ1, λ2 ... λN. This external input consists of Poisson external input spikes via AMPA
receptors which are envisioned to originate from 800 external neurons. One component of
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this bias which is present by default arrives at an average spontaneous firing rate of 3 Hz
from each external neuron onto each of the 800 synapses for external inputs, consistent with
the spontaneous activity observed in the cerebral cortex (Wilson et al. 1994, Rolls & Treves
1998, Rolls 2016).

Both excitatory and inhibitory neurons are represented by a leaky integrate-and-fire model
(Tuckwell 1988). The basic state variable of a single model neuron is the membrane potential.
It decays in time when the neurons receive no synaptic input down to a resting potential.
When synaptic input causes the membrane potential to reach a threshold, a spike is emitted
and the neuron is set to the reset potential at which it is kept for the refractory period. The
emitted action potential is propagated to the other neurons in the network. The excitatory
neurons transmit their action potentials via the glutamatergic receptors AMPA and NMDA
which are both modeled by their effect in producing exponentially decaying currents in the
postsynaptic neuron. The rise time of the AMPA current is neglected, because it is typically
very short (<1 ms). The NMDA channel is modeled with an alpha function including both
a rise and a decay term. In addition, the synaptic function of the NMDA current includes a
voltage dependence controlled by the extracellular magnesium concentration (Jahr & Stevens
1990). The inhibitory postsynaptic potential is mediated by a GABAA receptor model and is
described by a decay term. A detailed mathematical description is provided in the Appendix.

A property of cortical neurons is that they tend to adapt with repeated input (Abbott,
Varela, Sen & Nelson 1997, Fuhrmann, Markram & Tsodyks 2002). The mechanism is un-
derstood as follows. The afterpolarization (AHP) that follows the generation of a spike in
a neuron is primarily mediated by two calcium-activated potassium currents, IAHP and the
sIAHP (Sah & Faber 2002), which are activated by calcium influx during action potentials. The
IAHP current is mediated by small conductance calcium-activated potassium (SK) channels,
and its time course primarily follows cytosolic calcium, rising rapidly after action potentials
and decaying with a time constant of 50 to several hundred milliseconds (Sah & Faber 2002).
In contrast, the kinetics of the sIAHP are slower, exhibiting a distinct rising phase and de-
caying with a time constant of 1–2 s (Sah 1996). A variety of neuromodulators, including
acetylcholine (ACh) acting via a muscarinic receptor, noradrenaline, and glutamate acting via
G-protein-coupled receptors, suppress the sIAHP and thus reduce spike-frequency adaptation
(Nicoll 1988).

When recordings are made from single neurons operating in physiological conditions in
the awake behaving monkey, peristimulus time histograms of inferior temporal cortex neurons
to visual stimuli show only limited adaptation. There is typically an onset of the neuronal
response at 80–100 ms after the stimulus, followed within 50 ms by the highest firing rate.
There is after that some reduction in the firing rate, but the firing rate is still typically more
than half-maximal 500 ms later (see example in Tovee, Rolls, Treves & Bellis (1993)). Thus
under normal physiological conditions, some, but limited, firing rate adaptation can occur.

The effects of this adaptation can be studied by including a time–varying intrinsic (potassium-
like) conductance in the cell membrane (Brown, Gähwiler, Griffith & Halliwell 1990, Treves
1993, Rolls 2016). This can be done by specifying that this conductance, which if open tends
to shunt the membrane and thus to prevent firing, opens by a fixed amount with the potential
excursion associated with each spike, and then relaxes exponentially to its closed state. In this
manner sustained firing driven by a constant input current occurs at lower rates after the first
few spikes, in a way similar, if the relevant parameters are set appropriately, to the behaviour
observed in vitro of many pyramidal cells (for example, Lanthorn, Storm & Andersen (1984),
Mason & Larkman (1990)). The details of the implementation used are described in Section
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5.2.

2.2 Results

In the first experiment to illustrate the effects of adaptation in the deep discrete attractor
network, after 500 ms of spontaneous activity, pool 5 was activated for 100 ms, and its firing
stopped within 200 ms, as w+ was set to 1.9 to help the superficial attractor to stop firing
relatively soon after stimulus offset (Fig. 5). Through the connection to the deep discrete
attractor network with strength wSD = 0.15, pool 5 in the deep attractor started firing, and
continued firing for some time with its w+ = 2.2. This demonstrates that the deep network
was operating as a discrete attractor network that could maintain its firing for longer than the
input from the superficial layers was firing. However, with the neuronal adaptation switched
on (with τCa =150 ms and AHP-Ca = 1.0), the deep attractor network did stop firing
after approximately 800 ms of activity. If the calcium-implemented neuronal adaptation was
switched off, the deep attractor continued to fire indefinitely.

This simulation thus shows that adaptation can set the time course of the deep network
when it has been demonstrated to be operating as an attractor (Fig. 5).

In the second experiment to illustrate the effects of adaptation in the deep discrete attrac-
tor network, after 500 ms of spontaneous activity, pool 5 was activated for 200 ms, and its
firing continued indefinitely, as w+ was set to 2.05 (Fig. 6). Through the connection to the
deep discrete attractor network with strength wSD = 0.1, pool 5 in the deep attractor started
firing, and continued firing for some time with its w+ = 2.2. However, with the neuronal
adaptation switched on (with τCa =1000 ms and AHP-Ca = 0.4), the deep attractor network
did stop firing after approximately 700 ms of activity. If the calcium-implemented neuronal
adaptation was switched off, the deep attractor continued to fire indefinitely.

This simulation thus shows that adaptation can set the time course of the deep network
even when it continues to receive input from the superficial attractor network (Fig. 6).

Another key issue investigated was the strength of the coupling between the attractor
networks in the superficial and deep layers that would allow them to show the partially
separate operation described here. For the adaptation effects illustrated in Fig. 6, the coupling
term was set to wSD = 0.1, which corresponds to the ratio of the excitatory synaptic weights
received by a neuron in the deep layer from the superficial layer to the weights from all
recurrent excitatory connections from the other neurons in the deep layers. This value for
wSD of 0.1 was just sufficient to enable an attractor state in the deep layer network to be
started from the spontaneous state by firing in one of the attractors in the superficial layer
network. At the time point in the simulation when the superficial attractor had started, but
the deep attractor had not yet started, the ratio of the currents was 0.21. That therefore
helps to set a minimal value for the currents that must be received from the superficial layer
attractor by the neurons in a deep layer attractor network. If the value of wSD was increased
to 0.5, then at the same time in the simulation, the ratio of the currents was 0.74, and yet
the deep attractor could still operate partly independently of the superficial attractor in that
the deep attractor showed adaptation, whereas the superficial attractor did not. Another key
condition for wSD and the currents that it can induce is that it must be sufficiently large to
switch an attractor state in the deep layers of the cortex to another state when the superficial
layer attractor changes from one population of neurons to another. In a deep network without
adaptation, it was found that wSD had to be approximately 1.0 to reliably switch the deep
attractor, and the current ratio (input currents from the superficial network via wSD / deep
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net recurrent collateral currents) was 0.21. This higher value for wSD is expected because once
a network is in an attractor, it is stable and difficult to perturb (Rolls 2016). This analysis
thus helps to provide a framework with which to assess, given the connectivity values shown
in Fig. 2, whether the superficial and deep networks are connected so that they can operate
as coupled but somewhat independent attractor networks (see Discussion).

