1,536 research outputs found

    Hadron Correlation in Jets

    Get PDF
    We review some recent experimental and theoretical work on the correlation among hadrons produced at intermediate pTp_T at RHIC. The topics include: forward and backward asymmetry with and without trigger at mid-rapidity, associated-particle distribution on the near side, the Ī©\Omega puzzle and its solution, associated particles on the away side, and two-jet recombination at LHC.Comment: Talk given at the 11th Workshop on Correlation and Fluctuation in Multiparticle Production, Hangzhou, China, Nov 21-24, 200

    Regulation of PCNA polyubiquitination in human cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ubiquitin-based molecular switch dictating error free versus error prone repair has been conserved throughout eukaryotic evolution. A central component of this switch is the homotrimeric clamp PCNA, which is ubiquitinated in response to genotoxic stress allowing recovery of replication forks blocked at sites of DNA damage. The particulars of PCNA ubiquitination have been elucidated in yeast and to a further extent recently in human cells. However, gaps in the detailed mechanism and regulation of PCNA polyubiquitination still persist in human cells.</p> <p>Findings</p> <p>We expand upon several studies and show that PCNA is polyubiquitnated in normal skin fibroblasts, and that this ubiquitination is dependant on RAD18. Furthermore we define the types of DNA damage that induce ubiquitination on PCNA. Cisplatin, methylmethane sulphonate and benzo(a)pyrene-diol-epoxide induce the polyubiquitination of PCNA to the same extent as UV while polyubiquitination is not detected after X-ray treatment. Moreover, we show that ubiquitination of PCNA is not regulated by cell cycle checkpoint kinases ATM-Chk2 or ATR-Chk1. Significantly, we report that PCNA polyubiquitination is negatively regulated by USP1.</p> <p>Conclusions</p> <p>Our results demonstrate the importance of PCNA polyubiquitination in human cells and define the key regulator of this ubiquitination.</p

    Lysine 63-Polyubiquitination Guards against Translesion Synthesisā€“Induced Mutations

    Get PDF
    Eukaryotic cells possess several mechanisms to protect the integrity of their DNA against damage. These include cell-cycle checkpoints, DNA-repair pathways, and also a distinct DNA damageā€“tolerance system that allows recovery of replication forks blocked at sites of DNA damage. In both humans and yeast, lesion bypass and restart of DNA synthesis can occur through an error-prone pathway activated following mono-ubiquitination of proliferating cell nuclear antigen (PCNA), a protein found at sites of replication, and recruitment of specialized translesion synthesis polymerases. In yeast, there is evidence for a second, error-free, pathway that requires modification of PCNA with non-proteolytic lysine 63-linked polyubiquitin (K63-polyUb) chains. Here we demonstrate that formation of K63-polyUb chains protects human cells against translesion synthesisā€“induced mutations by promoting recovery of blocked replication forks through an alternative error-free mechanism. Furthermore, we show that polyubiquitination of PCNA occurs in UV-irradiated human cells. Our findings indicate that K63-polyubiquitination guards against environmental carcinogenesis and contributes to genomic stability

    Initial State Parton Broadening and Energy Loss Probed in d+Au at RHIC

    Get PDF
    The impact parameter and rapidity dependence of the Cronin effect for massless pions in d+Aud+Au reactions at sNN=200\sqrt{s}_{NN}=200 GeV at RHIC is computed in the framework of pQCD multiple elastic scattering on a nuclear target. We introduce a formalism to incorporate initial state energy loss in perturbative calculations and take into account the elastic energy loss in addition to the transverse momentum broadening of partons.We argue that the centrality dependence of the Cronin effect can distinguish between different hadron production scenarios at RHIC. Its magnitude and rapidity dependence are shown to carry important experimental information about the properties of cold nuclear matter up to the moderate- and large-xx antishadowing/EMC regions.Comment: 15 pages, 4 eps figures. Final version to appear in Phys.Lett.

    Hedgehog Pathway as a Potential Intervention Target in Esophageal Cancer

    Get PDF
    Esophageal cancer (EC) is an aggressive disease with a poor prognosis. Treatment resistance is a major challenge in successful anti-cancer therapy. Pathological complete response after neoadjuvant chemoradiation (nCRT) is low, thus requiring therapy optimization. The Hedgehog (HH) pathway has been implicated in therapy resistance, as well as in cancer stemness. This article focusses on the HH pathway as a putative target in the treatment of EC. Immunohistochemistry on HH members was applied to EC patient material followed by modulation of 3D-EC cell cultures, fluorescence-activated cell sorting (FACS), and gene expression analysis after HH pathway modulation. Sonic Hedgehog (SHH) and its receptor Patched1 (PTCH1) were significantly enriched in EC resection material of patients with microresidual disease (mRD) after receiving nCRT, compared to the control group. Stimulation with SHH resulted in an up-regulation of cancer stemness in EC sphere cultures, as indicated by increased sphere formation after sorting for CD44+/CD24- EC cancer stem-like cell (CSC) population. On the contrary, inhibiting this pathway with vismodegib led to a decrease in cancer stemness and both radiation and carboplatin resistance. Our results strengthen the role of the HH pathway in chemoradiotherapy resistance. These findings suggest that targeting the HH pathway could be an attractive approach to control CSCs.</p

