In a recent study the initial rise of the mutual information between the
firing rates of N neurons and a set of p discrete stimuli has been analytically
evaluated, under the assumption that neurons fire independently of one another
to each stimulus and that each conditional distribution of firing rates is
gaussian. Yet real stimuli or behavioural correlates are high-dimensional, with
both discrete and continuously varying features.Moreover, the gaussian
approximation implies negative firing rates, which is biologically implausible.
Here, we generalize the analysis to the case where the stimulus or behavioural
correlate has both a discrete and a continuous dimension. In the case of large
noise we evaluate the mutual information up to the quadratic approximation as a
function of population size. Then we consider a more realistic distribution of
firing rates, truncated at zero, and we prove that the resulting correction,
with respect to the gaussian firing rates, can be expressed simply as a
renormalization of the noise parameter. Finally, we demonstrate the effect of
averaging the distribution across the discrete dimension, evaluating the mutual
information only with respect to the continuously varying correlate.Comment: 20 pages, 10 figure