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Summary

The difference in response of
normal tissue to different
radiation qualities is poorly
understood. Recently, we
developed a method to cul-
ture/expand salivary gland
stem cells to allow the
assessment of the in vitro
response of tissue stem cells
to different radiation quali-
ties. Our results indicate
differences in the response of
stem cells to photons and
carbon ions at different
linear energy transfers and a
relative resistance to particle
irradiation of salivary gland
stem cells compared with

Purpose: A reduction in the dose, irradiated volume, and sensitivity of, in particular,
normal tissue stem cells is needed to advance radiation therapy. This could be obtained
with the use of particles for radiation therapy. However, the radiation response of
normal tissue stem cells is still an enigma. Therefore, in the present study, we devel-
oped a model to investigate the in vitro response of stem cells to particle irradiation.
Methods and Materials: We used the immortalized human salivary gland (HSG) cell
line resembling salivary gland (SG) cells to translate the radiation response in
2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently
translated to the response of SG stem cells (SGSCs). Dispersed single cells were
irradiated with photons or carbon ions at different linear energy transfers (LETs;
48.76 � 2.16, 149.9 � 10.8, and 189 � 15 keV/mm). Subsequently, 2D or 3D
clonogenicity was determined by counting the colonies or secondary stem
cell-derived spheres in Matrigel. gH2AX immunostaining was used to assess DNA
double strand break repair.
Results: The 2D response of HSG cells showed a similar increase in dose response to
increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to
increasing LET irradiation was reduced compared with the 2D response. Finally, the
response of mouse SGSCs to photons was similar to the 3D response of HSG cells.
The response to higher LET irradiation was reduced in the stem cells.
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immortalized human salivary
gland cells.

Conclusions: Mouse SGSC radiosensitivity seems reduced at higher LET radiation
compared with transformed HSG cells. The developed model to assess the radiation
response of SGSCs offers novel possibilities to study the radiation response of normal
tissue in vitro. � 2016 Elsevier Inc. All rights reserved.

Introduction

Radiation therapy with photons (with or without surgery or
chemotherapy) is an effective cancer treatment but can
result in side effects such as radiation-induced fibrosis (1),
xerostomia (2), cardiopulmonary disease (3), and radiation-
induced liver damage (4). The risk of these side effects is
related, not only to the dose and volume of the normal
tissue that is co-irradiated, but also to the location of the
stem cells (5). Therefore, reducing the doseevolume
parameters and assessing the localization and radio-
sensitivity of stem cells are currently the focus of
advancing radiation therapy.

It is important to understand the radiation response of
tissue/adult stem cells (ASCs), because these are for a
major part responsible for the long-term regeneration of
tissue (5). However, it is complicated to study ASCs after
irradiation in vivo, and these cells cannot be cultured in
2-dimensional (2D) systems. Recently, it has become
possible to culture ASC types in 3-dimensional (3D)
culture systems, such as stem cells isolated from intestine
(6), liver (7), and salivary glands (8). The use of 3D culture
systems would allow for in vitro studies of ASCs in
response to radiation. Recently, our group developed a 3D
culture system of normal tissue, as spheres (a cluster of
cells growing in all directions >50 mm in diameter) and
as organoids, containing stem cells (8). This system
comprises multiple cell types (including stem cells)
and represents an unprecedented opportunity to obtain
knowledge about the mechanisms of the normal tissue
response to irradiation.

Although a large number of normal tissue cell types (eg,
fibroblasts [9], adipose [10], keratinocytes [11], and
hematopoietic stem cells [12-14]) have been used in in vitro
radiation studies, no studies have used stem cells involved
in solid tissue regeneration after irradiation. A significant
development in the in vitro cell culturing studies was the
development of 3D culture systems, which have been used
for studies of cancer models and treatment (15-17), drug
discovery (18), and radiation therapy (19). 3D cell culture
models are more physiologically relevant and offer a more
realistic environment. Cells grown in 2D cultures are
generally flat; however, in 3D cultures, the cells are rounder
and divide to form spheroid structures consisting of
multiple cells originating from single cells. In 3D cell
systems, different cellecell and cellematrix interactions
exist, and the components of the extracellular matrix of the
3D membrane itself also play a role in radioresistance
compared with 2D culture systems (15, 18, 19).

