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ABSTRACT 
 
 Fatigue cracking has been an extensive problem for many steel bridges 

designed prior to the identification of fatigue-prone details.  Distortion in bridges 

coupled with stress concentrations within bridge components can eventually lead to 

crack initiation.  The Tuttle Creek Bridge, built in 1962, has developed fatigue cracks 

like many older steel bridges.  The structure is a 5,350 ft. long, plate-girder bridge 

with two girders supporting a non-composite concrete deck.   

The majority of the cracks on the bridge are found in the upper web-gap 

region, which lies between the vertical connection stiffener and the upper flange.  

Cracks also have occurred in the transverse welds attaching the lateral gusset plates to 

the lower flange.  Both these crack types are believed to be caused by differential 

deflection of the two girders.   

In 1986, the bridge was retrofitted to prevent further cracking.  Cracking, 

however, continued after the 1986 retrofit. In 2000, the Kansas Department of 

Transportation retained the services of the University of Kansas to investigate the 

fatigue cracking.  Finite element models were created to estimate the stresses in the 

upper web-gap regions in order to determine a proper repair plan.  The recommended 

repair scheme was to positively attach the connection stiffener to the upper flange, 

which was also successfully performed in similar web-gap repairs.   

The University of Kansas also was retained to perform two load tests on the 

bridge to investigate the effectiveness of the repair.  The first load test, which this 

report entails, examined the stresses within the fatigued regions prior to retrofit.  A 

second test will be conducted after the repairs have been performed.  Measurements 

taken during both tests will be compared to determine the fatigue improvement within 

the structure.  Also, information gathered during the first test will also provide insight 

to improving the finite element models. 

This report includes information about the Tuttle Creek Bridge and a 

summary of its structural deficiencies.  Details of the gage installation and load 
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testing are provided.  Stresses induced by the truck loadings are presented in addition 

to the inferences from the measurements taken.  
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CHAPTER 1   INTRODUCTION 
 

The Tuttle Creek Bridge was constructed in 1962 to cross the Tuttle Creek 

Reservoir, which is located in north-central Kansas.  The bridge, as shown in Figure 

1-1, is a two-girder, pin and hanger system with 30 spans totaling a length of 5,350 ft.  

The non-composite deck is composed of two – 12 ft. lanes with two – 2 ft. shoulders.  

A cross-sectional view of the bridge can be found in Figure 1-2, while profile and 

plan views can be seen in Figure 1-3 and 1-4, respectively.  The two haunched girders 

directly support the weight of the deck.  The bridge is located in a relatively low 

traffic area, with a daily traffic count of 520 vehicles per day and 13% truck traffic.  

The bridge lies in a very flat region, where it is exposed to high winds from the 

Kansas plains.   

The Tuttle Creek Bridge has developed many fatigue cracks due to distortion-

induced stresses.  These fatigue cracks pose a safety concern to the public, since the 

bridge is considered fracture-critical.  With only two girders supporting the deck, the 

bridge is a non-redundant structure.  Failure of any structural component would lead 

to complete destruction of the bridge.   

The web-gap region, found at each diaphragm, was the primary site of crack 

initiation.  The web-gap region is between the girder flange/web fillet weld and the 

top of the connection stiffener weld.  Crack prevention repairs were performed in 

1986, however, recent inspection reports have shown continuing crack initiation and 

propagation.  Cracks also have occurred in the weld attaching the lateral gusset plate 

to the lower flange.  Successful repairs were performed on the plates adjacent to the 

piers, however the remaining unrepaired plates have developed new cracks.      

Two fracture-critical inspection reports were made available for the 

University of Kansas research staff.  Both reports dealt exclusively with the steel 

superstructure.  The first report, dated August 28, 2000, consisted of tables detailing 

crack type and location.  This report put most of its emphasis on the web-gap 

cracking, with no mention of the gusset plate fatigue problem.  The second report, 
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dated September 9, 2002, also included gusset plate crack locations.  The amount of 

information found in these reports offered researchers an opportunity to survey each 

span and determine any patterns of the fatigue cracks.   

In 2000, the University of Kansas was retained by the Kansas Department of 

Transportation to perform a finite element model of the web-gap regions on the 

bridge.  Yuan Zhao, a former KU graduate student, investigated the theoretical 

effectiveness of different retrofit measures. 

Two field investigations were recommended by KU to check the accuracy of 

the finite element model and to measure the effects of the repair.  The first 

investigation, performed prior to retrofit, would provide a standard to compare 

against the finite element model.  This study would also investigate other fatigue-

prone details, such as the gusset plates and the longitudinal stiffeners.  Information 

gathered from these areas will be used to improve future theoretical models.  The 

second investigation will be performed after the retrofit measures have been 

accomplished.  The results of this study will be compared with results from the first 

one in order to examine the structural improvement due to the retrofits.  

This report addresses the results of the first field investigation only.  The 

fatigue history of the bridge is examined with both the location and patterns of cracks 

displayed.  For the web-gap region, a comparison of stress values predicted by the 

finite element model and actual field-tested values are presented.  Results of other 

components investigated, including gusset plate cracking, longitudinal stiffener 

retrofitting, and vibration testing also are provided.  The data obtained from this 

report is organized to provide helpful information when creating finite element 

models and for comparison with post-retrofit results.   
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CHAPTER 2 FATIGUE HISTORY 
 

The Tuttle Creek Bridge was designed before fatigue-prone details were 

properly identified.  The most common oversight was distortion-induced fatigue 

cracking.  The deflection of certain elements of a structure can cause high secondary 

stresses, which can lead to crack initiation.  The primary cause of fatigue cracking in 

the Tuttle Creek Bridge is due to differential deflection of the two primary girders.  

The differential deflection causes secondary stresses at the diaphragm locations.  

Locations investigated due to high stress concentrations are located in the web-gap 

region, along the lateral gusset plates, and the ends of the longitudinal stiffeners.    

Additional repairs to the Tuttle Creek Bridge, including replacement of the pin 

and hangers and repair of web field splices, are also planned, but they are beyond the 

scope of this study. 

 

2.1   Web-Gap Cracking 

The majority of cracking in the Tuttle Creek Bridge is within the web-gap 

region of the girders.  The web-gap region is a 1 x 1 in. diagonal clip from the top and 

bottom of the connection stiffener to allow for the fillet weld of the primary member 

to be continuous, as seen in Figures 2-1 and 2-2.  Unfortunately, this cope creates 

high stress concentrations in the web that can initiate fatigue cracking.  Two types of 

cracks have been observed in the upper web-gap: weld tears and horizontal cracks.    

 

2.1.1   Cracking Patterns 

Two distinct cracking patterns are found in the web-gap region.  Figure 2-3 

shows a drawing of the cracking patterns, while Figure 2-4 shows an actual picture of 

the cracking.  The most common cracking pattern is a weld tear.  The weld tears 

begin at the weld connecting the stiffener to the girder web.  The stiffener is welded 

to the primary girder web with 4 in. fillet welds at each end and 6 in. welds spaced at 

12 in. between the end welds.  The cracks propagate down the top 4 in. weld 
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connecting the upper portion of the stiffener to the web.  Some weld tears have 

tapered off from the fillet weld and into the web of the girder.  Many of the 4 in. top 

intermittent welds on the stiffener have been broken completely by the weld tears.  A 

total of 379 weld tears have been found in the bridge. 

Another frequent cracking pattern is horizontal cracking.  The horizontal 

cracks are found at the bottom of the fillet weld connecting the upper flange to the 

web of the girder.  The cracks are located on both the interior and exterior sides of the 

girders.  Exterior horizontal cracks are found less frequently than the similar interior 

horizontal cracks.  Only 13 exterior, horizontal cracks have been found, as opposed to 

291 interior, horizontal cracks. 

 
2.1.2   Cracking Locations 

The inspection reports revealed helpful information concerning the web-gap 

cracking problem.  Surveys of each span indicated that web-gap cracks were not more 

or less abundant for any particular span.  Full spans compared to hinged spans did not 

show any recognizable patterns.  However, the comparison of diaphragm locations 

did indicate patterns for the cracking.  Interior horizontal cracks showed a bell-shaped 

curve distribution, with larger number of cracks appearing in the middle diaphragms, 

as shown in Figures 2-5 and 2-7.  Weld tears displayed a rather constant development 

regardless of diaphragm location, as shown in Figures 2-6 and 2-8.   

 
2.1.3   Source of Cracking 

The primary fatigue design problem with the Tuttle Creek Bridge is the lack 

of attachment of the connection stiffener to the tension flange, as shown in Figure 2-

9.  Past engineers believed that having transverse welds on the tension girder would 

initiate cracking.  Unknowingly, they produced a region of high stress concentration 

in the web-gap region.  Experience has shown that the web-gap region is much more 

fatigue-prone than the proposed tension flange welds.  As a result, many older steel 

bridges have experienced web-gap cracking.  New bridges, with the exception of 

heavily skewed bridges, do not have this problem since current design practice 
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requires positive attachment of the connection stiffener to the flange (AASHTO 

LRFD, 2004).  Due to the abundance of this type of cracking, retrofitting of the web-

gap has been a focal point of steel bridge research.  Details of experiments focusing 

on the web-gap region of steel bridges can be found in Appendix A.   

Web-gap cracking is a result of differential deflection of girders.  When the 

braces in the diaphragms “pull” on the connection stiffener due to the varying 

deflections, the web-gap undergoes double-curvature bending.  Figure 2-10 

demonstrates the pulling of the diaphragm braces due to loading from a vehicle.  

Because this detail can quickly lead to crack initiation, AASHTO has labeled this 

design detail a fatigue category C (AASHTO LFRD, 2004).   

Since the diaphragms cause the web-gap cracking, these cracks only occur at 

diaphragm locations along the girder.  Two web-gap regions, an upper and lower, are 

located on each diaphragm connection.  For the Tuttle Creek Bridge, only upper web-

gap cracks have been found.  The absence of lower web-gap cracks can be accounted 

for by the relative flexibility of the lower flange.  While the concrete decking rigidly 

holds the upper flange, the bottom flange is free to rotate when loaded by the 

diaphragm bracing.  The freedom to rotate of the lower flange prevents higher 

stresses from being developed in the lower web-gap.  This difference explains why 

web-gap cracks have only developed in the upper gap region, while no cracking of 

the bottom flange web-gap has been located to date.   

 

2.1.4   Crack Repairs 

 In 1986, a retrofit strategy of increasing the web-gap was performed.  For the 

1986 repair, the connection stiffeners were cut 1 in. below the termination of the 

existing weld tears.  A 0.5 in. radius was placed at the end of the cut.  The radial cut 

was supposed to reduce stress concentrations from initiating a new crack, however, 

cracks continued to grow in this region.         

In addition to increasing the web-gap length during the 1986 retrofit, 0.75 in. 

diameter stop holes were drilled at the tips of the horizontal cracks.  Ideally, the holes 
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would stop crack propagation, however, the horizontal cracks reinitiated after the 

retrofit.  

 KDOT recognized this problem and requested a study of the web-gap region.  

Yuan Zhao, a former KU graduate student, created finite element models of the web-

gap region for the Tuttle Creek Bridge.  She investigated various retrofit strategies, as 

summarized in Appendix B.  Her predictions were compared with results of this load 

test.   

 

2.2   Gusset Plate Cracking 

In addition to web-gap cracking, the Tuttle Creek Bridge also has fatigue 

cracks within the gusset plate connection.  The gusset plates, which are fillet welded 

to the lower flange, connect the lateral bracing of the girders.  As shown in Figure 2-

11, three structural tees enter the connection:  two members cross diagonally, while 

one spans perpendicular to the girders.  The lateral bracing is believed to have caused 

cracking of the gusset plate connection.   

Tack welds were placed on the underside of the gusset plate where it 

overhangs the girder lower flange.  Many of these tack welds have broken.  The 

broken tack welds due not pose a structural danger to the bridge, unless cracks extend 

into the lower flange.  Defects in the tension flange could initiate significant crack 

growth.    

 

2.2.1   Cracking Patterns 

Two types of gusset plate cracks have developed: cracking of the fillet weld 

perpendicular with the girder and tack welds parallel with the girder.  Figure 2-11 

shows a drawing of the cracking patterns, while Figure 2-12 displays an actual fillet 

weld crack.   

The most problematic gusset plate crack found on the Tuttle Creek Bridge is 

cracking of the fillet weld connecting the gusset plate with the primary girders.  The 

fillet welds extend symmetrically across the back and extend six inches along the 
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sides of the gusset plate.  The cracks are found at the termination of the weld along 

the sides of the plate.  The cracks are assumed to be only in the weld material, 

however, their continued propagation could enter into the lower tension flange.  A 

total of 20 cracks have been found in this AASHTO Category E detail. 

 

2.2.2   Crack Locations 

The gusset plate cracks are found throughout the bridge, without any 

concentration on any particular spans.  A survey of the diaphragm locations revealed 

that most of the gusset plate cracking was confined to the second diaphragm, labeled 

F3 in Figure 1-4.  The distribution of the cracks between the diaphragms is displayed 

in Figure 2-13.  The first diaphragm from the pier, labeled F4, displayed no evidence 

of fillet weld cracking, since these locations had been retrofitted in 1986.  The cracks 

are equally dispersed on each side of the gusset plates.  In other words, the sides 

closer to the pier were not more or less likely to crack than the opposite side.   