3 Experiment 2: A discrete attractor network for the superfi-

cial layers and a continuous attractor network for the deep

layers

In Experiment 2 the aim was to investigate whether the deep and superficial layer recurrent
collaterals could implement different types of attractor network and computations. This was
investigated with an integrate-and-fire network of a small patch or module or column of
neocortex in which the superficial layers were modelled as a fully connected discrete attractor
network, which connected with stronger forward than backward connections to the deep layers
modelled as an integrate-and-fire continuous attractor network with strong local connectivity
between nearby neurons, as illustrated in Fig. 7.

3.1 Method

The superficial layers were modelled as a discrete attractor network as illustrated in Fig. 4.
The network is an integrate-and-fire attractor network with n possible attractor states. For
the simulations described here there were n=10 orthogonal attractor states in the superficial
layer discrete attractor network, each implemented by a population of neurons with strong
excitatory connections between the neurons with value w+=2.1 for the NMDA and AMPA
synapses. There were always Ns=500 neurons in the module, of which 0.8 were excitatory,
and 0.2 were inhibitory. The parameters in the module were set so that the spontaneous
firing state with no input applied was stable, and so that only one of its n possible attractor
states was active at any time when inputs were applied (Rolls 2016, Rolls & Deco 2010, Deco
et al. 2013) (see Appendix).

The deep layer module was modelled as an integrate-and-fire continuous attractor network.
The main difference was that the (excitatory) recurrent collaterals connected more strongly to
their neighbours than to more distant neurons (see Fig. 7), with a Gaussian function of width
σ setting the width of the profile. σ was typically 15 neurons, but other values in the range
5–140 were investigated where specified. The synaptic strengths of these recurrent collaterals
were scaled to be proportional to the height of the Gaussian distribution. These Gaussian
connections were set to wrap from one end of the array of neurons back to the beginning, so
that this was a ring continuous attractor network. The sum of all the excitatory input synaptic
strengths on each neuron was set to the same value as the sum for the equivalent integrate-
and-fire discrete attractor network described above, in order to set the network to operate in
the same regime of balanced excitation and inhibition (Brunel & Wang 2001, Rolls 2016, Rolls
& Deco 2010, Deco, Rolls, Albantakis & Romo 2013). The number of neurons in the deep,
continuous attractor, network was typically N=500 neurons, but in some investigations was
set to N=125, 250, 1000 or 1500 neurons. In the deep continuous attractor network, 0.8 of
the neurons were excitatory and 0.2 were inhibitory.
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The deep module, the continuous attractor network, operated with similar integrate-
and-fire neurons. The inhibition in the continuous attractor network was set to 1.03, and
a target parameter that adjusted the equivalent of w+ for the deep network was set to a
value that enabled the continuous attractor network to maintain its activity once started
(and in the absence of more than spontaneous firing in the superficial network) but with a
peak firing rate still in the biological range of less than approximately 100 spikes/s (Rolls &
Treves 2011, Rolls 2016).

It is noted that this type of continuous attractor network is described as having metric
connectivity, in that the recurrent connections between the pyramidal cells are short range
(Roudi & Treves 2008). This can be set up by self-organising learning, as illustrated by Rolls
(2016). A different scenario for a continuous attractor network is when the connectivity is
global, and the continuous attractor network is set up by learning which of the neurons with
a Gaussian tuning profile are close together in the space being represented while the agent or
animal traverses the space repeatedly (Rolls 2016).

An important difference in these discrete and continuous attractor networks is in the
learning. In a discrete attractor network it is assumed that a random set of neurons is caused
to fire by the inputs being received. Competitive learning may be involved in this process
(Rolls 2016). The recurrent collateral connections between the neurons then show associative
(Hebbian) synaptic modification. The set of currently active neurons thereby form a discrete
attractor, as described by Rolls (2016). A large number of independent representations can be
set up in this way. In contrast, in a continuous attractor network, neurons that are nearby in a
space tend to excite each other depending on their distance from each other in the space. One
way in which such firing might be set up is if the input being received is in some continuous
space, such as a space of head direction, or spatial view, or movements being made in 3D
space. In this case, Hebbian synaptic modification allows the continuous space to be learned
by the continuous attractor network, and near points in the space need not be represented by
nearby neurons. Another way in which such continuous representations can be set up is by
short-range recurrent collaterals, which, because they are short range and their density falls
off with distance across the cortex, tend to make nearby neurons in the cortex have activity to
similar stimuli. This is how topographic maps can be formed in the cortex, with an example
of such a map being that in the primary visual cortex. These concepts are described in more
detail by Rolls (2016). For the present work, which of these two methods is used to set up
the continuous attractor network does not matter in principle, but in practice we set up the
continuous attractor network by setting up the recurrent collaterals to have a strength of
connection to neighbouring pyramidal cells that falls off as a function of distance between the
pyramidal cells, which is a property of neocortex (Holmgren et al. 2003).

In the model, there are forward connections from excitatory neurons in the superficial
(discrete attractor) module to excitatory neurons in the deep (continuous attractor) module,
with strength wSD. The role of these forward connections is to provide the input to the deep
module. This mapping was by default a 1 to 1 mapping, so that with 400 excitatory neurons
in the superficial module, there were 1:1 connections to the 400 excitatory neurons in the deep
module. If there were 800 neurons in the deep module, there was still a regular mapping to
the deep module, but each superficial neuron connected to two adjacent deep layer neurons.
If there were fewer neurons in the deep continuous attractor network, there was still a regular
mapping to the deep attractor, but superficial neurons were skipped. For example, if there
were half as many neurons in the deep attractor, then every other superficial neuron had
a connection to a deep neuron. These connections were used in the stability investigations
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only to start the deep attractor, after which the nature of the drift was explored without any
further input from the superficial network. As was the case for the superficial network, the
neurons in the deep network always had an external Poisson input to each of 800 synapses
on each neuron set to a default external spontaneous rate of 3 spikes/s on every one of these
800 synapses.

The stability analyses were performed as follows. The deep module continuous attractor
was set up as a ring attractor, that is, the end of the excitatory firing rate array was connected
back to the start with the local recurrent collateral connections. There were 10 sectors in
the ring attractor, in that each of the ten superficial discrete attractors was connected to one
tenth of the excitatory neurons in the deep attractor. The amount of drift was measured by
the number of the 10 sectors that the centre of gravity of the bubble of activity drifted in 12
s (or by the number of neurons over which the drift occurs). As will be shown, the drift was
typically less than the width of one of the 10 sectors in the ring attractor. Simulations were
performed with different numbers of neurons in the deep module, to investigate how the size
of the continuous attractor and therefore the finite size noise influenced the drift and stability.
In addition to the total drift over 12 s, a second measure was the short-term movement, again
measured in sectors or in neurons, that occurred between the centre of gravity of the bubble
measured every 100 ms.

During operation, one attractor pool in the superficial module received an increased input
for 1000 ms starting after an initial 500 ms period of spontaneous firing. That started firing
in the deep module.