Further potential improvements of radiation therapy
include charged particle therapy, allowing improved tumor
targeting, and doseevolume reduction, sparing normal
tissue (2, 20, 21). However, the limited use of particle
therapy has limited our current knowledge of its biologic
effects. Although in vitro studies found important
differences with photon treatment (22), most of these
studies have considered tumorigenic cell lines in a 2D
environment. Very little is known about the effects of
particle therapy on normal tissue stem cells.

Therefore, we developed a 3D culture model for the
study of the radiation response of ASCs useable for both
photon and particle irradiation. We used a human
submandibular salivary gland cell line (HSG) (23), derived
from a patient who had received external irradiation,
that still had differentiation potential (24), to optimize
our 3D culture system for carbon ion irradiation. We
compared the radiation effects that culturing in 3D had
after carbon ion irradiation with those in 2D culturing, in
both the plateau and the spread out Bragg peak regions
of the beam. Finally, using our salivary gland culture
system, we are the first to show the survival of tissue-
specific stem cells in response to radiation treatment,
using both photon and carbon ions. This could represent a
novel model for studying normal tissue response to
irradiation.

Methods and Materials

Cell line culturing

The HSG cell line was cultured in Dulbecco’s modified
Eagle medium/F12 (1:1) (Gibco, Life Technologies,
Norwalk, CT), supplemented with 10% fetal bovine serum
and 1% penicillin/streptomycin.

For the 3D cultures, the cells were detached using
Trypsin-EDTA 0.05% for 5 minutes at 37�C and counted.
The number of cells was adjusted to 200,000 cells/mL.
Suspension was added to basement membrane Matrigel
(model no. 354234; BD Biosciences, Franklin Lakes, NJ) at
a ratio of 1:2 (25 mL of cell suspension to 50 mL of
Matrigel) and seeded in 12-well tissue culture plates. One
week after seeding, the gels were incubated with dispase
(1 mg/mL in culturing media; Gibco, Life Technologies)
for 45 to 60 minutes at 37�C to dissolve the Matrigel.
Next, the spheres were counted, processed into single cells
using Trypsin-EDTA 0.05%, and reseeded for irradiation
treatment.
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Isolation of salivary gland cells

SGs from 8- to 12-week-old female C57BL/6 mice (Harlan,
The Netherlands) were dissected. SG cells were isolated
and cultured to form spheres as described previously (8, 25,
26). For details, see the Supplemental Materials and
Methods section (available online at www.redjournal.org).

Irradiation treatment

Photon irradiation was performed with a 137Ce source (IBL
637 Cesium-137 g-ray machine) with a dose rate of 0.59 Gy/
min or with x-rays using the XStrahl 200 X-ray Therapy
System with a dose rate of 0.52 Gy/min. The method of
carbon ion irradiation has been previously described (22, 27)
(supplemental data; available online at www.redjournal.org).
For the irradiation sessions in Matrigel, a 3.5-mm-long
spread out Bragg peak with a diameter of 30 mm was
developed, which resulted in a dose averaged linear energy
transfer (LET) of 149.9 � 10 keV/mm at the center of the
Matrigel samples; the plus/minus data represent the LET at
the anterior and posterior of the gel. Photon irradiation of 2D
HSG was performed in 60-mm dishes, and all other irradia-
tion sessions were performed in 12-well culture plates to
accommodate the physical constraints of the carbon ion
beam. All 2D cultures were irradiated on plates with 70% to
80% confluency, and all irradiation of 3D cultures was
performed on single cells. Further specifics regarding the cell
densities and the time of irradiation after seeding are
mentioned in specific assays.