 

 2.2.3   Sources of Cracking 

As opposed to the web-gap cracking, the source of the gusset plate cracks is in 

debate.  One theory is the cracks have developed from the bending stress of the 

girder, a solely load-based fatigue.  Figure 2-14 shows a diagram of this type of 

fatigue source.  Another possibility is due to distortion of the girder causing high 

compressive stresses in the diagonal bracing.  The lateral bracing buckles upward 

along its weak axis causing a prying action on the gusset plate.  A drawing of this 

theory is presented in Figure 2-15.  Another theory is racking of the gusset plate due 

to loads from the diagonal bracing.  The twisting of the gusset plate would cause 

cracking to develop at the ends of the fillet weld.  Figure 2-16 shows this theory of 

plate distortion. 
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2.3   Longitudinal Stiffener Cracking 

The Tuttle Creek Bridge utilizes longitudinal web stiffeners in regions of high 

compressive stress.  Stiffeners are located in the compressive region of both the 

positive and negative moment regions.  The negative moment stiffeners extend 

symmetrically 81 ft from each pier, while the positive moment stiffeners extend 56 ft 

symmetrically about the centerline of typical spans.   

 

2.3.1   Cracking Pattern 

Longitudinal stiffeners have developed cracking in the butt welds of the 

stiffener splices.  The cracks are found only in the weld material.  Figure 2-17 shows 

a crack in the longitudinal stiffener.  Details of the longitudinal stiffener cracks were 

not described in the inspection reports.  The inspectors mentioned these cracks, but 

did not detail the exact locations of the cracking. Therefore, a survey similar to those 

in the web-gap and gusset plate regions could not be performed. 

 
2.3.2   Source of Cracking 

A defect in the weld was the probable source of crack initiation in the 

stiffener.  Stress cycles in the stiffener due to bending of the girder propagated the 

crack.  Even during compression stress cycles, residual stresses would transform the 

stress cycles from compressive to tensile.  The resulting tensile cycles would quickly 

propagate a crack.   

 

 

 

 
 
 
 
 
 
 
 

 11 



 
 
 
 
 
 
 

Detail A

Girder Web

∆
Connection Plate

M

Small Web Gap

Girder Top Flange

 
Figure 2-1  Web-Gap Region 

 
 

Figure 2-2  Web-Gap Region (Picture) 
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Figure 2-3  Web-Gap Cracking Patterns 
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Figure 2-6  Weld Tear Survey (Full Spans) 
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Figure 2-5  Horizontal Cracking Survey (Full Spans) 
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Figure 2-7  Horizontal Cracking Survey (Hinged Spans) 
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Figure 2-8  Weld Tear Survey (Hinged Spans) 
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Figure 2-10  Differential Deflection of Girders 
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Figure 2-9  Distortion in the Web-Gap Region 
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Figure 2-11  Gusset Plate Cracking Patterns 

 
 

Figure 2-12  Gusset Plate Cracking Patterns (Picture) 
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Figure 2-14  Gusset Plate Cracking Source (Bending Stresses) 
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Figure 2-13  Gusset Plate Cracking (Full Spans) 
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Figure 2-16  Gusset Plate Cracking Source  (Racking of Gusset Plate) 

Figure 2-15  Gusset Plate Cracking Source (Distortion of Lateral Brace) 
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Figure 2-17  Longitudinal Stiffener Crack 
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CHAPTER 3 INSTALLATION & TESTING 
 

In order to estimate the stresses prior to retrofit, strain gages were installed on 

the Tuttle Creek Bridge.  Strain gages have commonly been used to experimentally 

determine the stresses in various regions of steel bridges.  Details of previous load 

tests performed on in-service structures can be found in Appendix A. 

The positions of the gages were chosen after reviewing other researchers’ 

work.  For this test, only 23 gages could be used, since that was the maximum 

number of channels available on the data acquisition system.  Gages were installed in 

the web-gap region to measure vertical bending stresses.  Additional gages were 

placed on the diaphragm bracing that is loading the web-gap region.  The degree of 

composite action in the bridge was measured by two gages.  Gages were also used to 

investigate the gusset plate cracking problem.  One gage measured the strain prior to 

a longitudinal stiffener retrofit. 

Vibration testing, though use of accelerometers, was also a component of the 

field-testing.  Accelerometers were placed on the midspan and quarterspan of both 

girders.  Results from the vibration testing can be found in Appendix D.  Previous 

work in bridge vibration studies, in addition to strain gage research, can be found in 

Appendix A.   

After reviewing the inspection reports and discussing logistics of the test with 

KDOT workers, span 29 was chosen to be tested.  Span 29 was the first full span 

away from the easternmost abutment.  The proximity to the abutment allowed a 

generator, which powered the data acquisition equipment, to be placed on the ground, 

thus reducing vibrations on the bridge.  All gages were placed on girder A, the 

southernmost girder.  This girder had an average number of fatigue cracks as 

compared to the others.  The effects of traffic loading were assumed to be 

symmetrical.  In other words, the effects of the eastbound traffic on girder A would 

be the same as the effects of westbound traffic on girder B.        
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3.1  Test Preparation 

In addition to reviewing previous test methods, test setup began with two 

visits to the bridge.  The underside of the bridge was studied at the abutments from a 

maintenance road.  Key points to the testing strategy, such as the traffic control 

procedures and the location of the data acquisition system, were determined.  The 

visitations prevented any surprises when actual testing occurred.   

Data collection equipment was checked prior to the load test.  The instrument 

wires were cut to length and soldered appropriately.  The gages were taped to a rigid, 

plastic sheet for easy installation.  All supplies and equipment were neatly organized 

in advance of the installation.  Further details of test preparation can be referenced in 

Appendix C. 

            

3.2  Instrument Installation 

Installation of the instruments was accomplished by using a Mark IV snooper 

provided by KDOT.  The snooper, which was operated by KDOT personnel, was able 

to maneuver through the bracing and reach remote areas on the bridge.  The snooper 

boom, shown in Figure 3-1, was composed of two baskets, one for the operator and 

one for the gage installer.   

Along with providing the snooper, KDOT also provided traffic control for the 

installation.  Two trucks were stationed at opposite ends of the snooper.  Personnel 

for the gage installation included:  two snooper operators, two gage installers, and 

four traffic control experts.   

Installation of the gages lasted three days, with work performed from 8:00 

AM to 4:30 PM.  In addition to installing gages, work performed also included setting 

up the data acquisition system on top of pier 29 and running of wires under the 

bridge.  Figure 3-2 displays the testing station mounted under the bridge.  Further 

details of instrument installation and data acquisition setup can be found in Appendix 

C of this report.  When the gages and accelerometers were fully installed, a test run 

was performed to ensure all gages were working properly.   
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3.3  Test Setup 

After installation of the gages, field-testing was performed.  Testing was 

accomplished by using the following personnel:  four traffic controllers, a data 

collector, a truck driver, and a radio operator.  The radio operator communicated to 

the data collector, who was under the bridge as shown in Figure 3-3, when to start and 

stop the data acquisition system.  Maintenance workers stationed at opposite ends of 

the bridge controlled ambient traffic.  The bridge was first closed to allow for 

calibration of the system.  The truck driver was instructed to maintain the proper 

speeds by the radio operator.  Ambient traffic was stopped during data collection, but 

released after each truck passing.   

 

3.4  Data Collection 

The length for data collection extended from the bridge abutment to the first 

expansion joint, a total of 552 ft.  The radio operator recorded the time of the truck to 

travel from the abutment to the first joint to check the speed of the truck.  A ten 

second pre-trigger was created to ensure recording of important data.  Strain gages 

readings were taken at a frequency of 200 Hz.  After each truck pass, the collected 

data was checked for any errors by using macros in Microsoft Excel.  The macros 

automatically graphed each gage output and allowed toggling between each gage.  

This system ensured that all gages were working properly after each loading.   

A tandem-axle dump truck, as shown in Figure 3-4, was used to load the 

structure.  The truck weight totaled 54 kips, with 17.2 kips on the front axle and 36.8 

kips on the rear axles. The vehicle completed two passes at speeds of 0, 25, 45, and 

65 mph for each direction of travel.  A total of 16 loadings were recorded for the 

strain gage data.  Six additional loadings were recorded with only the accelerometers 

collecting data.  The collection frequency was increased to 5000 Hz for the 

accelerometers readings.  The truck completed one pass in each direction at speeds of 

25, 45, and 65 mph.  All the data was stored in the laptop and transported back to the 

University of Kansas for analysis.   
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Figure 3-1  Mark IV Snooper 
 

Figure 3-2  Data Acquisition System
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Figure 3-3  Acquiring Data 

 
Figure 3-4  Loading Vehicle 
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CHAPTER 4 BRIDGE BEHAVIOR 
 

 The purpose of many of the gages used during testing was to assist in the 

analysis of future finite element models.  The degree of composite action and the 

forces within the bracing were both investigated during the load test in order to obtain 

information about the structural system.  The bracing stresses were measured at two 

locations: Diaphragms F2 and F3, as shown in Figure 4-1.  Diaphragm F2 gages were 

used to investigate web-gap cracking, while Diaphragm F3 gages were used to 

measure stresses related to cracking of the gusset plates.    

   

4.1   Composite Action 

When designed in the 1960’s, the girders were assumed to act non-

compositely.  However, since the girder flanges are so wide, large amounts of friction 

could create some composite action.  This phenomenon can be related to the current 

fatigue problems on the bridge.  Web-gap distortion is created by uneven deflection 

of the primary girders, as detailed in Chapter 2.  If one of the girders does not deflect 

as far as predicted due to some composite action, the web-gap strains would be lower 

than predicted.  Therefore, the percentage of composite action would drastically 

affect the amount of web-gap strain measured, since the strain values are a function of 

the deflection of the girders.   

 

4.1.1   Gage Locations 

If the girders were acting completely non-compositely, gages placed 

symmetrically about the centroid should read identical strains.  However, if the 

symmetric girders were acting compositely with the deck, higher strains would be 

found in the lower flange than in the upper flange in the positive moment region.  

Therefore, single element gages, labeled G9 and G10, were placed on each of the 

flanges of Girder A, as shown in Figures 4-2 through 4-5.  The gages were used to 

measure the neutral axis of the girder under loading.  The neutral axis can be used to 
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measure the amount of composite action within the girders, and thus, the increased 

moment of inertia of the girders. 

 

4.1.2  Results   

The degree of composite action was determined by comparing strain values of 

the upper flange with the lower flange.  Maximum and minimum values measured by 

the gages are summarized in Tables 4-1 through 4-4.  Since the girders are symmetric 

about the neutral axis, equal strain values would indicate complete non-composite 

action.  This test indicated a higher strain in the bottom flange (Gage 10), than the top 

flange (Gage 9), thus showing that the bridge is acting semi-compositely.  The ratios 

of the two strain values were determined to estimate the degree of composite action.   

After analyzing all load cases, an average ratio of the lower and upper flange 

gages was 3.5.  This number indicates that the lower flange is undergoing over three 

and a half times the amount of stress as the upper flange.  By assuming a linear 

relationship between the strains, this ratio corresponds to a neutral axis height of 74.8 

in. from the bottom of the girder, as opposed to a theoretical value of 48.3 in.  As 

indicated by the data, the concrete decking and the steel girder do create enough 

friction to noticeably adjust the neutral axis.  This change in height would create an 

increase of 65 percent in the stiffness of the member.  Although designed as a non-

composite system, the concrete decking does provide some support.  This result will 

be helpful in adjusting the finite element model for web-gap distortion to better model 

the actual behavior of the structure. 

 
4.2   Bracing Gages 

The purpose of testing the bracing was to provide a future graduate student 

with field information to improve the finite element model.  The information gathered 

may not be critical in evaluating the future retrofits, since the forces in the 

diaphragms should not change drastically.  The collected data, however, should assist 

in the theoretical study of the fatigue cracking found on the bridge.  Since the 
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information collected will be most useful to the student creating the finite element 

models, little evaluation is provided in this report. 

In addition to studying the fatigue cracking, the collected data from the 

bracing may prove useful for another circumstance.  Wipf, et al., researched 

loosening or removing diaphragm bracing to prevent web-gap cracking.  Whether this 

is a possibility for retrofit is debatable, particularly due to the deepness of the girders 

and the high winds in the region.  Regardless, information gathered from field-testing 

certainly would aid in considering this retrofit measure.   

 

4.2.1  Gage Locations 

Diaphragm bracings found in the upper web-gap and gusset plate regions were 

gaged to measure the forces within these regions of interest.  The gages measured the 

axial forces found in each of these two-force members.  Since the diaphragm bracing 

creates web-gap stresses, as described in Chapter 2, the axial forces within the 

diaphragm bracing were measured.  The lateral braces within the diaphragm were 

also instrumented.  Figures 4-3 through 4-5 display the gage placement locations for 

the web-gap region.   

The gusset plate region was investigated much like the web-gap region.  

Gages were placed on the lateral bracing, which are believed to be the cause of the 

gusset plate cracking.  Figures 4-6 through 4-8 show the gages placed on the bracing. 

