4,118 research outputs found

    Properties of pedestrians walking in line: Stepping behavior

    Full text link
    In human crowds, interactions among individuals give rise to a variety of self-organized collective motions that help the group to effectively solve the problem of coordination. However, it is still not known exactly how humans adjust their behavior locally, nor what are the direct consequences on the emergent organization. One of the underlying mechanisms of adjusting individual motions is the stepping dynamics. In this paper, we present first quantitative analysis on the stepping behavior in a one-dimensional pedestrian flow studied under controlled laboratory conditions. We find that the step length is proportional to the velocity of the pedestrian, and is directly related to the space available in front of him, while the variations of the step duration are much smaller. This is in contrast with locomotion studies performed on isolated pedestrians and shows that the local density has a direct influence on the stepping characteristics. Furthermore, we study the phenomena of synchronization -walking in lockstep- and show its dependence on flow densities. We show that the synchronization of steps is particularly important at high densities, which has direct impact on the studies of optimizing pedestrians flow in congested situations. However, small synchronization and antisynchronization effects are found also at very low densities, for which no steric constraints exist between successive pedestrians, showing the natural tendency to synchronize according to perceived visual signals.Comment: 8 pages, 5 figure

    Frozen shuffle update for an asymmetric exclusion process on a ring

    Full text link
    We introduce a new rule of motion for a totally asymmetric exclusion process (TASEP) representing pedestrian traffic on a lattice. Its characteristic feature is that the positions of the pedestrians, modeled as hard-core particles, are updated in a fixed predefined order, determined by a phase attached to each of them. We investigate this model analytically and by Monte Carlo simulation on a one-dimensional lattice with periodic boundary conditions. At a critical value of the particle density a transition occurs from a phase with `free flow' to one with `jammed flow'. We are able to analytically predict the current-density diagram for the infinite system and to find the scaling function that describes the finite size rounding at the transition point.Comment: 16 page

    Antibunched photons emitted by a dc-biased Josephson junction

    Get PDF
    We show experimentally that a dc biased Josephson junction in series with a high-enough-impedance microwave resonator emits antibunched photons. Our resonator is made of a simple microfabricated spiral coil that resonates at 4.4 GHz and reaches a 1.97kΩ characteristic impedance. The second order correlation function of the power leaking out of the resonator drops down to 0.3 at zero delay, which demonstrates the antibunching of the photons emitted by the circuit at a rate of 6×10^7 photons per second. Results are found in quantitative agreement with our theoretical predictions. This simple scheme could offer an efficient and bright single-photon source in the microwave domain

    The REVERE project:Experiments with the application of probabilistic NLP to systems engineering

    Get PDF
    Despite natural language’s well-documented shortcomings as a medium for precise technical description, its use in software-intensive systems engineering remains inescapable. This poses many problems for engineers who must derive problem understanding and synthesise precise solution descriptions from free text. This is true both for the largely unstructured textual descriptions from which system requirements are derived, and for more formal documents, such as standards, which impose requirements on system development processes. This paper describes experiments that we have carried out in the REVERE1 project to investigate the use of probabilistic natural language processing techniques to provide systems engineering support

    Intersection of two TASEP traffic lanes with frozen shuffle update

    Full text link
    Motivated by interest in pedestrian traffic we study two lanes (one-dimensional lattices) of length LL that intersect at a single site. Each lane is modeled by a TASEP (Totally Asymmetric Exclusion Process). The particles enter and leave lane σ\sigma (where σ=1,2\sigma=1,2) with probabilities ασ\alpha_\sigma and ÎČσ\beta_\sigma, respectively. We employ the `frozen shuffle' update introduced in earlier work [C. Appert-Rolland et al, J. Stat. Mech. (2011) P07009], in which the particle positions are updated in a fixed random order. We find analytically that each lane may be in a `free flow' or in a `jammed' state. Hence the phase diagram in the domain 0≀α1,α2≀10\leq\alpha_1,\alpha_2\leq 1 consists of four regions with boundaries depending on ÎČ1\beta_1 and ÎČ2\beta_2. The regions meet in a single point on the diagonal of the domain. Our analytical predictions for the phase boundaries as well as for the currents and densities in each phase are confirmed by Monte Carlo simulations.Comment: 7 figure
    • 

    corecore