Clonogenic survival assays

Clonogenic survival assays were performed similar to the
method described by Chiu et al. (28). (For details, see the
supplemental data; available online at www.redjournal.
com.)

To determine the sensitivity of the cells cultured in 3D
after irradiation, a modified 3D survival assay was per-
formed. Cells were seeded as single cells in Matrigel as
described in previous sections 2 hours before irradiation
with 0 to 8 Gy. For HSG cells irradiated with 0 to 2 Gy
were seeded at 5 � 103 cells per well, and cells irradiated
with 4 or 8 Gy were seeded at 1 � 104 cells per well but
with equal volumes of Matrigel per well. Mouse SGSCs
(mSGSCs) were irradiated and replated at a density of
2 � 104 cells per well (0-2 Gy) or 6 � 104 cells per well
(4-8 Gy). At 1 week after irradiation, the spheres and cells
were counted. Survival was calculated as follows:

Sphere forming potentialZ
Number of spheres harvested

Cells seeded

� 100

Surviving fractionZ
Sphere forming potential treated

Sphere forming potential at 0 Gy

Immunofluorescent microscopy

Two days before irradiation for immunofluorescent micro-
scopy of the 2D cultures, the cells were seeded in glass-
bottomed, 12-well, tissue culture plates (p12-1.5H-N;
In Vitro Scientific [now Cellvis], Mountain View, CA). At
specified time points after irradiation, the cells were fixed
for 15 minutes in 2% paraformaldehyde and permeabilized
in 0.2% Triton X-100 for 10 minutes.

For the 3D cultures, 4 � 104 single cells were seeded in
Matrigel 2 hours before irradiation. Dispase was added
30 minutes before the stated time points. The cells were
spun for 30 seconds and washed with phosphate-buffered
saline. The cells were resuspended in 2% para-
formaldehyde, placed on Adhesion slides (Marienfeld-
Superior), fixed for 15 minutes, and permeabilized for
10 minutes.

All samples were incubated overnight at 4�C with pri-
mary antibodies (anti-phospo-Histone H2A.X [Ser139],
clone JBW301 [1:500]; Millipore, 05-636, mouse; and
anti-53BP1 [H-300]; 1:500; Santa Cruz Biotechnology, sc-
22760, rabbit), followed by incubation at room temperature
with secondary antibodies (Alexa Fluor 488; 1:800; Life
Technologies; A11001; goat anti-mouse; and Alexa Fluor
594; 1:800; Life Technologies; A110012; goat anti-rabbit)
for 90 minutes. Nuclear staining was performed using
Hoechst 33342 (Molecular Probes; Life Technologies).
Imaging was performed using TissueFAxs (Tissuegnostics),
and foci were analyzed and counted using ImageJ.

Statistical analysis

All values are presented as the mean � standard error of the
mean (P<.01, P<.05) of �3 independent experiments.
Student’s t test was used to test for statistical significance
using GraphPad Prism (GraphPad software). If error bars
are not visible, they were smaller than the data labels.

Results

To study the in vitro response of SGSCs, we must assess
this in 3D culture. However, to relate 2D models with a 3D
model for SGSC irradiation, we first determined the 2D
radiation response of HSG cells to photons or carbon ions
of various LET amounts. As expected, increasing LET of
radiation resulted in decreased survival of HSG cells at the
same dose (Fig. 1). In line with the published data (20, 22),
we observed an relative biologic effectiveness (RBE)10 of
approximately 1.72, 2.59, and 3.53 for a carbon ion LET of
48.76 � 2.16, 149.9 � 10.8, and 189 � 15 keV/mm at 10%
survival, respectively.

Next, we investigated whether culturing in 3D affects
proliferation. No significant differences in population
doublings in 2D culture (5.37 � 0.2) compared with 3D
culture (5.15 � 0.26) were found at 7 days (Fig. 2A). This
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suggests that our 3D environment does not affect cell
proliferation.