 

4.2.2   Results   

Maximum and minimum values from the gages were determined, but no 

further analysis was performed.  The maximum and minimum values found from the 

web-gap gages can be found in Tables 4-5 through 4-8.  Results from the gages 

investigating the gusset plate are located in Tables 4-9 through 4-12.   
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9 10
Eastbound 65 mph A -0.8 2.6

B -0.6 3.0
45 mph A -1.0 3.3

B -0.6 2.7
25 mph A -1.0 2.3

B -0.7 2.6
5 mph A -1.0 2.7

B -1.1 3.0

-0.8 2.8

Gage Number
Positive Moment

Average Stress (ksi)
 

 
Table 4-1  Flange Stresses (E29) 

Gage 9 – Top Flange 
Gage 10 – Bottom Flange
 
See Figures 
4-2 through 4-5  
for locations 
of Gages 9-10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 10
Westbound 65 mph A -0.1 2.1

B -0.2 2.2
45 mph A -0.9 1.4

B -0.6 1.4
25 mph A -0.7 1.6

B -0.4 1.7
5 mph A -0.7 1.7

B -0.8 1.5

-0.6 1.7

Gage Number
Positive Moment

Average Stress (ksi)
 

 
Table 4-2  Flange Stresses (W29) 
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9 10
Westbound 65 mph A 1.2 -0.7

B 1.0 -1.0
45 mph A 0.5 -1.8

B 0.5 -1.1
25 mph A 0.5 -1.2

B 0.7 -1.0
5 mph A 0.6 -1.5

B 0.5 -1.4

0.7 -1.2

Negative Moment

Average Stress (ksi)

Gage Number

 
 

Table 4-4  Flange Stresses (W28) 

9 10
Eastbound 65 mph A 1.1 -0.8

B 0.9 -1.6
45 mph A 0.7 -1.1

B 0.6 -0.8
25 mph A 0.4 -1.7

B 0.7 -1.0
5 mph A 0.7 -1.4

B 0.9 -0.9

0.8 -1.2

Negative Moment

Average Stress (ksi)

Gage Number

 
 

Table 4-3  Flange Stresses (E28) 
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11 12 13 14 15 16
Eastbound 65 mph A 0.9 -0.3 0.8 -0.3 -0.4 1.0

B 1.0 -0.4 0.8 -0.3 -0.7 1.1
45 mph A 1.2 -0.6 0.8 -0.5 -0.7 1.4

B 0.7 -0.3 0.5 -0.3 -0.4 1.2
25 mph A 0.6 -0.7 0.4 -0.5 -1.0 1.0

B 0.8 -0.4 0.5 -0.4 -0.6 1.2
5 mph A 0.8 -0.6 0.6 -0.5 -0.9 1.1

B 0.9 -0.5 0.8 -0.4 -0.8 1.6

0.9 -0.5 0.6 -0.4 -0.7 1.2

Gage Number
Positive Moment

Average Stress (ksi)
 

 
Table 4-5  Web-Gap Bracing Stresses (E29) 

See Figures 
4-2 through 4-5 
for locations 
of Gages 11-16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 12 13 14 15 16
Westbound 65 mph A 1.4 1.0 -0.2 -0.3 1.6 1.0

B 1.3 0.9 -0.2 -0.3 1.7 1.0
45 mph A 0.9 0.5 -0.7 -0.8 1.1 0.6

B 0.8 0.6 -0.6 -0.7 1.1 0.7
25 mph A 1.0 0.6 -0.6 -0.7 1.2 0.8

B 1.0 0.7 -0.4 -0.6 1.3 0.9
5 mph A 1.1 0.7 -0.5 -0.8 1.3 0.7

B 1.0 0.7 -0.6 -0.8 1.2 0.7

1.1 0.7 -0.5 -0.6 1.3 0.8

Gage Number
Positive Moment

Average Stress (ksi)
 

 
Table 4-6  Web-Gap Bracing Stresses (W29) 
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11 12 13 14 15 16
Westbound 65 mph A -0.1 -0.1 0.7 0.7 -0.3 -0.3

B -0.2 -0.2 0.7 0.7 -0.4 -0.4
45 mph A -0.8 -0.7 0.3 0.3 -1.0 -1.1

B -0.4 -0.4 0.4 0.3 -0.6 -0.5
25 mph A -0.5 -0.4 0.3 0.4 -0.6 -0.7

B -0.4 -0.3 0.4 0.5 -0.5 -0.5
5 mph A -0.5 -0.5 0.4 0.4 -0.8 -0.7

B -0.6 -0.5 0.3 0.3 -0.8 -0.7

-0.4 -0.4 0.4 0.5 -0.6 -0.6

Gage Number
Negative Moment

Average Stress (ksi)
 

 
Table 4-8  Web-Gap Bracing Stresses (W28) 

11 12 13 14 15 16
Eastbound 65 mph A -0.3 0.8 -0.3 0.8 1.0 -0.4

B -0.4 0.7 -0.4 0.7 0.8 -0.8
45 mph A -0.5 0.6 -0.4 0.5 0.8 -0.7

B -0.2 0.5 -0.2 0.4 0.6 -0.5
25 mph A -0.5 0.3 -0.4 0.3 0.3 -0.7

B -0.2 0.5 -0.2 0.5 0.5 -0.4
5 mph A -0.5 0.6 -0.4 0.5 0.6 -0.6

B -0.3 0.7 -0.3 0.7 0.8 -0.3

-0.4 0.6 -0.3 0.6 0.7 -0.6

Gage Number
Negative Moment

Average Stress (ksi)
 

 
Table 4-7  Web-Gap Bracing Stresses (E28) 

 32 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gage Number
17 18 19 20

Eastbound 65 mph A 0.7 0.7 -0.9 1.3
B 0.7 0.8 -0.9 1.5

45 mph A 0.8 0.7 -0.9 1.6
B 0.6 0.6 -0.6 1.3

25 mph A 0.4 0.3 -1.1 1.2
B 0.6 0.7 -0.7 1.3

5 mph A 0.7 0.7 -0.9 1.5
B 0.8 0.8 -0.9 1.8

0.7 0.7 -0.9 1.4

Positive Moment

Average Stress (ksi)
 

 
Table 4-9  Gusset Plate Bracing Stresses (E29) 

See Figures 
4-6 through 4-8 
for locations 
of Gages 17-20. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gage Number
17 18 19 20

Westbound 65 mph A -0.2 -0.2 1.2 -0.5
B -0.3 -0.3 1.2 -0.4

45 mph A -0.8 -0.9 0.8 -1.1
B -0.5 -0.5 0.9 -1.0

25 mph A -0.5 -0.5 1.0 -0.9
B -0.4 -0.4 1.2 -0.9

5 mph A -0.5 -0.6 1.0 -1.0
B -0.6 -0.6 1.0 -1.0

-0.5 -0.5 1.1 -0.9

Positive Moment

Average Stress (ksi)
 

 
Table 4-10  Gusset Plate Bracing Stresses (W29) 
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Gage Number

17 18 19 20
Eastbound 65 mph A -0.4 -0.4 0.8 -0.5

B -0.7 -0.6 0.7 -1.0
45 mph A -0.5 -0.6 0.6 -0.7

B -0.3 -0.3 0.6 -0.4
25 mph A -0.6 -0.6 0.3 -0.9

B -0.3 -0.3 0.7 -0.5
5 mph A -0.4 -0.3 0.7 -0.6

B -0.3 -0.4 0.7 -0.6

-0.4 -0.4 0.6 -0.6

Negative Moment

Average Stress (ksi)
 

 
Table 4-11  Gusset Plate Bracing Stresses (E28) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Gage Number

17 18 19 20
Westbound 65 mph A 0.9 1.0 -0.4 0.8

B 0.9 1.0 -0.5 1.0
45 mph A 0.4 0.4 -0.9 0.5

B 0.3 0.4 -0.6 0.4
25 mph A 0.4 0.5 -0.6 0.4

B 0.6 0.7 -0.6 0.5
5 mph A 0.5 0.6 -0.9 0.5

B 0.5 0.5 -0.8 0.5

0.6 0.6 -0.7 0.6

Negative Moment

Average Stress (ksi)
 

 
Table 4-12  Gusset Plate Bracing Stresses (W28) 
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Figure 4-2  Lower Flange/ Bracing Gages (Diaphragm F2) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 4-3  Upper Flange Gage (Diaphragm F2) 
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Figure 4-4  Flange/ Bracing Gages (Diaphragm F2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 4-5  Lower Flange/ Bracing Gages (Diaphragm F2) 
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Figure 4-7  Diaphragm Bracing Gages (Diaphragm F3) 

 

 
Figure 4-6  Lateral Bracing Gages (Diaphragm F3) 
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Figure 4-8  Bracing Gages (Diaphragm F3) 
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CHAPTER 5 WEB-GAP CRACKING 
 

This chapter describes work performed on the web-gap region.  The repairs, 

both past and future, are presented as a background to the testing.  The purpose of 

each gage is explained and their position described.  Finally, the results from the 

gages are presented as well as inferences from the data.       

 
5.1   Repair Strategy 

Many repair strategies have been adopted to alleviate web-gap cracking.  The 

drilling of stop holes has been an economic solution in stopping crack propagation.  

However, for the Tuttle Creek Bridge, this repair has been ineffective.  Softening 

measures, such as increasing the web-gap by slotting the connection stiffener, can 

also be a cost-effective solution.  This retrofit strategy was also used for the Tuttle 

Creek Bridge, but like the stop holes, it too did not prevent further propagation.  The 

repair strategy performed in 1986 is shown in Figure 5-1.   

The most effective retrofit for web-gap cracking is positive attachment of the 

connection stiffener to the flange by either a bracket or fillet weld.  Current standards 

require this design detail for both positive and negative moment regions.  This retrofit 

method, however, is very costly and is a last resort for most designers.  

For the Tuttle Creek Bridge, the repair design was the expensive retrofit of 

positively attaching the connection stiffener to the upper flange.  Instead of difficult 

overhead welding, the stiffener will be attached to the upper flange by using two 

brackets, as shown in Figure 5-2.  Two studs will be placed into the upper flange and 

will secure the bracket.  The other end of the brackets will be bolted to the connection 

stiffener.  Additional stop holes will also be drilled through the web to arrest further 

crack propagation. 

Repairs were also made to the lower web-gap in 1986.  An angle bracket was 

bolted to the connection stiffener and the lower flange, as shown in Figure 5-3.  The 

repairs have been successful, although unretrofitted lower web-gaps have not had any 
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cracks found either.  Since this retrofit was only performed on diaphragms labeled F4 

in Figure 1-4, additional repairs were necessary for the other diaphragms in order to 

ensure no new cracks.  The lower web-gap region will be repaired by fillet welding 

the stiffener to the existing gusset plate, as shown in Figure 5-4.  

 

5.2   Gage Locations 

Web-gap gages were used to determine the amount of stress created by the 

web distortion.  Gages were placed in both the upper and lower web-gaps, since Zhao 

determined both gaps to be fatigue prone.  The gages were placed on the girder web 

since the majority of the cracks and highest predicted stresses were found within it.     

The single-element gages were placed vertically near the tip of the existing 

horizontal crack, as shown in Figures 5-5 through 5-6.  The strain gages were placed 

as close to the tangent of the drilled hole without overlapping onto the fillet weld.  

Since the horizontal crack runs along a fillet weld, the gages could not be placed in 

this high stress region.  Due to this restriction, two gages were placed in line with 

each other.  Their values were used to extrapolate the maximum stress near the crack 

tip.  Two sets of gages were used:  one on the interior side of the girder and one on 

the exterior.  The gages, in theory, should read equal but opposite strains due to pure 

bending in the web-gap.  Having two sets also provided a backup in case one of the 

gages did not read strains properly.  This gage setup was utilized in similar bridge 

load testing such as Stallings et al., Jajich and Schultz, and Wpif et al, as summarized 

in Appendix A.    

The web-gap gages were placed on diaphragm F2, which is one diaphragm 

away from the center of the span.  This diaphragm was chosen because the finite 

element model created by Zhao indicated this diaphragm created the highest web-gap 

stress.  The inspection report indicated this diaphragm location had an existing weld 

tear and horizontal crack.  The horizontal crack was previously drilled with no new 

growth.    
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5.3   Results 

The gages placed in the web-gap regions worked exceptionally well.  The 

upper gap gages placed on the inside of the girder observed compression during 

positive bending of the span, while the outside indicated tensile forces.  The absolute 

values of the interior and exterior gages were nearly equal, indicating pure bending 

forces.   

The alignment of the two gages also worked very well.  As expected, the gage 

nearest to the flange had a higher stress value.  For the upper flange regions, the 

extrapolated value was to the edge of the drilled hole, which was also the lower edge 

of the flange/web fillet weld.  For the lower flanges, the extrapolated value was 

simply to the edge of the flange/web fillet weld.   

The stress values for the upper web-gap regions were much higher in the 

westbound direction than eastbound, as seen in Tables 5-1 through 5-2.  This 

observation reinforces Zhao’s model.  Zhao’s model indicated maximum tension 

values, σy, of 46 ksi and 12 ksi for westbound and eastbound traffic, respectively.  

After extrapolating the two gages, the values obtained from this test reported average 

maximum stresses of 35.4 ksi for westbound and 12.6 ksi for eastbound.  Figure 5-9 

displays the predicted web-gap stresses with those measured during the load test.  In 

general, there is a good agreement between the maximum stresses theoretically 

calculated for the upper web-gap and those measured on the bridge. 

Minimum stresses were also in agreement with predicted values.  Zhao 

predicted the minimum stresses to be close to zero.  During the load test, the 

minimum value of σy was found to be approximately 3.6 ksi for eastbound and 2.4 ksi 

for westbound. 

Lower web-gap stresses, however, were below those predicted by Zhao’s 

model.  A maximum stress of 14 ksi for eastbound and 8.6 ksi for westbound was 

theoretically calculated.  After load testing, maximum values of 2.4 ksi and 3.0 ksi 

were extrapolated for eastbound and westbound traffic, respectively.  Zhao’s model 
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appears to be overly conservative when predicting the amount of lower web-gap 

stresses.  Figure 5-10 compares the measured lower web-gap stresses with those 

predicted by Zhao.   

The difference in lower web-gap stresses is probably due to the difficulty of 

predicting the amount of horizontal translation of the girder under load.  While the 

deck rigidly holds the upper flange, the lower flange is free to move sideways and 

rotate.  Since stresses in the lower web-gap are a function of the rigidity of the girder, 

any difference in rigidity would alter the calculated lower web-gap stresses.  Given 

that the extent of this movement is difficult to predict, any differences in the 

theoretical model and the load test would be understandable.  The important point is 

that the model is conservative.  The measured stresses support Zhao’s prediction that 

the lower web-gap should not develop any cracking.          

After determining the average stresses in the detail, the fatigue life can be 

calculated.  Fatigue life calculations were determined for the web-gap region.  The 

web-gap region is a category C detail, which corresponds to a fatigue category 

constant of 44 x 108 ksi3.  After performing the fatigue life calculations, which are 

summarized in Chapter F, the fatigue life of the web-gap detail without retrofit is 

approximately 50 years.  Since the bridge was built 1962, the current detail is 

approaching the end of its lifespan. 

