1,168 research outputs found

    Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline)

    Get PDF
    Measurements of the effect of a magnetic field on the light output and current through an organic light emitting diode made with deuterated aluminium tris(8-hydroxyquinoline) have shown that hyperfine coupling with protons is not the cause of the intrinsic organic magnetoresistance. We suggest that interactions with unpaired electrons in the device may be responsible.Comment: Submitte

    Contact pressure prediction in sheet metal forming using finite element analysis

    Full text link
    Tool wear has become a significant issue associated with the forming of high strength sheet steels in the automotive industry. In order to combat this problem, recent research has been devoted to utilizing the contact results obtained from current sheet metal forming software predictions, in order to develop/apply tool wear models or tool material selection criteria for use in the stamping plant. This investigation aims to determine whether a specialized sheet metal forming software package can correctly capture the complex contact conditions that occur during a typical sheet metal stamping process. The contact pressure at the die radius was compared to results obtained using a general-purpose finite element software package, for a simple channel-forming process. Although some qualitative similarities between the two predictions were observed, it was found that significant differences in the magnitude and distribution of the contact pressure exists. The reasons for the discrepancies in results are discussed with respect to the simplifications and assumptions adopted in the finite element model definitions, and with regards to other results available in the literature.<br /

    Field Instrumentation and Analysis of the Tuttle Creek Bridge

    Get PDF
    Fatigue cracking has been an extensive problem for many steel bridges designed prior to the identification of fatigue-prone details. Distortion in bridges coupled with stress concentrations within bridge components can eventually lead to crack initiation. The Tuttle Creek Bridge, built in 1962, has developed fatigue cracks like many older steel bridges. The structure is a 5,350 ft. long, plate-girder bridge with two girders supporting a non-composite concrete deck. The majority of the cracks on the bridge are found in the upper web-gap region, which lies between the vertical connection stiffener and the upper flange. Cracks also have occurred in the transverse welds attaching the lateral gusset plates to the lower flange. Both these crack types are believed to be caused by differential deflection of the two girders. In 1986, the bridge was retrofitted to prevent further cracking. Cracking, however, continued after the 1986 retrofit. In 2000, the Kansas Department of Transportation retained the services of the University of Kansas to investigate the fatigue cracking. Finite element models were created to estimate the stresses in the upper web-gap regions in order to determine a proper repair plan. The recommended repair scheme was to positively attach the connection stiffener to the upper flange, which was also successfully performed in similar web-gap repairs. The University of Kansas also was retained to perform two load tests on the bridge to investigate the effectiveness of the repair. The first load test, which this report entails, examined the stresses within the fatigued regions prior to retrofit. A second test will be conducted after the repairs have been performed. Measurements taken during both tests will be compared to determine the fatigue improvement within the structure. Also, information gathered during the first test will also provide insight to improving the finite element models. This report includes information about the Tuttle Creek Bridge and a summary of its structural deficiencies. Details of the gage installation and load testing are provided. Stresses induced by the truck loadings are presented in addition to the inferences from the measurements taken

    Combined Chlorophyll Fluorescence and Transcriptomic Analysis Identifies the P3/P4 Transition as a Key stage in Rice Leaf Photosynthetic Development

    No full text
    Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective

    A multi-parametric flow cytometric assay to analyze DNAā€“protein interactions

    Get PDF
    Interactions between DNA and transcription factors (TFs) guide cellular function and development, yet the complexities of gene regulation are still far from being understood. Such understanding is limited by a paucity of techniques with which to probe DNAā€“protein interactions. We have devised magnetic protein immobilization on enhancer DNA (MagPIE), a simple, rapid, multi-parametric assay using flow cytometric immunofluorescence to reveal interactions among TFs, chromatin structure and DNA. In MagPIE, synthesized DNA is bound to magnetic beads, which are then incubated with nuclear lysate, permitting sequence-specific binding by TFs, histones and methylation by native lysate factors that can be optionally inhibited with small molecules. Lysate proteinā€“DNA binding is monitored by flow cytometric immunofluorescence, which allows for accurate comparative measurement of TF-DNA affinity. Combinatorial fluorescent staining allows simultaneous analysis of sequence-specific TF-DNA interaction and chromatin modification. MagPIE provides a simple and robust method to analyze complex epigenetic interactions in vitro
    • ā€¦
    corecore