50 research outputs found

    Formación de nuevas estructura moleculares en películas ultrafinas.Preparación de dispositivos electroluminiscentes y fotovoltaicos

    Get PDF
    The evolution of technology has to meet the energetically needs of actual societies and be respectful for the environment through a sustainable and efficient use of energy. In this context organic electronic represents a promising technology. Organic semiconductors are abundant, easy to fabricate and their properties can be easily tuned. In the form of thin films, they exhibit interesting electronic and magnetic properties, which in many cases result from the specific molecular organization and interactions of their components. A low cost organic alternative to the classical lighting systems are the light-emitting electrochemical cells (LECs),. They require only one ionic emitting layer, are processed at ambient conditions and are compatible with air stable electrodes, avoiding rigorous encapsulation in inert atmosphere. Recently, LECs have shown high luminance, high efficiencies and relatively high stabilities when specific emitters were used. However, their slow response, their selflimiting nature and the absence of efficient white light emission, remain the limitations preventing their application in general lighting. On the other hand, organic thin films can also be used in photovoltaics, which represents an abundant and low cost alternative to the silicon established solar cell technology. Nevertheless, their record efficiency (~ 12%) is still below the requirements for a massive application. This suggests the need of new materials and configurations to achieve efficiencies close to those obtained in inorganic Si-cells (20 - 25%) but reducing the manufacturing costs. In this Thesis, thin films are studied from two different points of view: as organized ultra-thin systems containing UV-Vis absorbing molecules, frequently used in many optoelectronic devices; and as interlayers in LECs and OPV devices. In the first case, two superficial techniques, the Brewster Angle Microscopy and the UV-Vis Reflection Spectroscopy, are studied in order to obtain useful information from such highly organized systems. A new detailed description of the theoretical treatment needed for each technique is presented, which provides, through a relatively simple..

    Dispositivos optoelectrónicos basados en perovskitas orgánico-inorgánico conteniendo el catión guanidinio

    Get PDF
    La presente investigación se enfoca en el campo de dispositivos optoelectrónicos, concretamente en células solares basadas en perovskitas hibrídas orgánicas-inorgánicas, las cuales han emergido recientemente como un material prometedor para complementar o reemplazar a las actuales células solares basadas en silicio (Si). Los investigadores del Departamento de Química Física y Termodinámica Aplicada/ Instituto de Química Fina y Nanoquímica (UCO) en colaboración con el Group of Molecular Engineering of Functional Materials (EPFL) han logrado introducir el catión Guanidinio (Gua) en la red cristalina de la perovskita MAPbI3, basada en metilamonio (MA) y yoduro de plomo (PbI2), sustituyendo hasta un 25% de MA por Gua. Estos resultados son sorprendentes debido a que el radio catiónico del Guanidinio está por encima del límite de tolerancia de Goldsmith (0.8-1), el cual predice la formación de una estructura cristalina cubica. Este nuevo material GuaxMA(1-x)PbI3 (0 ≤ x ≤ 0.25) presenta una mayor estabilidad a la humedad y al oxígeno que su antecesor el MAPbI3. Además, conserva sus propiedades ópticas, las cuales fueron verificadas al fabricar células solares de alta eficiencia (hasta un 20%) y sometiéndolas a un test de estrés de mil horas bajo iluminación constante y a una temperatura de 65ºC (equivalente a 1333 días bajo condiciones normales). Este hallazgo abre la puerta a la incorporación de nuevas especies con radios catiónicos que excedan el límite teórico de Goldsmith

    Diodos orgánicos emisores de luz: estrategias para la optimización de dispositivos y la obtención de un oled blanco

    Get PDF
    III Encuentro sobre Nanociencia y Nanotecnología de Investigadores y Tecnólogos Andaluce

    Mixed monolayers of eicosylamine and a bacterial-ferritin prepared by adsorption technique at the air-water interface

    Get PDF
    II Encuentro sobre nanociencia y nanotecnología de investigadores y tecnólogos de la Universidad de Córdoba. NANOUC

    Preparación de monocapas en la interfase aire-agua: estudio de las propiedades de adsorción de una nueva bacterioferritina