3.2 A hypothesis: adaptation must be minimal in a continuous attractor

network

It is hypothesized here that any adaptation in a continuous attractor network will impair
its stability, because when neurons in the packet of activity adapt, the lower firing neurons
at the edge of the activity packet will be less adapted, and the packet of activity will drift
towards the less adapted neurons. This is hypothesized here to be an important constraint on
the operation of continuous attractor networks in the brain. An implication and prediction is
that states in which adaptation is more likely to occur, including drowsiness when cholinergic
neuronal firing may be reduced, or the use of a cholinergic blocker such as scopolamine, may
impair tasks that involve idiothetic (i.e. self-motion) update of position such as head direction,
eye position, how far one has travelled, etc. Cholinergic projections from the basal forebrain
are important in minimizing cortical adaptation, and the basal forebrain neurons are activated
by rewarding, punishing, and novel stimuli (Rolls & Deco 2015b, Rolls 2016, Rolls 2014, Rolls,
Burton & Mora 1976, Burton, Rolls & Mora 1976, Mora, Rolls & Burton 1976, Rolls, Sanghera
& Roper-Hall 1979, Wilson & Rolls 1990b, Wilson & Rolls 1990a, Wilson & Rolls 1990c), all of
which help to maintain a non-adapted cortex. (Scopolamine is frequently prescribed for travel
sickness, and it is suggested might operate by reducing the stability of continuous attractor
networks, so that there would be less discrepancy between them and visual motion cues, in
that the continuous attractor networks may be more easily driven by visual inputs.)

To investigate the effect of adaptation on the operation of a continuous attractor network,
a spike-frequency adaptation mechanism was implemented in some of the simulations using
Ca2+-activated K+ hyper-polarizing currents (Liu & Wang 2001), as described in detail in the
Appendix in Section 5.2. Its parameters were chosen to produce spike frequency adaptation
similar in timecourse to that found in the inferior temporal visual cortex of the behaving
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macaque (Tovee, Rolls, Treves & Bellis 1993). In particular, [Ca2+] is initially set to be 0
µM, τCa = 300 ms, α = 0.002, VK = −80 mV and gAHP=200 nS unless otherwise specified.
(We note that there are a number of other biological mechanisms that might implement
the slow transitions from one attractor state to another, some investigated by Deco & Rolls
(2005), and that we use the spike frequency adaptation mechanism to illustrate the principles
of operation of the networks.)

3.3 Results

3.3.1 Smooth transitions in the Deep Network Continuous Attractor Module

If the deep network made a transition from one position corresponding to one of the superficial
pools, to another position corresponding to another superficial pool, the transition under some
circumstances of the deep pool could be continuous. This is illustrated in Fig. 8, in which a
smooth transition occurred in the continuous attractor network when the superficial attractor
network jumped from pool 3 (neurons 80 to 120 given that there were 400 excitatory neurons
divided into 10 pools) to pool 5 (neurons 160–200). This was found to occur primarily when
the width of the bubble spanned the first and second parts of the space over which a transition
had to be made.

This may be helpful biologically, by smoothing transitions between nearby states.
When the transition being driven by the superficial network was larger than the width of

the bubble, the bubble simply stopped in the first position, and started in the new position,
with what appeared to be an abrupt jump. This is illustrated in Fig. 9, when the superficial
network jumped from pool 3 to pool 7. This resulted in a jump in the deep continuous
attractor network. This may be biologically plausible, for it may not be appropriate for the
deep network to transition through all the intermediate positions when two distant positions
for the superficial network are successively active.

A third scenario occurs when the deep continuous attractor network has entered a region
of attraction, i.e. firing has started. The deep continuous attractor is then more stable than
when its neurons are just firing at a spontaneous rate. Under these conditions, only a strong
input from the superficial attractor will move the deep attractor to a new position. This may
provide some form of noise tolerance for the deep, continuous attractor, network. The higher
the firing rate of the continuous attractor, the more resistant it is to being perturbed by an
external input.

3.3.2 Stability of the integrate-and-fire stochastic spiking continuous attractor

network

The stability of the integrate-and-fire continuous attractor network was measured in a 12
s period starting after time=2 s in a simulation during which the bubble of activity was
maintained. The start time was thus after the end of the period in which the superficial
attractor had been active, as illustrated in Fig. 10. In this case, there were only 200 excitatory
neurons in the deep continuous attractor network, and both short-term noise due to the
statistical fluctuation in the numbers of spikes in the different neurons was evident, as well
as long-term drift.

The effects of the size of the continuous attractor network on its long term drift were
investigated as follows. The measure of stability was the long-term drift of the centre of
gravity of the continuous attractor network, again after the driving input from the superficial
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attractor had been removed. The measure was the absolute value of the number of neurons
over which the centre of gravity of the bubble had drifted in a 12 s period. Considerable
stability was evident, as illustrated in Fig. 11. Indeed, the typical drift over 12 s was rather
small (a drift of between 5 and 10 neurons, with standard deviation of approximately 5).
There was no significant effect of N on the long-term drift. Although there may be short-
term statistical fluctuations with the bubble moving left or right in a short time period in the
order of 100 ms, these short term drifts largely cancel out over long periods.

It is notable in Fig. 11 that there was relatively little effect of the number of excitatory
neurons N in the continuous attractor network on the number of neurons over which the
packet of activity fluctuated or drifted. The implication is that if the continuous attractor
ring represents the whole of a space, then having more neurons in the ring continuous attractor
results in more stability of the representation expressed as the fraction of the ring (and of the
whole space) over which the centre of gravity moves.

The factors that lead to the stability of even relatively small continuous attractor networks
with spiking neurons are considered in the Discussion.

3.3.3 Effects of adaptation on the stability of the deep layer continuous attractor

Both synaptic and neuronal adaptation can occur, and can be modelled (Deco & Rolls 2005).
The hypothesis proposed is that adaptation would affect the stability of the continuous at-
tractor network, for as neurons fire less because of adaptation, other neurons in the fringes
of the continuous attractor bubble with lower firing rates but still being activated by the
local recurrent collaterals would be less adapted, so would start to fire more than neurons at
the centre of the activity packet. This was expected to cause the deep continuous attractor
network to drift continuously across the space being represented.

This hypothesis was tested by implementing neuronal firing rate adaptation as described
in Section 5.2. This had the effect of causing the packet of activity to become unstable, and
to drift continuously across the space being represented, as illustrated in Fig. 12. In this
simulation τCa = 300 ms, and the target parameter for the deep w+ was 3.3. On different
trials with different random seeds the drift was in different directions, but once started,
continued in the same direction, right round the ring attractor if left for sufficiently long.
Any adaptation can thus impair the stability of a continuous attractor network.

4 Discussion

The results presented here for Experiment 1 show how the time course of the neuronal activity
might be usefully different in the deep layers of the neocortex compared to the superficial
layers. First it was shown that adaptation can set the time course of the deep network
when it has been demonstrated to be operating as an attractor, that is, maintaining its firing
for longer than the superficial layers which provide the input to the deep layers (Fig. 5).
Second, it was shown that adaptation can limit to short firing the time course of the deep
network even when it continues to receive input from the superficial attractor network (Fig.
6). Both these effects were implemented by having more adaptation in the deep layers of
the cortex, consistent with experimental observations (Markram et al (2015)). Having a time
course limited in this way for the a deep layer discrete attractor network could be useful
if precisely timed outputs are needed to for example drive motor and related outputs. This
would leave the superficial layers able to maintain their attractor state for longer, which could
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be useful in the training of the next layers up in the hierarchy, using for example slow learning
(Rolls 2012b, Rolls 2016).

