32 research outputs found
Future land-use change in the Netherlands: an analysis based on a chain of models
Analyses of the impact of European policies on agricultural change are most often based on agricultural sector models. Such models have their limitations: they cannot specify the interaction between agriculture and the rest of the economy, and their spatial dimension is usually limited. Land use simulation models, on the other hand, usually depend on other models for assessing the demand for land. The consistency of those models with the assumptions and databases of the land use model is often not examined. This article reports on a research project where the links between a macroeconomic model, an agricultural sector model and a land use model were explicitly explored in order to arrive at a consistent model chain. This integrated framework was put to the test by applying it to two contrasting scenarios, which compare impact on agricultural incomes, land use and land management.land use, CAP, agricultural policy analyses, Netherlands, Agricultural and Food Policy, Land Economics/Use,
In situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy
Recently, solution NMR-based approaches have been developed that represent useful new tools for the in situ characterization of the capping ligand in colloidal nanocrystal dispersions. So far, this development has focused mainly on tightly bound ligands (no exchange) or ligands in slow exchange with the nanocrystal surface. In such systems, the ligand can be identified and its amount and interaction quantified via 1D (1)H NMR, (1)H-(13)C HSQC, and DOSY spectra. Here, we explore the case where capping ligands are in fast exchange with the nanocrystal surface. Using dodecylamine-stabilized CdTe (Q-CdTeIDDA) and octylamine-stabilized ZnO (Q-ZnOIOctA) nanoparticles, we first show that the NMR methods developed so far fail to evidence the bound ligand when the effect of the latter on the exchange-averaged parameters is marginalized by an excess of free ligand. Next, transfer NOE spectroscopy, a well-established technique in biomolecular NMR, is introduced to demonstrate and characterize the interaction of a ligand with the nanocrystal surface. Using Q-PbSe nanocrystals capped with oleic acids as a reference system, we show that bound and free ligands have strongly different NOE spectra wherein only bound ligands develop strong and negative NOES. For the Q-CdTeIDDA system, transfer NOE spectra show a similar rapid appearance of strong, negative NOES, thereby unambiguously demonstrating that DDA molecules spend time at the nanocrystal surface. In the case of Q-ZnOIOctA, where a more complex mixture is analyzed, transfer NOE spectroscopy allows distinguishing capping from noncapping molecules, thereby demonstrating the screening potential offered by this technique for colloidal quantum dot dispersions
High-Temperature Luminescence Quenching of Colloidal Quantum Dots
Thermal quenching of quantum dot (QD) luminescence is important for application in luminescent devices. Systematic studies of the quenching behavior above 300 K are, however, lacking. Here, high-temperature (300–500 K) luminescence studies are reported for highly efficient CdSe core–shell quantum dots (QDs), aimed at obtaining insight into temperature quenching of QD emission. Through thermal cycling (yoyo) experiments for QDs in polymer matrices, reversible and irreversible luminescence quenching processes can be distinguished. For a variety of core–shell systems, reversible quenching is observed in a similar temperature range, between 100 and 180 °C. The irreversible quenching behavior varies between different systems. Mechanisms for thermal quenching are discussed
Magnetic quantum dots for multimodal imaging
Multimodal contrast agents based on highly luminescent quantum dots (QDs) combined with magnetic nanoparticles (MNPs) or ions form an exciting class of new materials for bioimaging. With two functionalities integrated in a single nanoparticle, a sensitive contrast agent for two very powerful and highly complementary imaging techniques [fluorescence imaging and magnetic resonance imaging (MRI)] is obtained. In this review, the state of the art in this rapidly developing field is given. This is done by describing the developments for four different approaches to integrate the fluorescence and magnetic properties in a single nanoparticle. The first type of particles is created by the growth of heterostructures in which a QD is either overgrown with a layer of a magnetic material or linked to a (superpara, or ferro) MNP. The second approach involves doping of paramagnetic ions into QDs. A third option is to use silica or polymer nanoparticles as a matrix for the incorporation of both QDs and MNPs. Finally, it is possible to introduce chelating molecules with paramagnetic ions (e.g., Gd-DTPA) into the coordination shell of the QDs. All different approaches have resulted in recent breakthroughs and the demonstration of the capability of bioimaging using both functionalities. In addition to giving an overview of the most exciting recent developments, the pros and cons of the four different classes of bimodal contrast agents are discussed, ending with an outlook on the future of this emerging new fiel
High-Temperature Luminescence Quenching of Colloidal Quantum Dots