    Get PDF
    II Encuentro sobre nanociencia y nanotecnología de investigadores y tecnólogos de la Universidad de Córdoba. NANOUC

    A crowdsourcing database for the copy-number variation of the spanish population

    Get PDF
    Background: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. Results: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/. Conclusion: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.This work is supported by Grants PID2020-117979RB-I00 from the Spanish Ministry of Science and Innovation; by the Institute of Health Carlos III (project IMPaCT-Data, exp. IMP/00019, IMP/00009 and PI20/01305), co-funded by the European Union, European Regional Development Fund (ERDF, “A way to make Europe”)

    Outcomes of the SARS-CoV-2 omicron (B.1.1.529) variant outbreak among vaccinated and unvaccinated patients with cancer in Europe: results from the retrospective, multicentre, OnCovid registry study

    Get PDF
    BACKGROUND: The omicron (B.1.1.529) variant of SARS-CoV-2 is highly transmissible and escapes vaccine-induced immunity. We aimed to describe outcomes due to COVID-19 during the omicron outbreak compared with the prevaccination period and alpha (B.1.1.7) and delta (B.1.617.2) waves in patients with cancer in Europe. METHODS: In this retrospective analysis of the multicentre OnCovid Registry study, we recruited patients aged 18 years or older with laboratory-confirmed diagnosis of SARS-CoV-2, who had a history of solid or haematological malignancy that was either active or in remission. Patient were recruited from 37 oncology centres from UK, Italy, Spain, France, Belgium, and Germany. Participants were followed up from COVID-19 diagnosis until death or loss to follow-up, while being treated as per standard of care. For this analysis, we excluded data from centres that did not actively enter new data after March 1, 2021 (in France, Germany, and Belgium). We compared measures of COVID-19 morbidity, which were complications from COVID-19, hospitalisation due to COVID-19, and requirement of supplemental oxygen and COVID-19-specific therapies, and COVID-19 mortality across three time periods designated as the prevaccination (Feb 27 to Nov 30, 2020), alpha-delta (Dec 1, 2020, to Dec 14, 2021), and omicron (Dec 15, 2021, to Jan 31, 2022) phases. We assessed all-cause case-fatality rates at 14 days and 28 days after diagnosis of COVID-19 overall and in unvaccinated and fully vaccinated patients and in those who received a booster dose, after adjusting for country of origin, sex, age, comorbidities, tumour type, stage, and status, and receipt of systemic anti-cancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974, and is ongoing. FINDINGS: As of Feb 4, 2022 (database lock), the registry included 3820 patients who had been diagnosed with COVID-19 between Feb 27, 2020, and Jan 31, 2022. 3473 patients were eligible for inclusion (1640 [47·4%] were women and 1822 [52·6%] were men, with a median age of 68 years [IQR 57–77]). 2033 (58·5%) of 3473 were diagnosed during the prevaccination phase, 1075 (31·0%) during the alpha-delta phase, and 365 (10·5%) during the omicron phase. Among patients diagnosed during the omicron phase, 113 (33·3%) of 339 were fully vaccinated and 165 (48·7%) were boosted, whereas among those diagnosed during the alpha-delta phase, 152 (16·6%) of 915 were fully vaccinated and 21 (2·3%) were boosted. Compared with patients diagnosed during the prevaccination period, those who were diagnosed during the omicron phase had lower case-fatality rates at 14 days (adjusted odds ratio [OR] 0·32 [95% CI 0·19–0·61) and 28 days (0·34 [0·16–0·79]), complications due to COVID-19 (0·26 [0·17–0·46]), and hospitalisation due to COVID-19 (0·17 [0·09–0·32]), and had less requirements for COVID-19-specific therapy (0·22 [0·15–0·34]) and oxygen therapy (0·24 [0·14–0·43]) than did those diagnosed during the alpha-delta phase. Unvaccinated patients diagnosed during the omicron phase had similar crude case-fatality rates at 14 days (ten [25%] of 40 patients vs 114 [17%] of 656) and at 28 days (11 [27%] of 40 vs 184 [28%] of 656) and similar rates of hospitalisation due to COVID-19 (18 [43%] of 42 vs 266 [41%] of 652) and complications from COVID-19 (13 [31%] of 42 vs 237 [36%] of 659) as those diagnosed during the alpha-delta phase. INTERPRETATION: Despite time-dependent improvements in outcomes reported in the omicron phase compared with the earlier phases of the pandemic, patients with cancer remain highly susceptible to SARS-CoV-2 if they are not vaccinated against SARS-CoV-2. Our findings support universal vaccination of patients with cancer as a protective measure against morbidity and mortality from COVID-19. FUNDING: National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust

    Prevalence and impact of COVID-19 sequelae on treatment and survival of patients with cancer who recovered from SARS-CoV-2 infection: evidence from the OnCovid retrospective, multicentre registry study

    Get PDF
    Background: The medium-term and long-term impact of COVID-19 in patients with cancer is not yet known. In this study, we aimed to describe the prevalence of COVID-19 sequelae and their impact on the survival of patients with cancer. We also aimed to describe patterns of resumption and modifications of systemic anti-cancer therapy following recovery from SARS-CoV-2 infection. Methods: OnCovid is an active European registry study enrolling consecutive patients aged 18 years or older with a history of solid or haematological malignancy and who had a diagnosis of RT-PCR confirmed SARS-CoV-2 infection. For this retrospective study, patients were enrolled from 35 institutions across Belgium, France, Germany, Italy, Spain, and the UK. Patients who were diagnosed with SARS-CoV-2 infection between Feb 27, 2020, and Feb 14, 2021, and entered into the registry at the point of data lock (March 1, 2021), were eligible for analysis. The present analysis was focused on COVID-19 survivors who underwent clinical reassessment at each participating institution. We documented prevalence of COVID-19 sequelae and described factors associated with their development and their association with post-COVID-19 survival, which was defined as the interval from post-COVID-19 reassessment to the patients’ death or last follow-up. We also evaluated resumption of systemic anti-cancer therapy in patients treated within 4 weeks of COVID-19 diagnosis. The OnCovid study is registered in ClinicalTrials.gov, NCT04393974. Findings: 2795 patients diagnosed with SARS-CoV-2 infection between Feb 27, 2020, and Feb 14, 2021, were entered into the study by the time of the data lock on March 1, 2021. After the exclusion of ineligible patients, the final study population consisted of 2634 patients. 1557 COVID-19 survivors underwent a formal clinical reassessment after a median of 22·1 months (IQR 8·4–57·8) from cancer diagnosis and 44 days (28–329) from COVID-19 diagnosis. 234 (15·0%) patients reported COVID-19 sequelae, including respiratory symptoms (116 [49·6%]) and residual fatigue (96 [41·0%]). Sequelae were more common in men (vs women; p=0·041), patients aged 65 years or older (vs other age groups; p=0·048), patients with two or more comorbidities (vs one or none; p=0·0006), and patients with a history of smoking (vs no smoking history; p=0·0004). Sequelae were associated with hospitalisation for COVID-19 (p<0·0001), complicated COVID-19 (p<0·0001), and COVID-19 therapy (p=0·0002). With a median post-COVID-19 follow-up of 128 days (95% CI 113–148), COVID-19 sequelae were associated with an increased risk of death (hazard ratio [HR] 1·80 [95% CI 1·18–2·75]) after adjusting for time to post-COVID-19 reassessment, sex, age, comorbidity burden, tumour characteristics, anticancer therapy, and COVID-19 severity. Among 466 patients on systemic anti-cancer therapy, 70 (15·0%) permanently discontinued therapy, and 178 (38·2%) resumed treatment with a dose or regimen adjustment. Permanent treatment discontinuations were independently associated with an increased risk of death (HR 3·53 [95% CI 1·45–8·59]), but dose or regimen adjustments were not (0·84 [0·35–2·02]). Interpretation: Sequelae post-COVID-19 affect up to 15% of patients with cancer and adversely affect survival and oncological outcomes after recovery. Adjustments to systemic anti-cancer therapy can be safely pursued in treatment-eligible patients. Funding: National Institute for Health Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust
    corecore