 

5.4   Cracking Theories 

The stresses obtained by the strain gages were in good agreement with the 

values from Yuan Zhao’s finite element model.  However, the web-gap stress 

concentrations do not support all of the cracking patterns found on the bridge.  Weld 

tearing is fully supported by the finite element model; however, horizontal cracking 

found on the interior side of the girder does not appear logical.  Both the finite 

element model and the field-testing show that the region is predominately in 

compression due to live loads.  If the live load is the only loading in this region, a 

fatigue crack should not be initiating. 
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Several theories exist of why there is cracking occurring in the web-gap.  The 

first possibility is the existence of residual stresses due to the fillet weld.  Welding 

can create tensile residual stresses in the vicinity of a weld.  These residual stresses 

would make the apparent compressive cycle actually a tension cycle.  One drawback 

to this theory is that if residual stresses are occurring on the interior side of the girder, 

logically, the exterior side should also have residual stresses.  The residual stresses 

would magnify the tensile cycles found in the exterior side, thus increasing crack 

initiation.  Residual stresses would increase the possibility of crack initiation for both 

sides, but they do not explain why more horizontal cracks are found on the interior 

side than the exterior. 

Perhaps unforeseen loads from the dead weight of the structure caused the 

crack patterns.  An imbalance of the deck load on the upper flange could cause tensile 

forces within the interior, web-gap region.  If the weight of the deck cantilevered over 

the girder flange were high compared to the deck weight, the flange would rotate 

outwardly, as shown in Figure 5-11.  This rotation would create tensile forces within 

the web-gap region.  This would explain the abundance of cracks on the interior side 

of the girder.  

Another theory would be binding of the connection stiffener.  The connection 

stiffeners, found only on the interior side, were designed to be the same height as the 

web at the diaphragm locations.  Although designed as a secondary-loaded member, 

the connection stiffeners may have inadvertently created stress in the web-gap.  When 

constructed in 1962, the girders were first loaded with the dead weight of the decking.  

The weight of the decking was transferred directly to the upper flange of the girders.  

The load may have then transferred to portions of the connection stiffener, which 

were at the same height as the girder web.  Additional deformation of the web-gap, 

due to double curvature bending from differential deflection of the girders, would 

cause further load to be applied to the stiffener.  Since the stiffener is found only on 

the interior side, the distributed load from the decking onto the upper flange would be 

unbalanced.  A moment is thus created in the web-gap region, placing the interior side 
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into tension, as shown in Figure 5-12.  If the interior side of the web-gap were in 

tension prior to large live loads, fatigue cracks would be likely to initiate.  The live 

loads producing compressive stress cycles would actually be creating tensile residual 

stress cycles, thus causing crack initiation.      
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1 2 3 4 5 6 7 8
Westbound 65 mph A -24.1 -8.9 25.7 9.7 -0.3 1.9 1.4 -1.4

B -24.8 -9.3 26.4 9.8 -0.4 2.0 1.4 -1.5
45 mph A -23.9 -9.0 24.4 8.8 -0.9 1.6 0.6 -2.3

B -24.2 -9.3 24.4 8.7 -0.9 1.5 0.6 -2.2
25 mph A -24.8 -9.2 25.3 9.2 -0.8 1.6 0.8 -2.2

B -24.6 -9.2 25.1 9.0 -0.7 1.8 0.9 -2.0
5 mph A -26.0 -9.5 26.0 9.5 -0.8 1.8 0.9 -2.3

B -25.2 -9.6 25.4 9.4 -0.9 1.8 0.8 -2.3

-24.7 -9.3 25.3 9.2 -0.7 1.7 0.9 -2.0

Gage Number
Positive Moment

Average Stress (ksi)

 
Table 5-2  Web-Gap Stresses (W29) 

1 2 3 4 5 6 7 8
Eastbound 65 mph A -7.4 -3.8 8.1 4.4 1.1 -1.0 -2.3 -0.4

B -7.4 -3.7 8.7 4.9 1.4 -1.0 -2.3 -0.6
45 mph A -9.3 -4.3 10.7 5.7 1.4 -1.3 -2.3 -0.8

B -9.8 -4.7 10.3 5.2 1.1 -1.0 -2.2 -0.4
25 mph A -8.4 -4.4 8.8 4.6 1.0 -1.5 -2.6 -0.7

B -11.4 -5.3 11.8 5.8 1.1 -1.1 -2.5 -0.5
5 mph A -10.9 -5.4 10.6 5.3 1.2 -1.5 -2.8 -0.6

B -7.8 -4.3 8.5 4.7 1.4 -1.4 -2.7 -0.4

-9.1 -4.5 9.7 5.1 1.2 -1.2 -2.5 -0.5

Positive Moment

Average Stress (ksi)

Gage Number

 
 

Table 5-1  Web-Gap Stresses (E29) 

See Figures 
5-5 through 5-8 
for locations 
of Gages 1-8. 
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1 2 3 4 5 6 7 8
Eastbound 65 mph A 2.8 1.0 -2.1 -0.5 -0.3 0.9 1.1 1.3

B 2.5 0.8 -2.3 -0.7 -0.4 0.8 1.1 1.2
45 mph A 2.5 1.0 -1.9 -0.7 -0.6 0.6 0.9 0.9

B 1.8 0.8 -1.7 -0.4 -0.3 0.5 0.8 0.8
25 mph A 2.6 0.7 -2.7 -1.1 -0.5 0.3 0.4 0.5

B 2.2 0.9 -2.0 -0.6 -0.2 0.6 0.9 0.9
5 mph A 2.6 0.9 -2.5 -0.9 -0.4 0.6 0.9 0.9

B 3.8 1.3 -3.0 -1.0 -0.3 0.8 1.1 1.1

2.6 0.9 -2.3 -0.7 -0.4 0.6 0.9 0.9

Negative Moment

Average Stress (ksi)

Gage Number

 
 

Table 5-3  Web-Gap Stresses (E28) 

 

1 2 3 4 5 6 7 8
Westbound 65 mph A 1.8 0.9 -1.3 -0.5 1.0 -0.3 -0.2 1.5

B 1.8 0.8 -1.6 -0.7 0.9 -0.5 -0.3 1.2
45 mph A 1.5 0.4 -1.7 -1.0 0.4 -0.9 -1.0 0.5

B 1.4 0.4 -1.5 -0.7 0.5 -0.6 -0.5 0.7
25 mph A 1.6 0.6 -1.7 -0.8 0.6 -0.7 -0.7 0.8

B 1.6 0.7 -1.6 -0.7 0.8 -0.6 -0.5 1.1
5 mph A 1.0 0.6 -1.4 -0.9 0.6 -0.8 -0.8 0.9

B 3.1 0.6 -1.9 -1.0 0.6 -0.8 -0.8 0.9

1.7 0.6 -1.6 -0.8 0.7 -0.6 -0.6 1.0

Gage Number
Negative Moment

Average Stress (ksi)

 
Table 5-4  Web-Gap Stresses (W28) 
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Extrapolated Gages
1 & 2 3 & 4 5 & 6 7 & 8

Westbound 65 mph A -33.7 35.6 3.0 -4.9
B -34.5 36.8 3.2 -5.0

45 mph A -33.2 34.1 2.9 -5.9
B -33.6 34.1 2.7 -5.8

25 mph A -34.5 35.4 2.8 -6.0
B -34.1 35.2 3.0 -5.6

5 mph A -36.2 36.3 3.1 -6.3
B -35.0 35.4 3.1 -6.2

-34.4 35.4 3.0 -5.7

Positive Moment

Average Stress (ksi)
 

 
Table 5-6  Extrapolated Web-Gap Stresses (W29) 

Extrapolated Gages
1 & 2 3 & 4 5 & 6 7 & 8

Eastbound 65 mph A -9.7 10.4 -2.1 2.1
B -9.7 11.1 -2.2 1.6

45 mph A -12.4 13.8 -2.6 1.2
B -12.9 13.5 -2.0 1.7

25 mph A -10.8 11.5 -2.8 1.7
B -15.2 15.5 -2.2 2.0

5 mph A -14.3 13.9 -2.8 2.1
B -10.1 10.8 -2.8 2.4

-11.9 12.6 -2.4 1.8

Positive Moment

Average Stress (ksi)
 

 
Table 5-5  Extrapolated Web-Gap Stresses (E29) 

See Figures 
5-5 through 5-8 
for locations 
of Gages 1-8. 
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Extrapolated Gages

1 & 2 3 & 4 5 & 6 7 & 8
Westbound 65 mph A 2.4 -1.8 -1.0 3.6

B 2.5 -2.3 -1.2 3.1
45 mph A 2.2 -2.2 -1.5 2.4

B 2.0 -2.0 -1.1 2.3
25 mph A 2.3 -2.2 -1.3 2.7

B 2.1 -2.1 -1.2 3.1
5 mph A 1.2 -1.7 -1.5 3.1

B 4.7 -2.4 -1.5 3.0

2.4 -2.1 -1.3 2.9

Negative Moment

Average Stress (ksi)
 

 
Table 5-8  Extrapolated Web-Gap Stresses (W28) 

 
Extrapolated Gages

1 & 2 3 & 4 5 & 6 7 & 8
Eastbound 65 mph A 3.9 -3.1 1.5 1.4

B 3.6 -3.4 1.4 1.2
45 mph A 3.5 -2.6 1.3 0.9

B 2.4 -2.5 1.0 0.8
25 mph A 3.8 -3.7 0.7 0.5

B 3.1 -2.9 1.0 1.0
5 mph A 3.6 -3.4 1.1 1.0

B 5.4 -4.2 1.4 1.3

3.6 -3.2 1.2 1.0

Negative Moment

Average Stress (ksi)
 

 
Table 5-7  Extrapolated Web-Gap Stresses (E28) 

 49 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1  1986 Repair of Upper Web-Gap

 

 
 

 
 

Figure 5-2  2005 Repair of Upper Web-Gap
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Figure 5-3  1986 Repair of Lower Web-Gap 

 

 
Figure 5-4  2005 Repair of Lower Web-Gap
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Figure 5-5  Upper Web-Gap (Diaphragm F2) 
 
 

Figure 5-6  Upper Web-Gap (Interior and Exterior) (Diaphragm F2) 
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igure 5-8  Lower Web-Gap (Interior and Exterior) (Diaphragm F2
 
Figure 5-7  Lower Web-Gap (Diaphragm F2) 
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Figure 5-10  Measured vs. Theoretical Lower Web-Gap Stress 
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Figure 5-12  Cracking Theory (Binding of the Stiffener) 
 
 

Figure 5-11  Cracking Theory (Cantilevering of the Deck) 
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CHAPTER 6 GUSSET PLATE CRACKING 
 

This chapter describes work performed on the gusset plate region.  Both the 

1986 and 2005 repairs are presented as backgrounds to the testing.  The purpose of 

the strain rosette is explained, and its position is displayed.  The gages results are 

presented as well as the inferences drawn them.       

 

6.1 Repair Strategy 

In 1986, repairs were made to gusset plates on the diaphragms located nearest 

to the piers.  These diaphragms are labeled F4 in Figure 1-4.  Repairs included bolting 

a larger gusset plate to the lower flange and eliminating all welds in the connection.  

The gusset repair can be found in Figure 6-1.  To date, the repair has been effective 

with no new cracks reported.    

Although the 1986 retrofit was successful, it only repaired two diaphragm 

locations per span.  New cracks have developed at diaphragms adjacent to the 

repaired gusset plates.  KDOT has decided to repair these diaphragms.  However, 

economic factors have changed the repair plan from the 1986 retrofit design.  Figure 

6-2 displays the new proposed retrofit.  In order to save money, the existing gusset 

plates will remain on the bridge.  The gusset plates will be repaired by first grinding 

out existing cracked welds and then will be re-welded to the previous dimensions.  In 

addition to welding the gusset plate, four bolts will be placed through the gusset plate 

and the lower flange.  The bolts should prevent any uplift force on the gusset plate.  

The existing tack welds will also be ground off.   

 

6.2 Gage Locations 

The exact source of the gusset plate cracks was not certain during retrofit 

design.  The cracking of the gusset plate welds could have been due to distortion-

based stress from the bracing or by the stress induced by the bending strains of the 
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primary girder.  In order to determine the nature of the cracking, the region with 

gusset plate cracking was gaged.  

A rosette placed on the gusset plate, as shown in Figure 6-3, was used to 

measure the magnitude and direction of the forces within the plate.  If the measured 

stresses were primarily parallel with the girder, bending of the girder would be the 

logical culprit for the cracking.  However, if the forces were parallel with the diagonal 

brace attached to the plate, distortion caused by this brace would be the source of the 

problem. 

 

6.3 Results 

Gages placed on the gusset plate assisted in explaining the source of the weld 

cracking.  For a vehicle traveling westbound on span 29, the gage readings indicate 

that the plate is being stretched to 0.5 ksi parallel and perpendicular with the girder. 

When the truck was eastbound on span 29, the average perpendicular stress was equal 

magnitude, but opposite direction, than the westbound vehicle.  Maximum and 

minimum values for the different load cases, located in Tables 6-1 through 6-4, 

summarize these findings.   

These measurements indicate that the stresses within the gusset plate are not 

solely from bending forces of the girder.  As the truck passes over the bridge, the 

lateral bracing is shown to apply stress to the gusset.  This data supports the theory 

that the gusset plate cracking is caused partly by distortion of the lateral brace.  If the 

lateral brace were pushing against the plate, then it would be deforming.  This 

distortion would create a prying action on the gusset plate.  This prying would be a 

logical cause of the cracking.  The data refutes the theory that only bending forces of 

the girder are solely causing the cracking, but it does not disprove that the girder 

stresses are not contributing.   

