145 research outputs found

    A resonance without resonance: scrutinizing the diphoton excess at 750 GeV

    Full text link
    Motivated by the recent diphoton excesses reported by both ATLAS and CMS collaborations, we suggest that a new heavy spinless particle is produced in gluon fusion at the LHC and decays to a couple of lighter pseudoscalars which then decay to photons. The new resonances could arise from a new strongly interacting sector and couple to Standard Model gauge bosons only via the corresponding Wess-Zumino-Witten anomaly. We present a detailed recast of the newest 13 TeV data from ATLAS and CMS together with the 8 TeV data to scan the consistency of the parameter space for those resonances.Comment: 8 pages, 4 figures, extended discussion of underlying models, new plots with varying mass of the heavy scalar, to appear in PL

    LHC/ILC Interplay in SUSY Searches

    Full text link
    Combined analyses at the Large Hadron Collider and at the International Linear Collider are important to reveal precisely the new physics model as, for instance, supersymmetry. Examples are presented where ILC results as input for LHC analyses could be crucial for the identification of signals as well as of the underlying model. The synergy of both colliders leads also to rather accurate SUSY parameter determination and powerful mass constraints even if the scalar particles have masses in the multi-TeV range.Comment: 5 pages, contribution to the proceedings of EPS0

    Normal tau polarisation as a sensitive probe of CP violation in chargino decay

    Full text link
    CP violation in the spin-spin correlations in chargino production and subsequent two-body decay into a tau and a tau-sneutrino is studied at the ILC. From the normal polarisation of the tau, an asymmetry is defined to test the CP-violating phase of the higgsino mass parameter \mu. Asymmetries of more than \pm70% are obtained, also in scenarios with heavy first and second generation sfermions. Bounds on the statistical significances of the CP asymmetries are estimated. As a result, the normal tau polarisation in the chargino decay is one of the most sensitive probes to constrain or measure the phase \phi_\mu at the ILC, motivating further detailed experimental studies.Comment: 20 pages, 10 figures, gzipped tar fil

    Constraining compressed supersymmetry using leptonic signatures

    Get PDF
    We study the impact of the multi-lepton searches at the LHC on supersymmetric models with compressed mass spectra. For such models the acceptances of the usual search strategies are significantly reduced due to requirement of large effective mass and missing E_T. On the other hand, lepton searches do have much lower thresholds for missing E_T and p_T of the final state objects. Therefore, if a model with a compressed mass spectrum allows for multi-lepton final states, one could derive constraints using multi-lepton searches. For a class of simplified models we study the exclusion limits using ATLAS multi-lepton search analyses for the final states containing 2-4 electrons or muons with a total integrated luminosity of 1-2/fb at \sqrt{s}=7 TeV. We also modify those analyses by imposing additional cuts, so that their sensitivity to compressed supersymmetric models increase. Using the original and modified analyses, we show that the exclusion limits can be competitive with jet plus missing E_T searches, providing exclusion limits up to gluino masses of 1 TeV. We also analyse the efficiencies for several classes of events coming from different intermediate state particles. This allows us to assess exclusion limits in similar class of models with different cross sections and branching ratios without requiring a Monte Carlo simulation.Comment: 18 pages, 5 figure

    Combined LHC/ILC analysis of a SUSY scenario with heavy sfermions

    Get PDF
    We discuss the potential of combined analyses at the Large Hadron Collider and the planned International Linear Collider to explore low-energy supersymmetry in a difficult region of the parameter space characterized by masses of the scalar SUSY particles around 2 TeV. Precision analyses of cross sections for light chargino production and forward--backward asymmetries of decay leptons and hadrons at the ILC, together with mass information on chi^0_2 and squarks from the LHC, allow us to determine the underlying fundamental gaugino/higgsino MSSM parameters and to constrain the masses of the heavy, kinematically inaccessible sparticles. No assumptions on a specific SUSY-breaking mechanism are imposed. For this analysis the complete spin correlations between production and decay processes are taken into account.Comment: new figure added, updated to match the published versio

    Physics at the e+ e- Linear Collider

    Get PDF
    A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well.Comment: 179 pages, plots and references updated, version to be published at EPJ

    Probing natural SUSY from stop pair production at the LHC

    Full text link
    We consider the natural supersymmetry scenario in the framework of the R-parity conserving minimal supersymmetric standard model (called natural MSSM) and examine the observability of stop pair production at the LHC. We first scan the parameters of this scenario under various experimental constraints, including the SM-like Higgs boson mass, the indirect limits from precision electroweak data and B-decays. Then in the allowed parameter space we study the stop pair production at the LHC followed by the stop decay into a top quark plus a lightest neutralino or into a bottom quark plus a chargino. From detailed Monte Carlo simulations of the signals and backgrounds, we find the two decay modes are complementary to each other in probing the stop pair production, and the LHC with s=14\sqrt{s}= 14 TeV and 100 fb1fb^{-1} luminosity is capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no excess events were observed at the LHC, the 95% C.L. exclusion limits of the stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE

    Boosted Semileptonic Tops in Stop Decays

    Full text link
    Top partner searches are one of the key aspects of new physics analyses at the LHC. We correct an earlier statement that supersymmetric top searches based on decays to semileptonic tops are not promising. Reconstructing the direction of the boosted leptonic top quark and correlating it with the measured missing transverse energy vector allows us to reduce the top pair background to an easily manageable level. In addition, reconstructing the full momentum of the leptonic top quark determines the stop mass based on an M_{T2} endpoint.Comment: 14pages, 4 figue

    Towards Measuring the Stop Mixing Angle at the LHC

    Full text link
    We address the question of how to determine the stop mixing angle and its CP-violating phase at the LHC. As an observable we discuss ratios of branching ratios for different decay modes of the light stop ~t_1 to charginos and neutralinos. These observables can have a very strong dependence on the parameters of the stop sector. We discuss in detail the origin of these effects. Using various combinations of the ratios of branching ratios we argue that, depending on the scenario, the observable may be promising in exposing the light stop mass, the mixing angle and the CP phase. This will, however, require a good knowledge of the supersymmetric spectrum, which is likely to be achievable only in combination with results from a linear collider.Comment: 30 pages, 11 figures, version to appear in EPJ
    corecore