A key issue in understanding whether the superficial and deep layers of the neocortex could
operate as separate attractors with the superficial influencing the deep attractor networks but
not fully determining their states is the nature of the connectivity from the superficial layers
to the deep layers. One key condition is that the number of connections from neurons in the
the superficial layers to any single neuron in the deep layers must be in the order of the the
number of connections onto any one neuron in the superficial layers from the other neurons
in the superficial layers via the recurrent collaterals. The quantitative argument is the same
as for the number of backprojections in the cerebral cortex onto any one neuron compared to
the number of connections between hippocampal CA3 neurons, and arises because if one can
represent a certain number of memory states with the recurrent collaterals, then one needs
to be able to transmit the same number of states (Treves & Rolls 1994, Rolls 2016). This
condition appears to be approximately satisfied by the number of connections from L3 to each
L5 neuron relative to the number of recurrent collaterals onto any one L3 neuron from other
L3 neurons (Fig. 2a).

A second key condition is that the strength of the synaptic connections from the superficial
layers to the deep layers must be sufficiently strong that these connections can start up an
attractor state in the deep layers, or shift it from one attractor state to another. It is shown
in Section 2.2 that for these effects, wSD needs to be in the range of approximately 0.1–1.0,
with the corresponding current ratios of forward to recurrent currents greater than 0.2. At
the same time, some independence of operation of the two networks was found with wSD=0.5
and the current ratio 0.74, in that the deep but not the superficial network could then adapt
out to produce a burst of firing in the deep layers but with a longer period of firing being
maintained in the superficial layers. The calculated currents between neurons in different
layers illustrated in Fig. 2b are fully consistent with the results described in the present
investigations. (We note that the issue of whether the connectivity is diluted in each of the
superficial and deep attractor networks is not the issue here. Dilution helps by reducing the
distortion of the basins of attraction that would be produced if by chance there were many
pairs of neurons with two or more recurrent collateral synapses between any pair of neurons
(Rolls 2012a). The issue here is of the ratio of the connectivity between and within coupled
attractor networks (Rolls 2016)).

Further, it must be remembered that what is shown in Fig. 2 is for the mouse primary
somatosensory cortex, and the quantitative aspects of the recurrent collateral connectivity
are likely to be considerably better for recurrent dynamics in higher cortical areas where
the numbers of recurrent collaterals are so much larger, L4 is so much reduced, and when
the currents between the neurons involved are measured when the networks are operating
normally. We note that low values for the coupling between coupled attractors enables the
weak interactions that are beneficial (Rolls 2016, Renart, Parga & Rolls 1999b). A further line
of evidence about whether the superficial and deep layers could operate as coupled attractors,
not as a single attractor (Rolls 2016), is that the superficial layers project to the deep layers,
but not vice versa (Fig. 2a). This shows that the superficial and deep layers could not operate
as a single attractor network, in that the deep layers do not participate at all strongly in the
states reached by the neurons in the superficial layers. Instead, the evidence described here
is consistent with the hypothesis that the superficial and deep layers of the neocortex could
operate as partly separate attractor networks, with the superficial layers acting as an attractor
network coupled to influence but not dominate the operation of an attractor network in the
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deep layers of the neocortex.
The results presented here for Experiment 2 show how the deep layers might perform

a different type of computation to the superficial layers. In the example used to illustrate
this potential principle of operation of the cerebral cortex, a continuous attractor network
implemented by local recurrent collateral synaptic connections in the deep layers could enable
smooth changes from one representation to another when the representations are relatively
close in the space. It is also shown that in the integrate-and-fire continuous attractor network
with neurons that fire stochastically the packet of neuronal firing is relatively stable. This
may be because the short-term statistical fluctuations caused by the random spiking times of
the neurons for a given mean rate tend to cancel out over periods of 100 ms or more. It is also
shown that any neuronal adaptation would cause drift across the space being represented,
with the implication that some continuous attractor networks in the brain should have little
neuronal, or synaptic, adaptation, in order to provide for path integration (Rolls 2016). On
the other hand, in some parts of the cortex, some adaptation and therefore drift might have
evolved as a mechanism for forward movement, rhythm, music, song and speech (Rolls &
Deco 2015a).

In relation to the stability of the continuous attractor network implemented with integrate-
and-fire neurons, it was found that the long-term drift did not alter significantly asN increased
(Fig. 11). An implication is that if a ring continuous attractor had to represent a certain
physical space, say 360 degrees of space, then the net effect of having more neurons (i.e.
increasing N) would mean less drift per unit of physical space. In effect, the measure of drift
expressed as the proportion of the physical space being represented decreases as the size of
the continuous attractor network, N , increases.

One possibility was that the drift in the continuous attractor network might have been
greater with small networks, for then the statistical fluctuations in the firing rates would
be larger. In discrete attractor networks, this variability can influence the decision-making
(Deco & Rolls 2006, Rolls, Grabenhorst & Deco 2010, Rolls 2016), and has been observed in
continuous attractor networks (Cerasti & Treves 2013). However, in the present simulations
there was not more drift in the smaller continuous attractor networks than the large networks
(Fig. 11). The reason for our finding is that we kept the width of the bubble of activity
constant when we increased the number of neurons in the network. Thus the number of
neurons active in our simulations, and generating the statistical fluctuations in firing rates,
was constant when we increased the size of the network, and that is the reason we propose
why the stability measured by the drift did not alter significantly when we increased the size
on the network. In contrast, Cerasti & Treves (2013) kept the spatial geometry of their inputs
constant when they increased the size of the network, so that more neurons were allocated to
a packet of activity as the number of neurons in the network was increased. We hypothesize
that it was because in their simulations more neurons were active as the size of the network
increased that they observed a reduction of noise, evident as drift, as they increased the size
of the network.

These new findings emphasise the following concepts. If more neurons are in a continuous
attractor network, one scenario is that more spatial positions can be represented in the net-
work, provided that the packet of activity does not involve more neurons when the network
is scaled up, as in Fig. 11. This might correspond to more spatial scenes, or more environ-
ments, maps, or charts (Battaglia & Treves 1998) being represented. This would greatly help
the capacity of the system considered as an object-location associative memory system, in
that many more such memories could be stored in such an attractor network with mixed
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discrete (for objects) and continuous (for scenes and places) representations (Rolls, Stringer
& Trappenberg 2002, Rolls 2016, Rolls 2017). This would be important in for example a
hippocampal memory system (Rolls et al. 2002, Rolls 2016, Rolls 2017). In so far as the
hippocampal system involves associations between discrete objects and continuous spaces, we
note that it would not operate well as a continuous attractor for spatial navigation, because
the space would be distorted by the discrete object representations. A second scenario is
that if there are more neurons in a continuous attractor network, then the number of places
or scenes or maps might remain constant, with the consequence that there would then be
more neurons in each packet of activity, which would reduce the drift. That is the situation
investigated by Cerasti & Treves (2013). We note that even with the quite small networks
investigated here, stability over 12 s was not a major issue, and so we believe that the ability
to represent more locations, rather than to increase stability, is likely to be more biologically
important.

In terms of physics, factors that influence the stability of a continuous attractor network
include the following. The first effect is the statistical fluctuations in the firing rate referred
to as “fast noise” (Cerasti & Treves 2013). This shows finite size effects, with more noise
(or fluctuations) of the firing rate that may produce a drift in activity of the population
of neurons present in small networks. This can increase the drift in a continuous attractor
network, or lead to more noisy decision-making, memory retrieval, etc in a discrete attractor
network (Rolls & Deco 2010, Deco, Rolls, Albantakis & Romo 2013, Rolls 2016). The second
effect is the presence of “slow” or “quenched” noise which refers to the fact that with small
N , the synaptic weights in the continuous attractor network have small discontinuities that
result in “holes” in the attractor landscape, and these tend to restrict the free movement of
the packet of activity when N is relatively small. This effect would tend to reduce drift in
the continuous attractor network with small N . The slow and fast noise can thus operate in
opposite directions to influence the stability of a continuous attractor network. The fast noise
may be the more important factor, to judge from the results of Cerasti & Treves (2013).