Since bending stresses on girder A is more in the eastbound direction, the 

westbound traffic is of particular interest when investigating the effects of the lateral 

bracing.  Westbound loadings would isolate the effects of the lateral bracing better 
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than the eastbound loadings.  After comparing the values of the two gages, the 

average ratio of gage 21 versus gage 22 for westbound traffic is approximately 1.0 

with a vector of magnitude 0.7 ksi.  This ratio corresponds to an angle of 

approximately 42º parallel with the girder.  This angle is close to the angle of 45º of 

the lateral brace entering into the gusset plate.  The average stress from this lateral 

bracing, which is detailed in Chapter 4, is approximately 0.9 ksi, which is comparable 

to the stress vector found in the gusset plate.  

Information gathered from the inspection reports also supports the theory that 

the lateral bracing is inducing crack initiation.  The observed cracking patterns 

indicate that the cracks are not load-induced from the girders.  The diaphragm 

locations with cracks are not in regions with high bending stress.  Since gusset plates 

in regions of higher stress have not been found cracking, the theory of bending forces 

inducing cracking seems unlikely.   

The other cracking theory mentioned previously is prying forces from the 

diagonal bracing.  This theory appears logical since the gusset plates with cracks are 

found in regions of large height transition of the web.  The bracing is approaching the 

gusset plate from an upward angle due to its other end being attached to a gusset plate 

at a lower elevation.  When placed in compression, the bracing will push slightly 

upward on the gusset plate.  The slight upward angle of the bracing could be causing 

the cracking in the gusset plate. 
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Gage Number

21 22
Eastbound 65 mph A -0.5 0.9

B -0.5 1.0
45 mph A -0.5 1.1

B -0.3 1.0
25 mph A -0.6 0.9

B -0.4 1.1
5 mph A -0.6 1.2

B -0.6 1.3

-0.5 1.1Average Stress (ksi)

Positive Moment

 
 

Table 6-1  Gusset Plate Stresses (E29) 

Gage 21  
Perpendicular with G
Gage 22  
Parallel with Girder 
 
See Figure 6-3 
for location 
of Gages 21-22. 
Gage Number

21 22
Westbound 65 mph A 0.8 0.7

B 0.8 0.9
45 mph A 0.3 0.4

B 0.3 0.4
25 mph A 0.4 0.4

B 0.6 0.6
5 mph A 0.5 0.4

B 0.5 0.4

0.5 0.5Average Stress (ksi)

Positive Moment

 
 

Table 6-2  Gusset Plate Stresses (W29) 
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Gage Number

21 22
Eastbound 65 mph A 0.7 -0.6

B 0.7 -1.0
45 mph A 0.7 -0.6

B 0.6 -0.5
25 mph A 0.3 -0.9

B 0.6 -0.5
5 mph A 0.7 -0.7

B 0.7 -0.7

0.6 -0.7

Negative Moment

Average Stress (ksi)
 

 
Table 6-3  Gusset Plate Stresses (E28) 

 

Gage Number

21 22
Westbound 65 mph A -0.1 -0.3

B -0.3 -0.3
45 mph A -0.7 -0.8

B -0.4 -0.5
25 mph A -0.4 -0.5

B -0.3 -0.4
5 mph A -0.5 -0.7

B -0.5 -0.7

-0.4 -0.5

Negative Moment

Average Stress (ksi)
 

 
Table 6-4  Gusset Plate Stresses (W28) 
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Figure 6-2  2005 Repair of Gusset Plate  

 

 
Figure 6-1  1986 Repair of Gusset Plate  
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Figure 6-3  Gusset Plate Rosette (Diaphragm F3) 
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CHAPTER 7     LONGITUDINAL STIFFENER CRACKING 
 

This chapter describes work performed on the longitudinal stiffeners.  Repairs 

will be performed to reduce the potential for fatigue damage of the connection.  

Details of the 2005 repairs are presented.  A gage was used to test the stresses at the 

end of a longitudinal stiffener.  The purpose of the strain gage is explained, and its 

position is displayed.  The gage results are presented and will be compared with the 

data collected after the retrofit is performed.      

  

7.1  Repair Strategy 

Two repairs are scheduled for the longitudinal stiffeners.  The first repair, re-

welding the cracks in the butt welds of the stiffener, is required to fix an existing 

problem.  The other repair, tapering the end of the stiffener, is a preventive measure.  

For the cracks in the butt welds, the welds will be ground off and re-welded.  

Although not displaying any fatigue cracking, the termination of the longitudinal 

stiffener will also be retrofitted since it is a fatigue-prone detail.  The repair is a 

preventive measure to reduce the fatigue category of the design from an E.  The ends 

will be tapered to reduce the stress concentration at the ends, as shown in Figure 7-1.  

This repair strategy is similar to the tapering of the end of a cover plate welded to a 

flange.  Stress induced by girder bending should gradually enter into the longitudinal 

stiffener, rather than abruptly at the end.  

  

7.2   Gage Location 

One, single-element gage was used to provide a prior-to-retrofit measurement.  

Only the tapering repair was investigated, since the butt weld repair was not a new 

structural configuration.  The gage was placed close to the end of the lower 

longitudinal stiffener, as shown in Figure 7-2.  The very tip of the stiffener, in theory, 

should have the highest stress.  The gage, however, could not be placed directly on 

the tip, therefore the stresses may be higher than those measured.  Nevertheless, its 
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values can be used to compare with post-retrofit values and help determine the 

effectiveness of the repair.   

 

7.3   Results 

 Results from the various loadings can be found in Tables 7-1 through 7-4.  For 

the eastbound truck, the average stress cycle was 4.6 ksi, while the westbound truck 

created a 3.4 ksi cycle.  Since the cycle entered into the tensile region, this detail is 

particularly vulnerable to fatigue.  Residual stresses could make this tensile cycle 

even more damaging.  This stress value will be good to compare with the post-retrofit 

stresses to see the effectiveness of the repair.   
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Gage Number

23
Eastbound 65 mph A 4.5

B 4.7
45 mph A 4.9

B 4.6
25 mph A 4.0

B 4.3
5 mph A 4.7

B 5.3

4.6

Positive Moment

Average Stress (ksi)
 

 
Table 7-1  Longitudinal Stiffener Stresses (E29) 

See Figure 7-2 
for location 
of Gage 23. 
 
Gage Number

Gage 23
Westbound 65 mph A 4.1

B 4.1
45 mph A 3.0

B 2.9
25 mph A 3.4

B 3.3
5 mph A 3.4

B 3.4

3.4

Positive Moment

Average Stress (ksi)
 

 
Table 7-2  Longitudinal Stiffener Stresses (W29) 
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Table 7-3  Longitudinal Stiffener Stresses (E28) 

Gage Number

23
Eastbound 65 mph A -1.5

B -2.5
45 mph A -1.9

B -1.3
25 mph A -2.4

B -1.5
5 mph A -1.9

B -1.5

-1.8Average Stress (ksi)

Negative Moment

 

 
 

Table 7-4  Longitudinal Stiffener Stresses (W28) 

Gage Number

Gage 23
Westbound 65 mph A -1.2

B -1.5
45 mph A -2.6

B -1.6
25 mph A -1.8

B -1.5
5 mph A -2.1

B -1.9

-1.8

Negative Moment

Average Stress (ksi)
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Figure 7-2  Longitudinal Stiffener Gage (Span 29) 

Figure 7-1  2005 Longitudinal Stiffener Repair 
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CHAPTER 8 CONCLUSIONS 
 

 Testing of the Tuttle Creek Bridge has been performed successfully.  Twenty-

three strain gages were used to obtain data from 16 truck loadings.  The web-gap, 

gusset plate, and longitudinal stiffener regions were all investigated to understand 

better the stresses within the bridge.  Data acquired from the test should aid in the 

evaluation of the retrofits to be completed.  Although the data acquired will be best 

utilized after the second load test is conducted, the following conclusions can be 

inferred from the measurements taken.   

1.  Comparison of the upper web-gap data with the finite element models of Zhao 

shows that the acquired data is in good agreement with the model.  The upper 

web-gap stresses were slightly less than those theoretically calculated.  This 

agreement adds validity to both methods of stress evaluation. 

2.  Stresses in the lower web-gap were much less than those predicted in the model.  

The measurements indicated that this portion of the model is conservative.  

Initiation of cracks appears unlikely in this region, particularly after the retrofit.  

Although the repair’s purpose is to stiffen the entire structural system, the retrofit 

also should reduce stresses within the lower web-gap.   

3.  The field measurements taken in the gusset plate region suggest a source of the 

fatigue cracking.  Although the cyclic loadings of the girders may create 

additional fatigue loading on the weld, the primary source of the gusset plate 

cracks is believed to be from cyclic loading of the lateral braces.  Stresses 

measured on the gusset plate indicate perpendicular load cycling.  The inspection 

reports indicate that the majority of the cracks are located in lower stress regions 

within the girder, which would indicate that the bending stresses are not creating 

the cracks.  Cyclic loading of the lateral braces is believed to be the source of the 

gusset plate cracks. 
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4.  The degree of composite action was also measured for the Tuttle Creek Bridge.  

Strain gage results of the upper and lower flanges of the symmetric girder 

indicated higher strains in the lower flange than the upper flange.  Thus as 

expected, the girders exhibited partial composite action.  The increased moment 

of inertia due to this partial composite action was found to be approximately 65 

percent.  This increase in flexural strength would not be expected near failure, 

since the interlocking of the deck and the girder would eventually breakdown.  

Fatigue calculations, however, should include this strength increase.  Web-gap 

distortion is a function of differential deflection of the girders.  If the girders do 

not deflect as much as expected due to unintended composite action, fatigue 

calculations may be unnecessarily high.   
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APPENDIX A  PREVIOUS RESEARCH 
 

A.1  Web-Gap Cracking 

 Web-gap cracking research has been abundant due to the large number of steel 

bridges affected by this type of fatigue.  Research has focused on causes of cracking 

and retrofit measures used to prevent further fatigue crack initiation and growth.  

Many of the retrofit designs have been tested in full-scale field tests.  Field-testing 

provides engineers with data to better understand the in-service behavior of a 

structure before and after a retrofit.  For this report, the analysis of web-gap research 

will focus on the use of full-scale load tests to study this distortion-based fatigue 

cracking.   

  

A.1.1  Stallings, et al (1993) 

 Stallings, et al performed a field evaluation of retrofits designed to prevent 

web-gap cracking.  The purpose of the study was to test the effectiveness of two 

different repairs by comparing stress values to the original condition. 

 The I-65 Mobile Delta Crossing Bridges had developed similar cracking 

patterns as the ones found in the Tuttle Creek Bridge.  These bridges are floor-truss 

systems with non-composite decks.  Horseshoe cracks were found in the connection 

of the web stiffener to the truss gusset plate.  The cracks were found only in the weld 

material.  A “softening” repair strategy was undertaken to lower crack-propagating 

stresses.  The retrofit investigated was to lengthen the web-gap by cutting a slot in the 

web stiffener.  Two different slot lengths, 6 and 10 inches, were tested.   

 In-service load tests were conducted to measure the stress differences due to 

the retrofit.  A total of 110 instruments, including strain gages and displacement 

transducers, were used to investigate the bridge.  Strain gages were used to 

investigate the vertical stress in the web-gap.  Extrapolation of inline gages located in 

the web-gap estimated the peak vertical stress.  Gages were also placed horizontally 

along the length of the web stiffener to measure the stress distribution into the web.  
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Diaphragm braces were gaged to relate bracing stress with web-gap stresses.  

Displacement transducers measured the translation of the girder due to diaphragm 

distortion.  

 Testing consisted of loading a span with both pre-weighed trucks and ambient 

truck traffic.  The pre-weighed vehicles consisted of a 3-axle dump truck and a 5-axle 

lowboy.  The tests consisted of static loadings, crawling speed runs, and normal 

highway-speed passes.  For the ambient traffic, the data acquisition system was setup 

to record only truck passes that created a stress exceeding a predetermined value in 

the bridge. 

 The load tests indicated an improvement in the bridges performance due to the 

retrofit.  The web-gap stresses were lowered by 50 to 75 percent.  The retrofit was 

found to extend the service life of the structure, however, it would not prevent 

eventual crack initiation.  

 

A.1.2  Jajich and Schultz (2003) 

 Jajich and Schultz investigated the web-gap region of a multi-girder steel 

bridge set on a skew.  The purpose of the research was to validate the assumptions 

used by designers to select fatigue-resistant bridge details.  An engineer will often use 

the theoretical deflection of a girder to estimate the web-gap stresses.  This study 

examined the relationship between the differential deflection of girders to the 

distortion stress in the web-gap.    

 Sixteen strain gages were placed on the bridge at four diaphragm locations.  

Seven gages were used to measure the flexural bending of the web-gap in the vertical 

direction.  Longitudinal strains of the girders were measured at the four diaphragm 

locations.  Gages also were used to monitor stresses at the weld toe of the diaphragm 

stiffener.  Four string potentiometers were used to measure the differential deflection 

of the girders at two diaphragms.   

 Trucks of known weight and ambient traffic were used to load the structure.  

For the ambient loadings, data was recorded for only pulses of high stresses, which 
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could only be initiated by large vehicles.  Each recording was placed into a histogram, 

which indicated a typical loading cycle.  For the load test, two trucks weighing 50 

kips each were used to load the structure.  The trucks were sent over the multi-lane 

bridge in various configurations and speeds.  

 After analysis of the collected data, several conclusions were determined.  

Results of the potentiometers indicated that rotation of the web-gap, rather than 

translation, was the cause of the web-gap stress concentrations.  For all four 

diaphragms, bottom web-gap stresses were found to be too small to initiate cracks.  