    The InĀ Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers

    Get PDF
    PURPOSE: A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. METHODS AND MATERIALS: We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 Ā± 2.16, 149.9 Ā± 10.8, and 189 Ā± 15 keV/Ī¼m). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. Ī³H2AX immunostaining was used to assess DNA double strand break repair. RESULTS: The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. CONCLUSIONS: Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro

    hMMS2 serves a redundant role in human PCNA polyubiquitination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In yeast, DNA damage leads to the mono and polyubiquitination of the sliding clamp PCNA. Monoubiquitination of PCNA is controlled by RAD18 (E3 ligase) and RAD6 (E2 conjugating enzyme), while the extension of the monoubiquitinated PCNA into a polyubiquitinated substrate is governed by RAD5, and the heterodimer of UBC13/MMS2. Each modification directs a different branch of the DNA damage tolerance pathway (DDT). While PCNA monoubiquitination leads to error-prone bypass via TLS, biochemical studies have identified MMS2 along with its heteromeric partner UBC13 to govern the error-free repair of DNA lesions by catalyzing the formation of lysine 63-linked polyubiquitin chains (K63-polyUb). Recently, it was shown that PCNA polyubiquitination is conserved in human cells and that this modification is dependent on RAD18, UBC13 and SHPRH. However, the role of hMMS2 in this process was not specifically addressed.</p> <p>Results</p> <p>In this report we show that mammalian cells in which MMS2 was reduced by siRNA-mediated knockdown maintains PCNA polyubiquitination while a knockdown of RAD18 or UBC13 abrogates PCNA ubiquitination. Moreover, the additional knockdown of a UEV1A (MMS2 homolog) does not deplete PCNA polyubiquitination. Finally, mouse embryonic stem cells null for MMS2 with or without the additional depletion of mUEV1A continue to polyubiquitinated PCNA with normal kinetics.</p> <p>Conclusion</p> <p>Our results point to a high level of redundancy in the DDT pathway and suggest the existence of another hMMS2 variant (hMMSv) or complex that can compensate for its loss.</p

    Clinical relevance of the radiation dose bath in lower grade glioma, a cross-sectional pilot study on neurocognitive and radiological outcome

    Get PDF
    AIM: To investigate the clinical relevance of the radiotherapy (RT) dose bath in patients treated for lower grade glioma (LGG). METHODS: Patients (nĀ =Ā 17) treated with RT for LGG were assessed with neurocognitive function (NCF) tests and structural Magnetic Resonance Imaging (MRI) and categorized in subgroups based on tumour lateralisation. RT dose, volumetric results and cerebral microbleed (CMB) number were extracted for contralateral cerebrum, contralateral hippocampus, and cerebellum. The RT clinical target volume (CTV) was included in the analysis as a surrogate for focal tumour and other treatment effects. The relationships between RT dose, CTV, NCF and radiological outcome were analysed per subgroup. RESULTS: The subgroup with left-sided tumours (nĀ =Ā 10) performed significantly lower on verbal tests. The RT dose to the right cerebrum, as well as CTV, were related to poorer performance on tests for processing speed, attention, and visuospatial abilities, and more CMB. In the subgroup with right-sided tumours (nĀ =Ā 7), RT dose in the left cerebrum was related to lower verbal memory performance, (immediate and delayed recall, rĀ =Ā āˆ’0.821, pĀ =Ā 0.023 and rĀ =Ā āˆ’0.937, pĀ =Ā 0.002, respectively), and RT dose to the left hippocampus was related to hippocampal volume (rĀ =Ā āˆ’0.857, pĀ =Ā 0.014), without correlation between CTV and NCF. CONCLUSION: By using a novel approach, we were able to investigate the clinical relevance of the RT dose bath in patients with LGG more specifically. We used combined MRI-derived and NCF outcome measures to assess radiation-induced brain damage, and observed potential RT effects on the left-sided brain resulting in lower verbal memory performance and hippocampus volume
    • ā€¦
    corecore