Continuous attractors (in the deep layers) may be especially useful for cortical areas that
represent low-dimensional spaces (such as motor areas), for then the continuity of output may
help to produce smooth movements. The essence of a continuous attractor is that it can be
learned when there is a fixed trajectory through the firing rate state space that is repeated
frequently. This might arise for example if three movements regularly followed each other.
If running in a 2-dimensional environment occurred, then grid cells might arise in this low-
dimensional space with the hexagonal arrangement reflecting the efficient packing possible
in this low-dimensional space (Kropff & Treves 2008, Stella & Treves 2015). On the other
hand, in regions such as the high order visual cortical areas including the inferior temporal
visual cortex where neurons represent a large number of relatively separate objects, faces, etc
(Rolls 2012b, Rolls 2016), a fixed order trajectory through this high dimensional state space
is unlikely to occur naturally. (That is, 1000 objects are unlikely to be presented in the same
sequence regularly!) Thus in high dimensional spaces the utility of some continuity of repre-
sentation such as that produced by a continuous attractor network in the deep cortical layers
is less clear. However, even in these areas, there may be some similarity structure between
stimuli, with some objects more similar to each other than other objects. In this situation,
some continuity in the representation may be useful, for then a new object intermediate be-
tween the two similar objects can produce an appropriate output correctly mapped into the
space without any further learning.

A continuous attractor network might be as simple as a topographic map, but have the
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advantage just described of enabling new objects to be placed correctly in a space with
some continuities. Such a topographic map (described further by Rolls (2016)) need not be
capable of sustained activity which is generally a property of attractor networks. But such
a continuous map, perhaps more realised in the deep cortical layers, might still have the
desirable property of providing a continuous representation, so that any incoming stimulus
not actually seen before can be placed at the correct place in the space being represented.

Indeed, the superficial layers might have in part the properties of a discrete attractor
network using the recurrent collaterals; but also might have some mixed continuous properties
because of the fact that the recurrent collaterals in the neocortex are relatively short-range,
spreading approximately 2 mm. In this scenario, the deep layers might implement a further
move towards a continuous attractor, a ‘second stage’.

However, for the feedforward processing from stage to stage in a neocortical hierarchy,
discrete representations may be useful, so as not to throw away information about exactly
which stimulus is present. The connectivity of the superficial layers seems to provide for this,
with the input to any one stage being received predominantly into layer 4 and the superficial
layers 2 and 3, which in turn project forward to the superficial layers of the next cortical area
in the hierarchy (Rolls 2016).

In this scenario, how might more continuous representations in the deep layers be com-
putationally useful, apart from facilitating smooth movements and trajectories through state
spaces? One interesting possibility is that in language production, in which syntactic role
may be encoded in a fixed order such as subject-verb-object, a continuous attractor network
for this trajectory through the state space (Rolls & Deco 2015a) might be implemented in the
deep cortical layers. It may be more likely that this particular sequence is encoded in the deep
layers, for this may be more biologically plausible than that the order is implemented by the
feedforward projections between connected cortical areas within a speech production region
such as Broca’s area (Rolls & Deco 2015a). Another possibility is that phoneme production in
cortical motor areas (Bouchard, Mesgarani, Johnson & Chang 2013) might be implemented
in deep layer attractor networks (A.Treves, personal communication). Another possibility is
that for the cortico-cortical backprojections, which originate predominantly in primates from
the deep layer pyramidal cells in especially layer 5 (Rolls 2016, Pandya et al. 2015), a more
continuous representation, possibly less sparse, may be useful, for then the top-down modu-
lation of attention and of cognition would then bias on all the neurons in a preceding cortical
area in the hierarchy that might be being activated by a particular discrete incoming bottom-
up stimulus. This is a computational argument for the backprojections, from mainly the deep
layers of the cortex, having a more continuous, and probably less sparse, representation than
the superficial layers of the neocortex (Rolls 2016).

In addition to these top-down attentional and cognitive effects, the cortico-cortical back-
projections may be part of a cascade gain control system that helps to improve stability.
The inner fast loop would be implemented by the GABA inhibitory neurons within a cor-
tical area. The backprojections may help to control gain by feeding back to the preceding
cortical area, in an outer loop. In such a cascade control system, the inner loop should be
several times faster than the outside loop for stability and effectiveness (Marlin 2000, Morari
& Zafiriou 1989). This longer time constant for the outer loop might be implemented by the
backprojections from the deep neocortical layers, which tend to end on the apical dendrites of
pyramidal cells in the previous cortical area (Rolls 2016, Pandya et al. 2015). Because these
synaptic terminals are so far from the cell body, they tend to act with a longer time constant
than terminals would closer to the cell body.
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In this research, we have explored hypotheses about possible differences in the computa-
tions performed by the superficial and deep layers of the neocortex. We have demonstrated
some possible principles of operation of the deep layers of the neocortex if they implement, in
part, continuous attractor networks. These principles include being able to produce smooth
outputs, and producing continuous outputs less sparse than those of the superficial layers
which may be useful for top-down backprojected information for attentional and cognitive
modulation. (The sparser representations that may be more evident in the superficial layers
may be more useful for storing large numbers of different, discrete, representations in a dis-
crete attractor network, and for looking up particular objects using forward cortico-cortical
processing in a hierarchy.) Nevertheless there are other computational advantages of having
somewhat computationally different superficial and deep layers of the neocortex, and we re-
gard the present work as an exploration of possibilities and possible implementations, rather
than proving that the deep layers have different functions computationally to the superficial
layers. Moreover, we note that the hypotheses that are explored here may not be compatible
with each other in an implementation of the neocortex, as each hypothesis requires different
parameters, especially with respect to adaptation.

Indeed, there are a number of other possible reasons for separate superficial and deep
layers of the neocortex (Rolls 2016). One is that the superficial layers 2 and 3 tend to project
forward up the hierarchy which tends to be close topologically and so does not require large
pyramidal cells with large axons, whereas layer 5 projects to motor and related structures
including the striatum, brainstem, and spinal cord, for which large axons for fast conduction
over longer distances that require large pyramidal cells may be useful. A second is that the
molecular recognition by classes of neurons is simplified if the superficial neurons are set
up genetically to make synaptic connections with the next cortical area (using genetically
specified recognition of targets); and if the deep neurons are set up genetically to make
synaptic connections with striatal, brainstem and motor areas (for layer 5), and with the
thalamus for layer 6 (Rolls 2016). In the context of recurrent collateral connections, another
difference is that the superficial pyramidal cells with their dendrites limited primarily to the
superficial cortical layers are well set up to form a superficial attractor network; whereas the
deep pyramidal cells with their prolific dendrites in deep cortical layers, appear well set up
to implement somewhat separate attractors implemented by their recurrent collaterals which
may be especially dense in the deep cortical layers. In this context, the apical dendrites of deep
pyramidal cells may rise especially to layer 1, so that the deep pyramidal cells can receive
some backprojected information from the next cortical area up in the hierarchy, and not
necessarily from the superficial pyramidal cells’ recurrent collaterals (see Fig. 1) (Rolls 2016).