Upper web-gap stresses, however, were found to be very high, with some web-gap 

stresses being up to twenty times larger than the flange stresses.  The connection of 

the stiffener to the girder web has been tested to be a category C detail.  By using the 

AASHTO fatigue life (S-N) curve and the average stress cycle magnitude, the 

number of cycles until failure was calculated.  By using data from the stress cycle 

histogram, the fatigue life of the bridge was determined to be approximately 45-76 

years.  

   

A.1.3  Wipf et al. (1998)   

 Wipf et al. investigated diaphragm/ plate girder connections of five bridges in 

Iowa.  The bridges were experiencing web-gap fatigue problems due to lack of 

attachment of the connection plate to the upper flange.  Stop holes had been drilled, 

but were not effectively ceasing propagation.  In an attempt to shortcut the high costs 

of attaching the connection plate to the upper flange, Iowa DOT proposed simply 

loosening the connections of the diaphragm to the girder.  The retrofit would 

hopefully reduce the stresses within the web-gap at a reasonable price.  Wipf et al 

performed load tests to investigate the viability of this retrofit.   

 Load testing was performed on several bridges, including X and K-type 

diaphragms.  The bridges were instrumented with strain gages and displacement 

transducers before and after the retrofits.  Rear tandem axle trucks weighing 50 kips 

were used to load the structures.  Strain gages were placed vertically within the web 
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gap region to extrapolate the strain at the web/flange fillet weld.  Gages were also 

placed on bracing to quantify the load placed on the connection plate.  The 

displacement transducers measured the out-of-plane rotation of the girder. 

   Results showed that stresses in gaps with stop holes exceeded stresses found 

in non-cracked web-gaps.  These results indicated that the drilled holes were not 

effective in preventing additional cracking.  Loosening the connections greatly 

reduced stresses in the diagonal bracing, which were the causes of web-gap stresses.  

The web-gap stresses, consequently, were reduced by at least 25%.  The effects of 

loosening the connections on the lateral distribution of forces were estimated to be 

within 10-15% of pre-retrofit conditions.  For this experiment, load testing was 

successful in investigating the effectiveness of retrofits for steel bridges with fatigue 

damage.  

   

A.2  Gusset Plate Cracking 

 No research was found for the monitoring of gusset plate cracks in-service.  

This lack of research may be due to gusset plate cracking not being as common in 

steel bridges as compared to web-gap cracking.  Although less common, gusset plate 

cracking is just as critical as web-gap cracking, particularly if the weld cracks 

propagate into the tension flange.  Although no in-service tests have been reported, 

gusset plate cracking has been performed in the lab.  An example of gusset plate 

research is presented below.   

 

A.2.1  Fisher et al. (1980) 

 Fisher et al. investigated the fatigue behavior of several gusset plate 

configurations.  Gusset plates, which attach lateral bracing to the girders, were 

fatigued in a lab simulation.  One of the plate configuration tested by Fisher is similar 

to those found on the Tuttle Creek Bridge.  Since the configuration is similar, gusset 

plates tested that were transversely welded to the girder flange are highlighted in this 

summary.  
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 Testing consisted of loading a rolled beam using hydraulic pulsators.  The 

lateral attachments extended from the loaded girder to a stationary beam.  A 

sinusoidal load was placed on the beam until gusset cracking was evident.  The 

beam’s lower flange was loaded under various tensile, stress cycles.  After cracking 

of the gusset plate, different types of retrofits were used to repair the crack.  Repair 

types included remelting the weld toe using a gas tungsten arc process, peening, 

drilling only holes at the crack tips, and placing high strength bolts within the drilled 

holes.      

 All gusset plate configurations were found to equal or exceed the fatigue 

resistance of a Category E detail.  Although retrofitting of shallow cracks 

significantly improved fatigue life, retrofitting deeper cracks was shown to be 

ineffective.  Tests indicated that the attachment of the gusset plate to the flange only 

with transverse welds was particularly fatigue prone.  For the transversely welded 

gusset plate, fatigue cracks initiated at the ends of the fillet weld.  Fatigue cracks 

severed the gusset plate attachment at a fatigue life less than Category E.  In one case, 

cracking propagated into the tension flange.  Fisher et al. recommended that gusset 

plates with only transverse welds not be used. 

 
 
A.3  Composite Action  

Field-testing of composite action has been common for fitness-for-service 

evaluations.  Bridges may have much more capacity than previous known due to 

unexpected composite action.  Load tests can be used to measure the degree of 

composite action and assist engineers in making critical decisions on a structure.  An 

example of composite action testing is summarized below.     

 
A.3.1  Jauregui et al. (2002) 

 Jauregui et al. investigated a non-composite, multi-girder steel bridge that had 

been taken out of commission.  Their research focused on the interaction of the bridge 

deck with the steel girders.  Although the assumption of no interaction between the 
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deck and the steel girders is conservative, additional capacity can be added to a 

structure if the degree of partial composite action can be determined.  A load test was 

performed to measure this composite action. 

 Since the structure was being removed, the bridge was loaded until yielding of 

the girders occurred.  In order to yield the structure with minimal amounts of weight, 

a pier bent was removed from the structure.  Two forms of loading were used:  

placement of concrete traffic barriers on the bridge shoulder and a flatbed tractor-

trailer with barriers as payload.  At midspan, strain gages were placed longitudinally 

on the web at mid-height, on the underside of the upper flange, and on the top of the 

lower flange.  The strains indicated the neutral axis height, and thus the degree of 

composite action.   

Partial composite action was measured for all girders.  When compared to 

interior girders, exterior girders demonstrated higher degrees of interaction due 

compressive area from the concrete curbing.  Results also showed that the girders 

were slightly inelastic prior to yielding due to deterioration of the partial composite 

action.  The partial composite action, which increased the moment of inertia, caused 

the actual yielding of the structure to occur at 7% higher load than anticipated.  In 

conclusion, the girders were shown to act partially composite due to the friction and 

mechanical interlock between the bridge deck and the upper flange.       

   

A.4  Vibrations 

 Testing of dynamic properties has been used to diagnose bridge structural 

problems.  A dramatic change in the structural system will alter the dynamic 

properties, which can be measured by monitoring systems.  Dynamic testing can be 

used to continuously monitor a structure.     

 

A.4.1  Zhao and DeWolf (2002) 

 Zhao and DeWolf studied the changes in natural frequencies and mode shapes 

of a steel bridge due to partially restrained bearings occurring in the winter.  The 

 78 



purpose of the experiment was to demonstrate the effectiveness of a dynamic 

monitoring system.  Without physically altering the bridge, a change in structural 

behavior due to changes in temperature could be monitored.    

The bridge was equipped with 16 accelerometers to measure the vibration 

responses at different temperatures.  Eleven sets of data were collected throughout the 

winter period to measure the different structural responses.  Rather than use vibration-

inducing equipment, ambient traffic was used to load the structure.  The lowest three 

modes, two bending and one torsional, were measured by the accelerometers.     

During testing, a noticeable increase in the bridge’s natural frequencies was 

found at lower temperatures due to the partially restrained bearings.  The maximum 

percent difference between the natural frequencies was found to be 15.4%, which was 

a clear indication that the structure was behaving differently.  This experiment 

demonstrated the effectiveness of dynamic testing in monitoring the condition of a 

structure.     
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APPENDIX B  PREVIOUS KU RESEARCH  

 

 Yuan Zhao, a former University of Kansas Ph.D. student, performed extensive 

research on distortion-induced cracking and proposed retrofit measures.  Details of 

her research can be found in her report, Fatigue Prone Steel Bridge Details:  

Investigation and Recommended Repairs.  Her dissertation focused on the 

investigation of five Kansas bridges, including the Tuttle Creek Bridge.  The purpose 

of her studies was to theoretically compare different retrofit details by determining 

the amount of additional fatigue life each would provide.  By knowing the AASHTO 

category of the design detail and the estimated stress values, the fatigue life could be 

determined.  By using finite element modeling, she was able to estimate the stresses 

experienced by each detail.  For one of the investigated bridges, a load-test was 

conducted to determine the accuracy of her models.  This investigation is also 

discussed. 

 

B.1  Tuttle Creek Bridge 

 For the Tuttle Creek Bridge, web-gap cracking was the focus of her modeling.  

Her theoretical models, which were created in ANSYS, estimated the stresses 

produced in the web-gap region.  In addition to modeling the pre-retrofit situation, 

models were created for the following four retrofit strategies, which are shown in 

Figure B-1 

• Simply allowing the stiffener welds to break  

• Positively connecting the stiffener to the flanges 

• Cutting a 4.5 in slot into the stiffener 

• Cutting a 12.5 in slot into the stiffener  

 

B.1.1  Coarse Model 

The first model produced by Zhao was used to determine the transfer path of 

the forces due to a HS15 truck.  One, full-length span was modeled in the program, as 
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shown in Figure B-2.  The deck was assumed to act non-compositely.  The truck was 

moved incrementally along the length of the bridge for a total of 40 load cases.  The 

model only included loading of the westbound lane, since the bridge was assumed to 

act symmetrically.  For the Tuttle Creek Bridge, the effects of a westbound truck on 

girder A should be the same as an eastbound truck on girder B.  The coarse model 

generated the forces imposed on the web-gap region, but did not accurately predict 

the stresses within the gap.  A more precise model was created to determine these 

stresses.   

 

B.1.2  Sub-models 

After creating the coarse model, Zhao focused her analysis on both the upper 

and lower web-gap regions.  Separate submodels for each retrofit were created.  The 

submodels used the forces found in the coarse model to determine the stress 

distribution in the web-gap region.  An example of one of the submodels is shown in 

Figure B-3.  Stress values were found in the x, y and z direction for the girder web.  

Stresses in the x direction were found for the web stiffener.  The stress values for 

each retrofit were compared to determine the most effective repair option.    

 

B.1.3  Conclusions 

  Zhao’s models concluded that the positive attachment of the stiffener to the 

girder flange would be the most effective retrofit option considered.  The stress 

ranges were lowered approximately 90%.  These values are well below half the 

CAFT of 12 ksi for a C detail.  The constant amplitude fatigue threshold, CAFT, 

refers to the stress range in which the detail can endure 2 x 106 cycles.  A stress range 

of half of the CAFT can endure infinite fatigue cycles.  The other retrofit measures 

did have reductions in stress ranges, however their ranges were still above the CAFT 

threshold.  Crack initiation could still occur for these retrofits. 

Prior to load testing, the 4.5 in. slotted retrofit had already been cut from the 

tested stiffener.  This retrofit had been performed in 1986.  Therefore, the initial 
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condition for load testing was actually comparable to the 4.5 in. retrofit, rather than 

the original condition modeled by Zhao.  Since the condition of the web-gap tested 

matched the 4.5 in. retrofit, only results from this repair are displayed. 

Results from Zhao’s models were compared with those from the load test as 

discussed in Chapter 5.  Figure B-4 shows the vertical stress distribution for the web 

gap region of diaphragm F2.  This diaphragm was instrumented in the initial testing 

to measure differences between Zhao’s model and the measured stress.   

 

 

B.2  Other Bridges Investigated 

Zhao investigated four other Kansas bridges with fatigue cracking in addition 

to the Tuttle Creek Bridge.  She produced finite element models for each bridge to 

examine the specific fatigue problems.  She also theoretically tested proposed retrofit 

measures for each fatigue problem.  Although still distortion-induced, many of the 

other fatigue problems did not specifically relate to the fatigue problems experienced 

with the Tuttle Creek Bridge.  One exception is the Westgate Bridge, which is 

highlighted in this report due to its similarities with the Tuttle Creek Bridge.  The 

Arkansas River Bridge, another bridge investigated by Zhao, is discussed since a 

similar testing strategy was performed for it.    

 

B.2.1  Westgate Bridge     

The Westgate Bridge, a two-girder, floor/truss system, had developed fatigue 

cracks similar to the Tuttle Creek Bridge.  Distortion-induced stresses had created 

cracking in the upper web-gap region at diaphragm locations.  Horizontal cracks in 

the upper flange/web fillet welds were found on both side of the primary girder.  

Horseshoe cracks were found emanating from the top of the web stiffeners and 

entering into the girder web.  A cross-section of the bridge and a diagram of the 

cracking patterns can be found in Figure B-5 and B-6, respectively.  Repair methods 

used by KDOT included:  
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• Drilling stop holes at the ends of cracks 

• In positive moment regions, fillet welding the stiffener to the upper flange 

• In negative moment regions, adding stiffener plates to the exterior girder side 

Zhao concluded that the positive moment repair would be satisfactory, 

however, the negative moment repair could allow cracks to continue to propagate.  In 

addition to adding stiffener plates, Zhao recommended that removal of truss members 

would be necessary to improve the fatigue resistance in the negative moment region 

to an acceptable range.  She recommended further studies be performed to determine 

if truss removal would maintain lateral stability.  

     

B.2.2  Arkansas River Bridge  

The Arkansas River Bridge is a non-composite steel bridge with a 

girder/floor-beam/stringer load-transfer system.  Distortion-induced cracking had 

developed at many locations on the bridge.  Cracking was being induced by the 

rotation of the floor-beam under live load.  This rotation created horizontal cracks in 

the web stiffener and vertical cracks in the floor-beam.  KDOT requested a study of 

the fatigue problem in order to select a proper retrofit.   

Zhao modeled the bridge and offered a retrofit solution to KDOT.  Zhao also 

recommended a load-test be performed to compare theoretical stresses with in-service 

values.  The University of Kansas was selected to load-test the Arkansas River 

Bridge.   