Thermal quenching of quantum dot (QD) luminescence is important for application in luminescent devices. Systematic studies of the quenching behavior above 300 K are, however, lacking. Here, high-temperature (300–500 K) luminescence studies are reported for highly efficient CdSe core–shell quantum dots (QDs), aimed at obtaining insight into temperature quenching of QD emission. Through thermal cycling (yoyo) experiments for QDs in polymer matrices, reversible and irreversible luminescence quenching processes can be distinguished. For a variety of core–shell systems, reversible quenching is observed in a similar temperature range, between 100 and 180 °C. The irreversible quenching behavior varies between different systems. Mechanisms for thermal quenching are discussed
Development of [18F]-labeled pyrazolo[4,3-e]-1,2,4- triazolo[1,5-c]pyrimidine (SCH442416) analogs for the imaging of cerebral adenosine A2A receptors with positron emission tomography
Cerebral adenosine A2A receptors (A2ARs) are attractive therapeutic targets for the treatment of neurodegenerative and psychiatric disorders. We developed high affinity and selective compound 8 (SCH442416) analogs as in vivo probes for A2ARs using PET. We observed the A2AR-mediated accumulation of [18F]fluoropropyl ([18F]-10b) and [18F]fluoroethyl ([18F]-10a) derivatives of 8 in the brain. The striatum was clearly visualized in PET and in vitro autoradiography images of control animals and was no longer visible after pretreatment with the A2AR subtype-selective antagonist KW6002. In vitro and in vivo metabolite analyses indicated the presence of hydrophilic (radio)metabolite(s), which are not expected to cross the blood-brain-barrier. [18F]-10b and [18F]-10a showed comparable striatum-to- cerebellum ratios (4.6 at 25 and 37 min post injection, respectively) and reversible binding in rat brains. We concluded that these compounds performed equally well, but their kinetics were slightly different. These molecules are potential tools for mapping cerebral A2ARs with PET.status: publishe
Future land-use change in the Netherlands: an analysis based on a chain of models
Analyses of the impact of European policies on agricultural change are most often based on agricultural sector models. Such models have their limitations: they cannot specify the interaction between agriculture and the rest of the economy, and their spatial dimension is usually limited. Land use simulation models, on the other hand, usually depend on other models for assessing the demand for land. The consistency of those models with the assumptions and databases of the land use model is often not examined. This article reports on a research project where the links between a macroeconomic model, an agricultural sector model and a land use model were explicitly explored in order to arrive at a consistent model chain. This integrated framework was put to the test by applying it to two contrasting scenarios, which compare impact on agricultural incomes, land use and land management
Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots
Colloidal quantum dots (QDs) show great promise as LED phosphors due to their tunable narrow-band emission and ability to produce high-quality white light. Currently, the most suitable QDs for lighting applications are based on cadmium, which presents a toxicity problem for consumer applications. The most promising cadmium-free candidate QDs are based on InP, but their quality lags much behind that of cadmium based QDs. This is not only because the synthesis of InP QDs is more challenging than that of Cd-based QDs, but also because the large lattice parameter of InP makes it difficult to grow an epitaxial, defect-free shell on top of such material. Here, we propose a viable approach to overcome this problem by alloying InP nanocrystals with Zn2+ ions, which enables the synthesis of InxZnyP alloy QDs having lattice constant that can be tuned from 5.93 Å (pure InP QDs) down to 5.39 Å by simply varying the concentration of the Zn precursor. This lattice engineering allows for subsequent strain-free, epitaxial growth of a ZnSezS1-z shell with lattice parameters matching that of the core. We demonstrate, for a wide range of core and shell compositions (i.e.; varying x, y, and z), that the photoluminescence quantum yield is maximal (up to 60%) when lattice mismatch is minimal
Tuning the Lattice Parameter of InxZnyP for Highly Luminescent Lattice-Matched Core/Shell Quantum Dots
Colloidal quantum dots (QDs) show great promise as LED phosphors due to their tunable narrow-band emission and ability to produce high-quality white light. Currently, the most suitable QDs for lighting applications are based on cadmium, which presents a toxicity problem for consumer applications. The most promising cadmium-free candidate QDs are based on InP, but their quality lags much behind that of cadmium based QDs. This is not only because the synthesis of InP QDs is more challenging than that of Cd-based QDs, but also because the large lattice parameter of InP makes it difficult to grow an epitaxial, defect-free shell on top of such material. Here, we propose a viable approach to overcome this problem by alloying InP nanocrystals with Zn2+ ions, which enables the synthesis of InxZnyP alloy QDs having lattice constant that can be tuned from 5.93 Å (pure InP QDs) down to 5.39 Å by simply varying the concentration of the Zn precursor. This lattice engineering allows for subsequent strain-free, epitaxial growth of a ZnSezS1-z shell with lattice parameters matching that of the core. We demonstrate, for a wide range of core and shell compositions (i.e.; varying x, y, and z), that the photoluminescence quantum yield is maximal (up to 60%) when lattice mismatch is minimal