In summary, the research described in this paper shows how the operation of the deep
layers of the neocortex could be useful because of different temporal properties, and because
different types of computation might be implemented. For example, it is shown that the deep
layers might operate with some of the properties of a continuous attractor network, which
could facilitate smooth transitions between outputs that would be useful especially in low-
dimensional motor spaces; could facilitate the feedback of a more general rather than very
discrete signal for top-down attention and recall to previous cortical areas; would be quite
stable even with stochastically spiking integrate-and-fire neurons; and would not tolerate
much adaptation.
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5 Appendix

5.1 Implementation of neural and synaptic dynamics

We use the mathematical formulation of the integrate-and-fire neurons and synaptic currents
described by Brunel & Wang (2001). Here we provide a brief summary of this framework.

The dynamics of the sub-threshold membrane potential V of a neuron are given by the
equation:

Cm
dV (t)

dt
= −gm(V (t)− VL)− Isyn(t), (1)

Both excitatory and inhibitory neurons have a resting potential VL = −70mV , a firing
threshold Vthr = −50mV and a reset potential Vreset = −55mV . The membrane parameters
are different for both types of neurons: Excitatory (Inhibitory) neurons are modeled with
a membrane capacitance Cm = 0.5nF (0.2nF ), a leak conductance gm = 25nS (20nS), a
membrane time constant τm = 20ms (10ms), and a refractory period tref = 2ms (1ms).
Values are extracted from McCormick, Connors, Lighthall & Prince (1985).

When the threshold membrane potential Vthr is reached, the neuron is set to the reset
potential Vreset at which it is kept for a refractory period τref and the action potential is
propagated to the other neurons.

The network is fully connected with NE = 800 excitatory neurons and NI = 200 in-
hibitory neurons, which is consistent with the observed proportions of the pyramidal neurons
and interneurons in the cerebral cortex (Braitenberg & Schütz 1991, Abeles 1991). The
synaptic current impinging on each neuron is given by the sum of recurrent excitatory cur-
rents (IAMPA,rec and INMDA,rec), the external excitatory current(IAMPA,ext) the inhibitory
current (IGABA):

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA,rec(t) + IGABA(t). (2)

The recurrent excitation is mediated by the AMPA and NMDA receptors, inhibition by
GABA receptors. In addition, the neurons are exposed to external Poisson input spike trains
mediated by AMPA receptors at a rate of 2.4 kHz. These can be viewed as originating
from Next = 800 external neurons at an average rate of 3 Hz per neuron, consistent with the
spontaneous activity observed in the cerebral cortex (Wilson et al. 1994, Rolls & Treves 1998).
The currents are defined by:

IAMPA,ext(t) = gAMPA,ext(V (t)− VE)

Next∑

j=1

sAMPA,ext
j (t) (3)

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)

NE∑

j=1

wAMPA
ji sAMPA,rec

j (t) (4)

INMDA,rec(t) =
gNMDA(V (t)− VE)

1 + [Mg++]exp(−0.062V (t))/3.57
×

NE∑

j=1

wNMDA
ji sNMDA

j (t) (5)

IGABA(t) = gGABA(V (t)− VI)

NI∑

j=1

wGABA
ji sGABA

j (t) (6)
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where VE = 0 mV, VI = −70 mV, wj are the synaptic weights, sj ’s the fractions of open
channels for the different receptors and g’s the synaptic conductances for the different chan-
nels. The NMDA synaptic current depends on the membrane potential and the extracellular
concentration of Magnesium ([Mg++] = 1 mM (Jahr & Stevens 1990)). The values for the
synaptic conductances for excitatory neurons are gAMPA,ext = 2.08 nS, gAMPA,rec = 0.104 nS,
gNMDA = 0.327 nS and gGABA = 1, 25 nS ; and for inhibitory neurons gAMPA,ext = 1.62 nS,
gAMPA,rec = 0.081 nS, gNMDA = 0.258 nS and gGABA = 0.973 nS. These values are obtained
from the ones used by Brunel & Wang (2001) by correcting for the different numbers of neu-
rons. The conductances were calculated so that in an unstructured network the excitatory
neurons have a spontaneous spiking rate of 3 Hz and the inhibitory neurons a spontaneous
rate of 9 Hz. The fractions of open channels are described by:

dsAMPA,ext
j (t)

dt
= −

sAMPA,ext
j (t)

τAMPA
+

∑

k

δ(t − tkj ) (7)

dsAMPA,rec
j (t)

dt
= −

sAMPA,rec
j (t)

τAMPA
+

∑

k

δ(t− tkj ) (8)

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay

+ αxj(t)(1 − sNMDA
j (t)) (9)

dxj(t)

dt
= −

xj(t)

τNMDA,rise
+

∑

k

δ(t− tkj ) (10)

dsGABA
j (t)

dt
= −

sGABA
j (t)

τGABA
+
∑

k

δ(t− tkj ), (11)

where τNMDA,decay = 100 ms is the decay time for NMDA synapses, τAMPA = 2 ms
for AMPA synapses (Hestrin, Sah & Nicoll 1990, Spruston, Jonas & Sakmann 1995) and
τGABA = 10 ms for GABA synapses (Salin & Prince 1996, Xiang, Huguenard & Prince 1998);
τNMDA,rise = 2 ms is the rise time for NMDA synapses (the rise times for AMPA and GABA
are neglected because they are typically very short) and α = 0.5 ms−1. The sums over k
represent a sum over spikes formulated as δ-Peaks δ(t) emitted by presynaptic neuron j at
time tkj .

The equations were integrated numerically using a second order Runge-Kutta method with
step size 0.02 ms. The Mersenne Twister algorithm was used as random number generator
for the external Poisson spike trains.

5.2 Calcium-dependent spike frequency adaptation mechanism

A specific implementation of the spike-frequency adaptation mechanism using Ca++-activated
K+ hyper-polarizing currents (Liu & Wang 2001) is described next, and was used by Deco
& Rolls (2005). We assume that the intrinsic gating of K+ After-Hyper-Polarizing current
(IAHP) is fast, and therefore its slow activation is due to the kinetics of the cytoplasmic Ca2+

concentration. This can be introduced in the model by adding an extra current term in the
integrate-and-fire model, i.e. by adding IAHP on the right hand of equation 12, which describes
the evolution of the subthreshold membrane potential V (t) of each neuron:

Cm
dV (t)

dt
= −gm(V (t)− VL)− Isyn(t) (12)
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where Isyn(t) is the total synaptic current flow into the cell, VL is the resting potential, Cm

is the membrane capacitance, and gm is the membrane conductance. The extra current term
that is introduced into this equation is as follows:

IAHP = −gAHP[Ca
2+](V (t)− VK) (13)

where VK is the reversal potential of the potassium channel. Further, each action potential
generates a small amount (α) of calcium influx, so that IAHP is incremented accordingly.
Between spikes the [Ca2+] dynamics is modelled as a leaky integrator with a decay constant
τCa. Hence, the calcium dynamics can be described by following system of equations:

d[Ca2+]

dt
= −

[Ca2+]

τCa
(14)

If V (t) = θ, then [Ca2+] = [Ca2+] +α and V = Vreset, and these are coupled to the equations
of the neural dynamics provided here and elsewhere (Rolls & Deco 2010, Rolls 2016). The
[Ca2+] is initially set to be 0 µM, τCa = 300 ms, α = 0.002, VK = −80 mV and gAHP=0–40
nS. gAHP = 40 nS simulates the effect of high levels of acetylcholine produced alertness and
attention, and gAHP = 0 nS simulates the effect of low levels of acetylcholine in normal aging
(Rolls & Deco 2015b).