The bridge was field tested by Kaise Haris of the University of Kansas.  Haris, 

a graduate research assistant, investigated the structure before and after retrofit.  His 

report, Field Instrumentation and Analysis of the Arkansas River Bridge, details his 

testing procedure and results.  Haris was responsible for measuring the stress 

differences due to the repair by using strain gages.  The measured stress values were 

used to predict the additional service life of the bridge.  By using the stress 

reductions, Haris estimated an additional service life between 25-65 years.     
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Although the bridges’ geometry was different, the investigation of the Tuttle 

Creek Bridge was patterned after the testing of the Arkansas River Bridge.  For both 

investigations, initial tests were used to determine the stress ranges prior to the 

retrofit.  Like the Arkansas River Bridge, the Tuttle Creek Bridge will also be tested 

after the retrofit.  After the repair of the fatigue-prone details, load testing will 

quantify the effectiveness of the repair.   

Despite having many similarities, the goals for testing the Tuttle Creek Bridge 

were not completely identical with the Arkansas River Bridge.  Unlike the Arkansas 

River Bridge test, the initial test of the Tuttle Creek Bridge was also used to assist in 

modeling of a second finite element model.  In addition to providing data for the 

initial condition of the bridge, data was acquired to improve upon the models created 

by Zhao.  A blending of these goals was used to properly locate the gages in areas of 

interest.  

The same field-testing equipment used for testing the Arkansas River Bridge 

was utilized in the first Tuttle Creek Bridge load test.  The testing setup and 

procedure, as detailed in Appendix C, was similar to the one used by Haris.  The 

field-testing experience of Haris was helpful when designing a testing strategy and 

during instrument installation.   
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Figure B-2  Coarse Model of Typical Span 
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Figure B-1  Retrofits for the Tuttle Creek Bridge Modeled by Zhao 
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Figure B-4  Upper Web-Gap Stress Distribution (4.5 in. Slot Repair) 

 
Figure B-3  Submodel of Web-Gap Region  (4.5 in. Slot Repair) 
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Figure B-6  Crack Growth in the Westgate Bridge 
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Figure B-5  Cross section of the Westgate Bridge 
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APPENDIX C INSTRUMENTATION PROCEDURE 
 

C.1  Gage Installation 

Even after utilizing time-reducing procedures, gage installation still took the 

majority of the instrument installation time.  All the gage installation materials were 

placed into small boxes for easy transportation.  The boxes were placed into plastic 

totes fastened to each of the snooper’s buckets.  Faster gage installation was 

accomplished by squeezing two individuals into one side of the bucket, while the 

snooper operator stood in the second bucket.  Although uncomfortable, having two 

individuals simultaneously working made the task go much more quickly.  Figure C-1 

shows the snooper basket with plastic totes.   

 

C.1.1  Gages  

In addition to one, 2 element, stacked 90° rosette, twenty-one single-element 

gages were utilized for this test.  The single element gages, designated CEA-06-

250UW-350, were purchased from Micro Measurements, Inc.  The 90° rosette, 

specified as CEA-06-250WQ-350, was also purchased from M&M, Inc.  A resistance 

of 350±0.3% ohms, instead of 120 ohms, was chosen to reduce the amount of heat 

build-up of the electrical resistance gages.  The gages had enlarged soldering tabs, 

which was essential when soldering in a windy environment.   

 

C.1.2  Grinding 

The first step in installation was the removal of the paint from the area for 

gaging.  This task was accomplished by using a braided, wire wheel mounted on a 

grinder.  A generator on the snooper powered all electrical equipment.  Paint, rust, 

and grime were easily removed with the heavy-duty wire wheel.  Grinding continued 

until the base metal was clearly visible.  A patch approximately four inches long by 

three inches wide was created for each gage location.  The ground surface appeared 

gray and dull.  Grinding was performed for all locations prior to further surface 
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preparation since grinding could easily contaminate other gage locations.  Dust masks 

and eye protection were used since the paint was lead-based.  After removing the 

paint, each gage location was labeled on the bridge using a permanent marker. 

 

C.1.3  Surface Preparation 

In addition to grinding, additional surface preparation was required.  The 

locations were first sprayed with degreaser and wiped clean with gauze pads.  M-Prep 

Conditioner A was liberally sprayed on the surface.  Both the conditioner and 

neutralizer solutions were transferred from their regular containers into window-

cleaner sprayers for easy application.  320-grit sandpaper was used to smooth the 

surface.  The surface was kept moist with the conditioner while sanding to prevent 

clogging of the sandpaper.  After sufficient sanding, the surface was scrubbed using 

cotton swabs.  Conditioner was continually sprayed on the surface during scrubbing.  

Scrubbing continued until the swabs showed no discoloration due to surface grime.  

Finally, the surface was wiped clean using cotton gauze pads.  Care was taken to 

prevent wiping from outside the cleansed surface, which would bring contaminates 

into the conditioned environment.  Sanding/ conditioning procedures were repeated 

using 400-grit sandpaper.  M-Prep Neutralizer was then sprayed on the surface.  The 

area was scrubbed with the cotton swabs and gauze pads using the same procedure as 

the conditioner.  Gage alignment marks were placed on the bonding surface with a 

permanent marker.       

 
C.1.4  Gage Placement     

After accomplishing an adequate bonding surface, the gages were taped onto 

the surface using PCT-2A cellophane tape.  Prior to installation, the gages were 

adhered to the tape in the lab.  After ensuring the tape strips was aligned parallel with 

the gage, the gage and tape strip were placed onto a rigid, plastic sheet for easy 

transporting.  After carefully removing the tape from the plastic sheet, the gages were 

positioned by lining up the gage alignment marks with the permanent marks on the 

bridge.  After adhering the taped gage to the surface, the tape was slowly folded back 
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onto itself, revealing the entire gage surface.  Approximately 1.5 in. of the tape was 

left adhered to the steel to maintain the proper alignment.  Peeling the tape back was 

performed at a low angle relative to the steel to prevent bending the gage.  The gage 

surface then was brushed with M-Bond 200 catalyst.  The brush, which is provided 

with the catalyst, was wiped ten times on the bottle lip prior to application.  After the 

small amount of catalyst was allowed to dry for one minute, M-Bond 200 adhesive 

was placed on the gage surface.  The tape was pulled back to a shallow angle with the 

bonding surface.  A small drop of adhesive was placed at the fold of the tape and the 

bonding surface, just outside the gage surface.  The tape was slowly lowered into 

contact with the bonding surface.  The adhesive was distributed over the gages by 

stroking the tape with a gauze pad.  Firm pressure was kept on the gauze pad for one 

minute. 

 

C.1.5  Soldering      

After adhering a gage to the bridge, another gage was worked on while the 

other set up.  This method allowed the gage to dry sufficiently before soldering.  

After the gage was sufficiently bonded to the girder, the cellophane tape was removed 

from the gage.  The tape was peeled back directly over itself, which prevented any 

upward tugging on the gage.  Drafting tape was placed on the metal surface next to 

the soldering tabs.  The drafting tape prevented any short-circuiting of the gage wires.  

A drop of soldering flux was placed onto a cotton swab and wiped upon the soldering 

tabs.  The shielded portion of the gage wire was duct taped next to the soldering tabs.  

The soldering iron was first cleaned on a damp sponge.  The tip was tinned with a 

small amount of solder, which was specified as 0.032 in. diameter, light-duty, rosin 

core solder.  With one hand, the exposed wires were held down to the soldering tab 

by a small dental pick.  The other hand dabbed the soldering iron onto the tabs, 

leaving a small mound encasing the exposed wires.  For consistency, the white/black 

wire was placed on the left-hand soldering tab, while the red wire was placed on the 

right.  The two wires were then bent into an arch to prevent any short-circuiting.  
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Installed gages without moisture protection are shown in Figure C-2.  M-Coat A 

Polyurethane was brushed onto the strain gage surface and on the exposed wires.  The 

polyurethane offered moisture protection and prevented short-circuiting.   M-Coat B, 

a rubber-based coating, was placed on the gage and exposed wire after the 

polyurethane had dried for 15 minutes.  After the M-Coat B was allowed to dry for 

one minute, marine goop, a contact adhesive and sealant, was liberally placed over 

the entire gage.         

 

C.2  Wire Preparation 

Shielded wiring, specified by Belden Electronics as 326DFV, was purchased 

from Newark InOne, connected the data acquisition system to the gages.  Shielded 

wire was used to reduce background electrical noise in the data.  Also, the shielding 

prevented any damage to the wires by handling.  The wire should be able to be reused 

for the post-retrofit test.  A larger wire gage was used to reduce heat build-up along 

the length of the wire.   

The wire was previously cut to length in the lab.  Spade terminals were 

soldered onto one end of each of the wires.  Two inches of the wire shielding was 

removed using a knife.  The three wire strands were stripped 0.5 in. from the ends.  

The spade terminals were slipped over the exposed wire.  Solder was placed on the 

top portion of the spade terminal, locking the exposed wire to the terminal.   

The wire shielding of the other end of the wire was stripped approximately 

two inches.  The braded wires contained within the shielded covering were each 

stripped 1.5 in.  One individual wire was taken from the white strand and left straight.  

The rest of the strand was wound around the bottom of the straight wire.  The entire 

black strand was also wound around the bottom of the single white wire in much the 

same fashion as the white wires.  A single red wire was also left straight, while the 

rest of the red wires were rapped around the only straight one.  The entire wire 

wrapping, for both the white/black wire and red wire, was bound with electrical tape.  

The electrical tape wrap extended from the shielded covering to approximately one 
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inch from the end of the single wire.  The inch of exposed wire provided room for 

soldering.  To ensure adequate protection of the wires, duct tape was wrapped around 

the electrical tape.              

 

C.3  Data Acquisition System 

The data acquisition system used for testing was a Waveform Data 

Acquisition and Analysis Module.  This wavebook, shown in Figure C-3 was 

connected to a Dell laptop computer, which stored the data collected.  The wavebook, 

specified as a WB516, interchanged with three WBK16/SSH modules.  Waveview 

acquisition software interfaced with the data acquisition equipment.  Three power 

converters were used to power the workbooks.  These three modules connected to the 

terminal strips of each gage with a cable.  The 23 terminal strips, configured in a 

quarter-bridge, were mounted on plywood to prevent tangling.  The spade terminals 

simply screwed into the terminal strips, as shown in Figure C-4.  The terminal strips 

were appropriately labeled to prevent any mix-ups. 

Since the roadway was composed of two narrow lanes and small shoulders, 

the data acquisition system setup could not safely be setup upon the bridge deck.  The 

testing vehicle and ambient traffic would have created a hazard for the data collector.  

One option would have been to place the data acquisition system at the bridge 

abutment.  This setup would have worked adequately, but the expense of the added 

length of wiring created a desire for a different approach.  The setup chosen was the 

placement of the data acquisition system upon pier 29.  The large pier had more than 

enough room to allow an individual to collect data.  A wooden table, as seen in Figure 

C-5, was constructed to safely hold the data acquisition system and laptop.  The table 

clamped onto the girder flange and effectively held the data acquisition equipment.  

All the strain gage wires were run to this location.  The wires were secured using zip 

ties and duct tape.   

Prior to testing, all equipment was tested for accuracy and precision.  By using 

a small beam in the lab, each channel for the data acquisition system was checked.  
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Strain gages were placed onto the beam.  In addition to testing the data acquisition 

system, gaging the beam provided valuable practice for actual gage installation.  After 

loading the beam with a known weight, the recorded strains were compared with 

calculated values.  All channels were deemed acceptable for testing.  After checking 

the data acquisition system, an amp meter was used to check all wiring to ensure 

adequate current flow.       

 

C.4  Accelerometer Installation 

Four accelerometers were placed on the structure to measure the vibrations 

induced by the truck.  The instruments, produced by Endevco, were specified as 

Isotron Modal 61A-500 piezoelectric accelerometers.  The accelerometers were 

connected to the WBK512.  This wavebook was connected to the rest of the data 

acquisition system and utilized the same Waveview software.  Plastic connectors, 

provided by the accelerometer manufacture, allowed easy installation of the 

instruments.  The accelerometers simply slid into the plastic connectors.  The 

connectors were mounted onto 3 in. x 2.25 in. sheet metal plates using silicon 

adhesive.  The steel plates were adhered to the surface of the girder by using silicon 

caulking, as seen in Figure C-6.   

The silicon caulking used to adhere the accelerometers was found to reduce 

high-frequency vibrations in lab studies.  Different dampers were used under the 

accelerometers in an effort to reduce high frequency vibrations.  Each accelerometer 

was mounted on the same beam used to test the strain gages.  Free vibration was 

induced in the beam, and the accelerations were recorded.  The frequency of the 

vibrating beam was measured by the accelerometers and was compared with the 

theoretical natural frequency.  All accelerometers were shown to have comparable 

accelerations and frequencies.   The instruments were deemed acceptable for testing.      
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Figure C-2  Installed Gage  (Prior to Environmental Protection) 

 
 

Figure C-1  Snooper Basket 
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Figure C-4  Terminal Strips 

 
 

Figure C-3  Data Acquisition System 
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Figure C-5  Data Collection Station 

 
 

Figure C-6  Installed Accelerometer 
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APPENDIX D DYNAMIC BEHAVIOR 
 

 Along with studying the stresses within the structure, the dynamic behavior of 

the bridge also was examined.  Studying the dynamic behavior of the bridge, such as 

the dynamic amplification factor and vibration frequencies at points along a span, 

should assist in creating a more accurate finite element model.   

The dynamic amplification factor, a ratio of the dynamic effect versus the 

static effect, was found from the strain gage readings.  Since the loadings from the 

truck were performed at varying speeds, any variations in stresses due to truck speed 

could be easily determined.  Also, accelerometers were placed at four positions on the 

bridge.  The accelerometers measured vibration frequencies induced by the bridge.  

These frequencies would be helpful when modifying finite element models.   

    

D.1   Dynamic Amplification (Strain Gages) 

A moving vehicle should theoretically apply larger stress magnitudes than the 

same vehicle idling.  The ratio of these stresses is defined as the dynamic 

amplification factor.  AASHTO design manuals require engineers to apply a dynamic 

amplification factor of 15% to all fatigue calculations (AASHTO LRFD 1994).  This 

amplification is due to imperfections of the bridge deck that may cause bouncing of 

the vehicle.  In Zhao’s finite element model, she used a 10% increase in load due to 

impact.  The span gaged was located near the abutment, which had a noticeable 

bumpy transition from the pavement to the bridge deck.  A sizeable increase in stress 

was expected for vehicles traveling at higher speeds. 

