2,067 research outputs found

    Interactions and superconductivity in heavily doped MoS2

    Get PDF
    We analyze the microscopic origin and the physical properties of the superconducting phase recently observed in MoS2_2. We show how the combination of the valley structure of the conduction band, the density dependence of the screening of the long range Coulomb interactions, the short range electronic repulsion, and the relative weakness of the electron-phonon interactions, makes possible the existence of a phase where the superconducting order parameter has opposite signs in different valleys, resembling the superconductivity found in the pnictides and cuprates

    Developing numerical libraries in Java

    Full text link
    The rapid and widespread adoption of Java has created a demand for reliable and reusable mathematical software components to support the growing number of compute-intensive applications now under development, particularly in science and engineering. In this paper we address practical issues of the Java language and environment which have an effect on numerical library design and development. Benchmarks which illustrate the current levels of performance of key numerical kernels on a variety of Java platforms are presented. Finally, a strategy for the development of a fundamental numerical toolkit for Java is proposed and its current status is described.Comment: 11 pages. Revised version of paper presented to the 1998 ACM Conference on Java for High Performance Network Computing. To appear in Concurrency: Practice and Experienc

    Extreme-value statistics of stochastic transport processes

    Get PDF
    We derive exact expressions for the finite-time statistics of extrema (maximum and minimum) of the spatial displacement and the fluctuating entropy flow of biased random walks. Our approach captures key features of extreme events in molecular motor motion along linear filaments. For one-dimensional biased random walks, we derive exact results which tighten bounds for entropy production extrema obtained with martingale theory and reveal a symmetry between the distribution of the maxima and minima of entropy production. Furthermore, we show that the relaxation spectrum of the full generating function, and hence of any moment, of the finite-time extrema distributions can be written in terms of the Marcenko-Pastur distribution of random-matrix theory. Using this result, we obtain efficient estimates for the extreme-value statistics of stochastic transport processes from the eigenvalue distributions of suitable Wishart and Laguerre random matrices. We confirm our results with numerical simulations of stochastic models of molecular motors

    Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors

    Get PDF
    We have measured the transition process from the high to low resistivity states, i.e., the reset process of resistive switching based memristors based on Ni/HfO2/Si-n+ structures, and have also developed an analytical model for their electrical characteristics. When the characteristic curves are plotted in the current-voltage (I-V) domain a high variability is observed. In spite of that, when the same curves are plotted in the charge-flux domain (Q-phi), they can be described by a simple model containing only three parameters: the charge (Qrst) and the flux (rst) at the reset point, and an exponent, n, relating the charge and the flux before the reset transition. The three parameters can be easily extracted from the Q-phi plots. There is a strong correlation between these three parameters, the origin of which is still under study

    Enhanced thermal stability and nanoparticle-mediated surface patterning: Pt/TiO2(110)

    Get PDF
    This letter reports (i) the enhanced thermal stability (up to 1060 degrees C) against coarsening and/or desorption of self-assembled Pt nanoparticles synthesized by inverse micelle encapsulation and deposited on TiO2(110) and (ii) the possibility of taking advantage of the strong nanoparticle/support interactions present in this system to create patterned surfaces at the nanoscale. Following our approach, TiO2 nanostripes with tunable width, orientation, and uniform arrangement over large surface areas were produced

    Extinction time in growth models subject to binomial catastrophes

    Full text link
    Populations are often subject to catastrophes that cause mass removal of individuals. Many stochastic growth models have been considered to explain such dynamics. Among the results reported, it has been considered whether dispersion strategies, at times of catastrophes, increase the survival probability of the population. In this paper, we contrast dispersion strategies comparing mean extinction times of the population when extinction occurs almost surely. In particular, we consider populations subject to binomial catastrophes, that is, the population size is reduced according to a binomial law when a catastrophe occurs. Our results show which is the best strategy (dispersion or non-dispersion) depending on model parameter values.Comment: 15 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:2109.1099
    • 

    corecore