5.3 The model parameters used in the simulations

The fixed parameters of the model are shown in Table 1, and not only provide information
about the values of the parameters used in the simulations, but also enable them to be
compared to experimentally measured values.
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Table 1: Parameters used for each module in the integrate-and-fire simulations
NE 6400
NI 1600
r 0.1
w+ 2.1
wI 1.0
Next 800
νext 2.4 kHz
Cm (excitatory) 0.5 nF
Cm (inhibitory) 0.2 nF
gm (excitatory) 25 nS
gm (inhibitory) 20 nS
VL –70 mV
Vthr –50 mV
Vreset –55 mV
VE 0 mV
VI –70 mV
gAMPA,ext (excitatory) 2.08 nS
gAMPA,rec (excitatory) 0.104 nS
gNMDA (excitatory) 0.327 nS
gGABA (excitatory) 1.25 nS
gAMPA,ext (inhibitory) 1.62 nS
gAMPA,rec (inhibitory) 0.081 nS
gNMDA (inhibitory) 0.258 nS
gGABA (inhibitory) 0.973 nS
τNMDA,decay 100 ms
τNMDA,rise 2 ms
τAMPA 2 ms
τGABA 10 ms
α 0.5 ms−1
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Figure 1: Functional canonical microcircuit of the neocortex (see text). Recurrent collateral
connections (rc) are shown as a loop back to a particular population of cells, of which just
one neuron is shown. The dendrites are shown as thick lines above the cell bodies. It should
be noted that the dendrites of the superficial (L2 and L3) pyramidal cells do not descend
into the deep layers (L5, L6) of the neocortex. In primates the cortico-cortical feedforward
projection neurons are concentrated in L3; and the main cortico-cortical feedback projection
neurons are in Lower L5 (L5B), and there is weak cortico-cortical feedback from some L2
neurons. Some L6 cortico-thalamic neurons send a projection to L4. Further information is
provided in the text and by Rolls (2016).
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Figure 2: a. The probability of synaptic connections between pyramidal cells in different
laminae, based on data from Lefort et al (2009). The probability of synaptic inputs from a
neuron in any presynaptic lamina (the columns) to a neuron in a postsynaptic lamina (shown
as rows) can be read where the column intersects with a row. b. The overall strength of
the synaptic effects from neurons in one layer (the columns) to neurons in another layer (the
rows), based on data from Lefort et al (2009, Table 2). The overall strength was estimated
from the probability of synaptic connections between pyramidal cells in different laminae
weighted by (using a dot product) the strength of the synaptic connections measured by the
mean EPSP amplitude for the synaptic connections between the relevant layers.
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Figure 3: Schematic drawing of the cortical architecture simulated in Experiment 1 with a
discrete attractor network in the superficial layers connecting to a discrete attractor network in
the deep layers. One local patch or module or column of neocortex was modelled. Pyramidal
cells are represented by filled triangles, their dendrites are indicated by thick lines above the
cell body, and the axons are represented by thin lines. Synapses are present wherever an
axon crosses a dendrite. The superficial layers (2 and 3) were modelled as a fully connected
discrete attractor network, which connected via synapses of strength wSD to the network in
the deep layers also modelled as a fully connected discrete attractor network. The difference
between the two networks was that there was adaptation of the neuronal firing in the deep
layer network. Both networks were integrate-and-fire attractor networks with n possible
attractor states. Five populations of neurons, each implementing one of the attractor states
are signified by the five pyramidal cells drawn for each network. For the simulations described
here there were n=10 orthogonal attractor states in the each network, each implemented by
a population of neurons with strong excitatory connections between the neurons with value
w+ for the NMDA and AMPA synapses. There were Ns=1000 neurons in each network, of
which 0.8 were excitatory (pyramidal cells), and 0.2 were inhibitory (not illustrated).
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Figure 4: The architecture of a superficial or deep module containing one fully connected
discrete attractor network. The excitatory neurons are divided into N=10 selective pools
or neuronal populations S1–SN of which three are shown, S1, S2 and SN. The synaptic
connections have strengths that are consistent with associative learning. In particular, there
are strong intra-pool connection strengths w+. The excitatory neurons receive inputs from the
inhibitory neurons with synaptic connection strength winh=1. The other connection strengths
are 1. The integrate-and-fire spiking module contained 500 neurons, with 40 in each of the
10 non-overlapping excitatory pools, and 100 in the inhibitory pool IH. Each neuron in the
network also receives external Poisson inputs λext from 800 external neurons at a typical rate
of 3 Hz/synapse to simulate the effect of inputs coming from other brain areas.
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Figure 5: Effects of adaptation on the time course of the deep layer discrete attractor in Ex-
periment 1. Simulation of the operation of the superficial discrete attractor network (above)
and the deep discrete attractor network (below), both of which contained 800 excitatory
neurons. Time from 0 to 2.7 s is shown along the abscissa. Neurons 0–800 above are the
excitatory neurons in the 10 pools in the superficial module discrete attractor network. Neu-
rons 0–800 below are the excitatory neurons in the 10 pools in the deep module discrete
attractor network. The colour indicates the firing rate of each neuron, with the calibration
bar showing the rate in spikes/s measured over 100 ms epochs. After 500 ms of spontaneous
activity, at time 500–600 ms pool 5 of the superficial discrete attractor network received an
external input, and after a short period, it entered a high firing rate attractor state which
died off after the stimulus to pool 5 was removed. Via the connections from the superficial to
the deep module, neurons in the corresponding pool 5 of the deep discrete attractor network
started firing, showing that the deep network was operating as an attractor. However, with
the neuronal adaptation, the firing in the deep network continued for only approximately 800
ms. Without the neuronal adaptation the firing in the deep network continued indefinitely.
For parameters, see text. Additional parameters: w+ for deep attractor=2.2; AHPCaD =
1.0; inh0n = 1.00; inhS = 1.05; inhD = 1.07.
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Figure 6: Effects of adaptation on the time course of the deep layer discrete attractor in Ex-
periment 1. Simulation of the operation of the superficial discrete attractor network (above)
and the deep discrete attractor network (below), both of which contained 800 excitatory
neurons. Time from 0 to 2.7 s is shown along the abscissa. Neurons 0–800 above are the exci-
tatory neurons in the 10 pools in the superficial module discrete attractor network. Neurons
0–800 below are the excitatory neurons in the 10 pools in the deep module discrete attractor
network. The colour indicates the firing rate of each neuron, with the calibration bar showing
the rate in spikes/s measured over 100 ms epochs. After 500 ms of spontaneous activity,
at time 500–700 ms pool 5 of the superficial discrete attractor network received an external
input, and after a short period, it entered a high firing rate attractor state which continued
indefinitely after the stimulus to pool 5 was removed because its w+ was 2.05. Via the con-
nections from the superficial to the deep module, neurons in the corresponding pool 5 of the
deep discrete attractor network started firing. However, with the neuronal adaptation, the
firing in the deep network continued for only approximately 700 ms. Without the neuronal
adaptation the firing in the deep network continued indefinitely. For parameters, see text.
Additional parameters: w+ for deep attractor=2.2; AHPCaD = 0.4; inh0n = 1.00; inhS =
1.02; inhD = 1.08.
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Figure 7: Schematic drawing of the cortical architecture simulated in Experiment 2. One
local patch or module or column of neocortex was modelled. Pyramidal cells are represented
by filled triangles, their dendrites are indicated by thick lines above the cell body, and the
axons are represented by thin lines. Synapses are present in the superficial layers wherever
an axon crosses a dendrite; and in the deep layers by where the arrows at the end of each
axon point to a dendrite. The superficial layers (2 and 3) were modelled as a fully connected
discrete attractor network. This is an integrate-and-fire attractor network with n possible
attractor states. Five populations of neurons, each implementing one of the attractor states