For this experiment, however, a comparison of the stresses of the gages did 

not indicate much difference at varying speeds.  The vehicle’s speed did not 

significantly alter the stress produced within the bridge.  Examples of this low 

variance are displayed with a gage-stress history in Figure D-1.  The data indicates 

that the use of a dynamic amplification factor may be conservative when calculating 

theoretical stresses in the bridge.  A slight difference can be observed when the 
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moving average is used.  This difference, however, is not due to the varying speeds.  

The moving average flattens out the higher speeds more since it has fewer data points 

within the peaks.  Therefore, the 65 mph stress would appear lower than the 5 mph 

stress when using a moving average, but they are actually relatively the same value 

prior to using the moving average.  Based on the results from this test, future finite 

element models should use a dynamic amplification factor of one for true accuracy. 

 

D.2   Accelerometers 

 Accelerometers were helpful in understanding the dynamic behavior of the 

bridge.  The goal for the accelerometers was to measure vibration frequencies of the 

bridge.  These natural frequencies can be utilized to improve future finite element 

models.  Models can be improved by adjusting structural variables, such as stiffness, 

to produce the measured frequencies.  Another reason for studying the dynamic 

properties of the bridge is the possibility of resonance.  If the forces induced by the 

live load approached the natural frequency, the bridge would be excited.  Excitation 

would cause an increase in girder deflections.  Since the fatigue cracking for this 

bridge is caused by distortion, any additional deflection due to vibration would be 

detrimental.  Therefore, studying the frequencies of the bridge may assist in 

preventing further fatigue damage.   

 

D.2.1   Instrument Locations 

Four accelerometers were used to measure dynamic properties of the bridge.  

Figure D-2 displays the positions of the accelerometers.  Details of installation of the 

accelerometers can be found in Appendix C.  Accelerometer readings were taken in 

addition to the strain gage tests.  Six additional truck passes were performed with 

only data collected from the accelerometers.  The data was recorded and brought back 

to the University of Kansas for analysis.   
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D.2.2   Accelerometer Analysis 

All accelerometers calculations were performed in MathCAD with the add-on 

package, Signal Processing.  The data was exported into MathCAD from the original 

NotePad files.  The accelerometer readings were integrated twice to determine the 

deflection of the girders.  A moving average was incorporated to reduce the high 

frequency noise, as shown in Figure D-3.  The Signal Processing add-on was utilized 

to determine the modes of vibration.  A Fast Fourier Transform, which is a Signal 

Processing function, was used to measure the frequency distribution of the 

acceleration data.  An example of a frequency distribution graph is displayed in 

Figure D-4.  The FFT window was only on the acceleration data after the peak 

acceleration.  This data window was assumed to be during free-vibration, which 

makes the frequency distribution much less noisy than during forced vibration.   

In order to visualize the data collected, an animation of the displacements was 

created in MathCAD.  All four displacement readings were placed on a 3D graph.  

After a time variable was set, MathCAD cycled through all the data and created an 

animation.  The 3D model effectively demonstrated the movement of half the span 

under truck loading.  Figure D-5 displays the 3D motion of the bridge under loading.  

Twisting of the bridge can be observed in the model.        

 

D.2.3   Results 

Results of the accelerometers clearly indicated that the bridge is vibrating at 

particular natural frequencies.  This report does not speculate on the mode shapes 

associated with these natural frequencies due to uncertainties about the torsional 

frequencies.  The most noticeable frequencies for each loading are presented in Table 

D-1.  The two most abundant frequencies occur at approximately 2.4 and 3.6 Hertz.  

These frequencies are comparable with the theoretical frequency of 3.2 Hz for a four- 

span, continuous beam.  The measured frequencies can be compared with the finite 

element models.  The data collected can also be evaluated with the frequencies 

measured after the retrofit.  Since the retrofit should stiffen the structure, the repair 
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should alter the frequencies.  An increase of the natural frequency of the bridge would 

be expected after the retrofit. 
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65 mph 1.45 1.45
2.27 2.27
3.64 3.64

45 mph 2.06 -
3.67 -

- -
25 mph 2.35 2.35

3.66 3.66
- -

65 mph 1.45 2.55
2.55 3.10
3.64 3.64

45 mph 2.40 2.40
3.64 3.11
4.22 3.64

25 mph 1.61 2.26
2.26 2.99
3.64 3.64

Midspan Quarterspan

Eastbound

Westbound

Midspan Quarterspan

 
 

Table D-1  Measured Frequencies (Hz) 

Figure D-1  Strain History (Gage 3) 
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Figure D-4  Frequency Domain 
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Figure D-3  Bridge Vibration 
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Figure D-5  3D Model from Acceleration Data 
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APPENDIX E  

RECOMMENDATIONS FOR POST-RETROFIT TESTING 
  

Retrofitting of the Tuttle Creek Bridge is scheduled for the summers of 2005 

and 2006.  A post-retrofit test will be conducted after the repairs have been 

performed.  The test results from this test will be compared with those values 

obtained during the pre-retrofit test.  After researching different methods of testing, 

some suggestions are presented to assist the future tester of the bridge.  Although this 

test was successful, improvements can always be made to simplify testing and to 

acquire more insightful data.   

 

E.1  Bridge Monitoring 

 Many bridge testing projects utilized ambient traffic to load the structure.  For 

this test, only a pre-weighed truck was used.  Previous testers of bridges have 

configured their data acquisition systems to record only stresses imposed by truck 

traffic.  A similar system could be setup on the bridge and left for several months.  

Ambient traffic would give a designer a better idea of the stress levels a structure is 

actually undergoing.   

Of particular interest is the daily truck traffic on this bridge.  The bridge is not 

a large highway crossing where truck weights can be easily enforced.  The Tuttle 

Creek Bridge is located in a region of farming; thus overloaded, farming trucks may 

be crossing the bridge.  These vehicles would create a much higher stress range than 

what an H15 vehicle would theoretically.  An interesting comparison would be to 

compare the stresses created by a standard H15 truck with the most common stress 

level measured under ambient traffic.  If many overloads are occurring, the stress 

differences could be significant.      
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E.2  Gage Locations 

Post-retrofit testing should be used to determine the effectiveness of the 

retrofit.  Some of the gage locations used in the pre-retrofit test should be reused to 

demonstrate the stress reduction created by the repair.  Gages placed in the web-gap 

regions should be reused in order to measure the reduction of stress created by the 

positive attachment of the connection stiffener to the girder flanges.  The gage placed 

near the longitudinal stiffener should also be reused to quantify the effectiveness of 

the repair.   

Many gage locations will not need to be used again.  Gages placed on the 

braces were used to assist the future finite element modeling.  The information 

gathered from these gages should not change much before and after the retrofit.  

Gages placed on the upper and lower flanges, which were used to measure composite 

action, do not need to be reused.  The rosette placed on the gusset plate could be 

reused, but the bolts being placed through the plate may inhibit placement at the same 

location.  

For this test, 23 gages was a proper amount to gather information about the 

structure.  If more than 23 gages need to be installed for the next test, the data 

acquisition system will be overloaded.  One solution to this dilemma is to leave the 

extra gages disconnected and swap them in and out during each truck pass.  

Installation and load testing will take longer, but more information about the structure 

can be obtained. 

 

E.3  Background Noise Reduction 

During the testing, an abundance of noise was noticed in gages with low stress 

ranges.  For gages with higher stresses, the noise was unnoticeable due to their large 

magnitude.  Although applying a moving average smoothes out the data, researching 

types of noise reduction measures may be beneficial.   
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To solve this problem, the source of the noise must be identified.  For the pre-

retrofit test, the particular source of the noise was not easily determined.  Since the 

data acquisition system was positioned high above the ground, perhaps improper 

grounding of the system is a cause of the noise.  The wind on the bridge may have 

created the noise.  Testing was performed on a relatively calm day for Central 

Kansas, however the wind was gusting at times.  Obviously, there is no solution for 

this noise, but it could be a source. 

Another possibility for the noise is the generator used for power.  The 

generator was required to power the data acquisition system and the laptop.  The 

generator was positioned on the abutment as far as possible from the gages.  

Vibrations from the generator could have created background noise.  Using a car 

battery and an inverter could be another method of powering the system.   

  

E.4  Data Collection Time 

Data collection time for the Tuttle Creek Bridge testing should have been 

extended to capture more loadings of the structure.    The peak stresses were captured, 

however, the data collecting was not always ended at zero strain.  This prevented 

permanent strain from being observed.  Loading distance was from the abutment to 

the first hinge, a total of 552 feet.  Increasing the loading distance until the second 

hinge is recommended. 

 

 

 

 107 



APPENDIX F CALCULATIONS  
  

This chapter includes details of the analysis procedures used for this test.  

Since so much data was collected, an easier method of analyzing was used to expedite 

the process.  By using macros, the data was much more organized and easier to 

interpret.    

 
F.1  Strain Gage Analysis     

After acquiring the data, the strain gage data was transferred from Notepad to 

Microsoft Excel files.  Visual Basic programming, an Excel tool, was used to analyze 

the data much quicker than normal spreadsheet analysis.  Macros were produced 

which duplicated commands for each file.  Instead of altering each file individually, 

one file change could be recorded as a macro.  The recorded macro could be used to 

reproduce the same commands on the other files.  Visual Basic code was written to 

produce graphs by simply selecting the data of interest.  Userforms were also added 

with the code to improve the user interface.  Userforms are boxes that appear on 

screen that have controls to interface with Microsoft Excel and execute Visual Basic 

code.  An example of a userform used during analysis is shown in Figure F-1.   

The use of userforms allowed data to be sorted very simply.  By selecting 

from the easy-to-use userforms, particular files of interest could be opened.  Also, the 

selection of figures inside a userform could be used to alter calculations performed by 

Visual Basic.  A common choice for the userforms is the selection of a range for the 

moving average.  Other calculations performed by Visual Basic included the 

conversion from strain to stress, the zeroing of data, and outputting maximum and 

minimum points.  

Userforms were designed as branch system.  Each selection would create 

another userform to appear based on what selected in the prior userform.  This 

procedure would continue until the desired graph was produced.  The first userform 

allowed the user to pick whether to view a particular load case, a single gage history, 
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or accelerometer readings.  The “load case” branch allowed users to choose a 

particular load case.  By selecting from a list of the gages, any of the gage readings 

from this load case could be accessed.  After selecting a single gage or a multitude of 

gages, a graph would be instantly produced displaying the desired data.  Visual Basic 

allowed graphs of different gages to be shown simultaneously to compare and 

contrast values for easy interpretation.   

The “gage history” branch allowed users to choose a particular gage to view.  

A graph displaying the entire stress history of a gage or a single truck event could be 

produced.  Toggle buttons were added to the userform to allow a user to choose 

between eastbound or westbound stress histories.   

 
F.2  Moving Average 

Data collection always has elements of noise that obstruct the data of interest.  

High frequency noise, created by electrical static, is the most common form of scatter 

in field-testing.  For this project, vibrations induced by the truck engine and electric 

generator also created scatter.  For high strain values, such as in the web-gap regions, 

this noise is less noticeable.  However, for most of the other gages, the scatter 

interfered with the data of interest.  Because of this interference, a moving average 

was incorporated in the analysis of the data.  Figure F-2 displays the benefit of the 

moving average in the analysis of the data. 

A moving average simply replaces a data point with the average of a specified 

range of points following it.  The moving average formula is shown below.    

 

∑
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Where: 

 Moving average data point =+1tA

    Recorded data point =+− 1its
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  n = Number of preceding data points specified 

 

F.3  Fatigue Calculations  

Current AASHTO LRFD Specifications place steel bridge details into eight 

categories of fatigue resistance.  The empirical-based categories relate the number of 

cycles a detail can endure at a particular stress cycle without crack initiation, as 

shown in Figure F-3.  For the field test, a typical truck was used to induce stress 

cycles.  If the amount of truck traffic is known, the fatigue life of the design detail can 

be estimated.  A detail’s fatigue resistance is based on the constant amplitude fatigue 

threshold, CAFT, which is the stress range that the detail can withstand 2 x 106 

cycles.  If the detail’s stress cycles are below ½ CAFT, the design life of the detail is 

considered to be infinite. 

 

            
( ) ( )SLADTT

AN 3365 σ
γ

∆⋅
=          (F-2) 

 
  Nγ = Fatigue Life 
  Α = Fatigue Category Constant 
  ∆σ = stress range (ksi) 
  ADTT = Average daily truck traffic  
 

 (AASHTO 2000) 

 

When designing a fatigue-resistant detail, engineers load the structure with an 

HS15 truck with a gross weight of 54 kips.  The vehicle models an eighteen-wheeler 

with 30 feet between the two rear wheel axles.  Yuan Zhao’s finite element model 

utilized an HS15 truck.  This design truck differed slightly from the truck used to load 

the structure during the field test.  The vehicle used for the testing was a three-axle 

dump truck, also with a weight of 54 kips, but with a rear-axle spacing of 

approximately 4.5 feet.  Theoretically, the dump truck used should create higher 

stress cycles, since the weight is more concentrated upon the bridge.  This assumption 

makes the calculated fatigue life conservative.  
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Three separate details were of interest in the Tuttle Creek Bridge:  the web-

gap region, the gusset plate connection, and the longitudinal stiffener.  Fatigue 

calculations were performed on the details to estimate the fatigue life.  After the 

retrofit, the recorded stresses will be used to determine the new fatigue life.  

Hopefully, the retrofits performed will significantly extend the fatigue lives of the 

details. 
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