63 research outputs found

    Pharyngeal function after carotid endarterectomy

    Get PDF

    Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2.

    Get PDF
    In migraine and other primary headaches there is a strong vascular component. Besides the trigeminovascular components some of the associated symptoms point to the involvement of brain stem regions. The central limb of the trigeminal vascular pathway is its projection to the trigeminal nucleus caudalis (TNC) and to the C1-C2 levels of the spinal cord. The aim of the present study was to demonstrate the occurrence of some neurotransmitters in these regions in man. In both the TNC and in the Rexed's laminae I and II of the dorsal horns at the C1 and C2 levels there were numerous substance P immunoreactive fibres. Fibres containing calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP) were moderately dense in number. Fibres containing vasoactive intestinal peptide (VIP) or nitric oxide synthase (NOS) were not seen in the TNC or at the C1 and C2 levels of the spinal cord

    Diminished levels of nasal S100A7 (psoriasin) in seasonal allergic rhinitis: an effect mediated by Th2 cytokines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100A7 is an antimicrobial peptide involved in several inflammatory diseases. The aim of the present study was to explore the expression and regulation of S100A7 in seasonal allergic rhinitis (SAR).</p> <p>Methods</p> <p>Nasal lavage (NAL) fluid was obtained from healthy controls before and after lipopolysaccharide (LPS) provocation, from SAR patients before and after allergen challenge, and from SAR patients having completed allergen-specific immunotherapy (ASIT). Nasal biopsies, nasal epithelial cells and blood were acquired from healthy donors. The airway epithelial cell line FaDu was used for <it>in vitro </it>experiments. Real-time RT-PCR and immunohistochemistry were used to determine S100A7 expression in nasal tissue and cells. Release of S100A7 in NAL and culture supernatants was measured by ELISA. The function of recombinant S100A7 was explored in epithelial cells, neutrophils and peripheral blood mononuclear cells (PBMC).</p> <p>Results</p> <p>Nasal administration of LPS induced S100A7 release in healthy non-allergic subjects. The level of S100A7 was lower in NAL from SAR patients than from healthy controls, and it was further reduced in the SAR group 6 h post allergen provocation. In contrast, ASIT patients displayed higher levels after completed treatment. S100A7 was expressed in the nasal epithelium and in glands, and it was secreted by cultured epithelial cells. Stimulation with IL-4 and histamine repressed the epithelial S100A7 release. Further, recombinant S100A7 induced activation of neutrophils and PBMC.</p> <p>Conclusions</p> <p>The present study shows an epithelial expression and excretion of S100A7 in the nose after microbial stimulation. The levels are diminished in rhinitis patients and in the presence of an allergic cytokine milieu, suggesting that the antimicrobial defense is compromised in patients with SAR.</p

    Neurobiology in primary headaches.

    Get PDF
    Primary headaches such as migraine and cluster headache are neurovascular disorders. Migraine is a painful, incapacitating disease that affects a large portion of the adult population with a substantial economic burden on society. The disorder is characterised by recurrent unilateral headaches, usually accompanied by nausea, vomiting, photophobia, and/or phonophobia. A number of hypothesis have emerged to explain the specific causes of migraine. Current theories suggest that the initiation of a migraine attack involves a primary central nervous system (CNS) event. It has been suggested that a mutation in a calcium gene channel renders the individual more sensitive to environmental factors, resulting in a wave of cortical spreading depression when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Genom wide scans have been performed in migraine with susceptibility regions on several chromosomes some are associated with altered calcium channel function. With positron emission tomography (PET), a migraine active region has been pointed out in the brainstem. In cluster headache, PET studies have implicated a specific active locus in the posterior hypothalamus. Both migraine and cluster headache involve activation of the trigeminovascular system. In support, there is a clear association between the head pain and the release of the neuropeptide calcitonin gene-related peptide (CGRP) from the trigeminovascular system. In cluster headache there is, in addition, release of the parasympathetic neuropeptide vasoactive intestinal peptide (VIP) that is coupled to facial vasomotor symptoms. Triptan administration, activating the 5-HT1B/ (ID) receptors, causes the headache to subside and the levels of neuropeptides to normalise, in part through presynaptic inhibition of the cranial sensory nerves. These data suggest a central role for sensory and parasympathetic mechanisms in the pathophysiology of primary headaches. The positive clinical trial with a CGRP receptor antagonist offers a new promising way of treatment

    Amylin: Localization, Effects on Cerebral Arteries and on Local Cerebral Blood Flow in the Cat

    No full text
    Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Timeļæ½PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloraloseļæ½anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors

    Neurotransmitter candidates in the vomeronasal organ of the rat.

    No full text
    Conclusion: The rich supply of nerve fibres containing neurotransmitters, particularly those containing SP and CGRP, is suggested to be a prerequisite for the recognition of chemical irritants as part of a chemical sense. Objective: The present study was designed to examine the distribution of different neurotransmitter candidates in the vomeronasal organ (VNO) of rats. Materials and methods: The distribution of neurotransmitter candidates was studied in the vomeronasal organ of the rat using immunocytochemistry. Results: The neuronal marker protein gene product 9.5 revealed a very rich supply of nerve fibres within and beneath the sensory epithelium, around blood vessels and glands. A moderate supply of nerve fibres containing tyrosine hydroxylase and neuropeptide Y was mostly seen close to blood vessels. Numerous nerve fibres containing nitric oxide synthase and vasoactive intestinal peptide were seen around blood vessels and in the subepithelial layer, with occasional fibres within the epithelium. Only few fibres located in the subepithelial layer contained pituitary adenylate cyclase activating peptide. Nerve fibres containing substance P and in particular calcitonin gene-related peptide were abundant in and beneath the epithelium and scattered in the submucosal layers around blood vessels
    • ā€¦
    corecore