are signified by the five pyramidal cells drawn. For the simulations described here there were
n=10 orthogonal attractor states in the superficial layer of the module, each implemented by
a population of neurons with strong excitatory connections between the neurons with value
w+=2.1 for the NMDA and AMPA synapses. There were always Ns=500 neurons in the
superficial layer of the module, of which 0.8 were excitatory (pyramidal cells), and 0.2 were
inhibitory (not illustrated). The deep layers (layer 5) were modelled as an integrate-and-
fire continuous attractor network. The main difference was that the (excitatory) recurrent
collaterals connected more strongly to their neighbours than to more distant neurons, as
shown schematically. The number of neurons in the deep, continuous attractor, network was
typically N=500 neurons, but in some investigations was set to N=125, 250, 1000 or 1500
neurons. Each of the n=10 local regions of the deep layers received inputs from one of the n
discrete attractor populations of neurons in the superficial layers, in a way that could be set
up by self-organizing topographic map formation.
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Figure 8: A smooth transition in the deep continuous attractor network. Simulation of
the operation of the superficial discrete attractor network (above) and the deep continuous
attractor network (below). Time from 0 to 4 s is shown along the abscissa. Neurons 0–400
above are the 10 pools in the superficial module discrete attractor network. Neurons 0–400
below are the excitatory neurons in the deep module continuous attractor network. The
colour indicates the firing rate of each neuron, with the calibration bar showing the rate
in spikes/s measured over 100 ms epochs. At time 500–1500 ms pool 5 of the superficial
discrete attractor network received an external input, and after a short period, it entered
a high firing rate attractor state which died off after the stimulus to pool 5 was removed.
Via the connections from the superficial to the deep module, neurons in the corresponding
part of the continuous attractor network started firing. The width (standard deviation) of
the Gaussian profile for the recurrent connectivity synaptic strength was 60 neurons. After a
delay of 200 ms, pool 7 was activated by an external input, from time=1700–2700 ms. The
discrete attractor pool 7 entered a high firing rate attractor state, which died off some time
after the stimulus to pool 7 was removed. The figure shows that the deep continuous attractor
packet or bubble of activity moved somewhat continuously from its position when it was being
activated by the input from superficial pool 5 to the position when it was being activated by
the input from superficial pool 7. The centre of gravity of the deep (continuous attractor)
pool is shown by the black line. The figure shows that no such continuous transition occurred
in the superficial, discrete attractor, network. The spontaneous firing rate of the neurons in
the deep layer not in the packet of activity was inhibited in this and the following figures by
inhibition received through the inhibitory neurons from the excitatory neurons firing fast in
the continuous attractor.
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Figure 9: A jump transition in the deep continuous attractor network. Simulation of the op-
eration of the superficial discrete attractor network (above) and the deep continuous attractor
network (below). Time from 0 to 4 s is shown along the abscissa. Neurons 0–400 above are
the 10 pools in the superficial module discrete attractor network. Neurons 0–400 below are
the excitatory neurons in the deep module continuous attractor network. The colour indicates
the firing rate of each neuron, with the calibration bar showing the rate in spikes/s measured
over 100 ms epochs. At time 500–1500 ms pool 3 of the superficial discrete attractor network
received an external input, and after a short period, it entered a high firing rate attractor
state which died off after the stimulus to pool 3 was removed. Via the connections from the
superficial to the deep module, neurons in the corresponding part of the continuous attrac-
tor network started firing. The width (standard deviation) of the Gaussian profile for the
recurrent connectivity synaptic strength was 60 neurons. After a delay of 200 ms, discrete
superficial pool 7 was activated by an external input, from time=1700–2700 ms. The discrete
attractor pool 7 entered a high firing rate attractor state, which died off some time after
the stimulus to pool 7 was removed. The figure shows that the deep continuous attractor
packet or bubble of activity jumped without a continuous transition from its position when
it was being activated by the input from superficial pool 3 to the position when it was being
activated by the input from superficial pool 7. The centre of gravity of the deep (continuous
attractor) pool is shown by the black line.
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Figure 10: Stability of the continuous attractor network with stochastic integrate-and-fire
neurons. Simulation of the operation of the superficial discrete attractor network (above) and
the deep continuous attractor network (below) for a case where there is a relatively small
number of excitatory neurons, 200, in the deep attractor network. Time from 0 to 14 s is
shown along the abscissa. Neurons 0–400 above are the 10 pools in the superficial module
discrete attractor network. Neurons 0–200 below are the excitatory neurons in the deep
module continuous attractor network. The colour indicates the firing rate of each neuron,
with the calibration bar showing the rate in spikes/s measured over 100 ms epochs. At time
500–1500 ms pool 5 of the superficial discrete attractor network received an external input,
and after a short period, it entered a high firing rate attractor state which died off after the
stimulus to pool 5 was removed. Via the connections from the superficial to the deep module,
neurons in the continuous attractor network started firing. The width (standard deviation)
of the Gaussian profile for the recurrent connectivity synaptic strength was 15 neurons. The
centre of gravity of the deep (continuous attractor) pool is shown by the black line. The figure
shows that there was some short-term noise in the continuous attractor network, and some
long-term drift over the 12 s period in which it received no external input. (Target=0.35)
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Figure 11: Stability of the continuous attractor network with stochastic integrate-and-fire
neurons. The mean and standard deviation of the movements of the centre of gravity of the
packet of activity in the continuous attractor network from the beginning to the end of the 12
s period in which it received only spontaneous firing from the superficial network. The units
are in neurons by which the absolute value of the centre of gravity moved. The X-axis shows
the number of excitatory neurons in the continuous attractor network. The plot shows that
there is little effect of the size of the continuous attractor network on the drift produced by
noise due to the almost Poisson firing times of the neurons. This was because the packet of
activity involved the same number of active neurons when the network was scaled up.
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Figure 12: Effects of adaptation on a continuous attractor network. Simulation of the oper-
ation of the superficial discrete attractor network (above) and the deep continuous attractor
network (below). Time from 0 to 4 s is shown along the abscissa. Neurons 0–400 above are
the 10 pools in the superficial module discrete attractor network. Neurons 0–400 below are
the excitatory neurons in the deep module continuous attractor network. The colour indicates
the firing rate of each neuron, with the calibration bar showing the rate in spikes/s measured
over 100 ms epochs. At time 500–1500 ms pool 5 of the superficial discrete attractor network
received an external input, and after a short period, it entered a high firing rate attractor
state which died off after the stimulus to pool 5 was removed. Via the connections from the
superficial to the deep module, neurons in the continuous attractor network started firing.
The width (standard deviation) of the Gaussian profile for the recurrent connectivity synaptic
strength was 15 neurons. The figure shows that when it was no longer clamped by the firing
in the superficial network, the deep continuous attractor packet or bubble of activity drifted
continuously from its position when it was being activated by the input from superficial pool
5 across the space mapped by the continuous attractor network. The centre of gravity of the
deep (continuous attractor) pool is shown by the black line.
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