By performing a modified clonogenic assay, based on
the efficiency of irradiated single cells to form spheres
(Fig. 2C), we determined the survival of HSG cells cultured
in 3D in response to high and low LET irradiation
(Fig. 2D). Similar to 2D culturing, we observed that
increasing LET at the same dose resulted in an increased
radiosensitivity in HSG cells; however, in 3D culture, the
HSG cells were more radioresistant than were the 2D HSG
cells (Fig. 1), which has been demonstrated for other cell
lines (19). The RBE10 of HSG cells was 1.34 and 3.03 for
carbon ions at 48.76 � 2.16 and 149.9 � 10.8 keV/mm,
respectively. Owing to the physical nature of the beam, it
was not possible to perform carbon ion irradiation using the
highest LET (189 � 15 keV/mm).

To exclude the role of intraspheroid oxygen diffusion as
a factor for altered survival in 3D compared with 2D, we
performed irradiation at various stages of HSG sphere
development. The HSG cells were photon irradiated as
single cells in media and subsequently seeded into
Matrigel. Single cells already seeded in Matrigel or as
6-day-old spheres in Matrigel were dissociated and
reseeded 2 days later in Matrigel. We found that the levels
of survival were not affected (Figure E1; available online at
www.redjounral.org), indicating that the oxygen diffusion
levels at irradiation were unlikely to have affected the HSG
survival response to irradiation in the current setup.
However, it must be acknowledged that other environ-
mental effects could have been present that were not
detected by our assay.

Next, we assessed the levels of DNA double strand
breaks (DSBs) (29-31) in HSG cells after irradiation with
1 Gy and subsequent repair using immunofluorescent
microscopy for gH2AX (Fig. 3). At 24 hours after 1-Gy
photon irradiation, 33.6% � 3.4% of the cells were still
positive for gH2AX (�3 foci). In contrast, significantly
more positive cells were found after 149.9 � 10.8 and 189
� 15 keV/mm of 1 Gy carbon ions; 41.4% � 3.4%
(PZ.0486) and 49.1% � 6.2% (PZ.0055), respectively.
Irradiation at 48.76 keV/mm showed no difference from

photons for residual DSBs, consistent with the survival data
at 1 Gy. In line with previous studies, a significantly greater
proportion of cells remained positive for DSBs after higher
LET irradiation, indicating persistent DNA damage
24 hours after irradiation, a key factor in determining cell
survival (30).

Next, the levels of DSBs in 3D cultured cells after 1 Gy
of irradiation were assessed. Residual gH2AX after
149.9 � 10.8 keV/mm was significantly greater than those
after photons (62.9% � 4.6% to 37.9% � 1.5%; PZ.0067).
However, no difference was found between photons and
48.76 � 2.16 keV/mm (43% � 5.7%; Fig. 4). This was not
surprising, because in terms of survival, 1 Gy of photons
was comparable to 48.76 � 2.16 keV/mm carbon ions, and
survival after 149.9 � 10.8 keV/mm carbon ions was
significantly decreased.

Finally, we tested the response of mSGSCs in our 3D
culturing model. In salispheres (spheres formed from
SG-derived cells [25]) cultured from dispersed mouse SG
cells, only the stem/progenitor cells can form secondary
spheres; all other cells will die off even without irradiation
(8). We irradiated single salisphere cells and determined the
sphere-forming efficiencies of the cells after passaging
(Fig. 5A) as a representative of the surviving number of
mSGSCs 7 days after irradiation. Sphere-forming effi-
ciencies were normalized to 0 Gy to calculate the surviving
fraction (Fig. 5B). After photon irradiation, the isolated
mSGSCs displayed a clear doseeresponse relationship,
with survival decreasing from 68.3% � 12.6% for 1 Gy of
photons to 15.5% � 1.8% survival at 8 Gy. Irradiating with
carbon ions (both 48.76 � 2.16 keV/mm and
149.9 � 10.8 keV/mm) also resulted in a clear dos-
eeresponse curve, albeit with a stronger response to carbon
ions, with survival of 45.3% � 4.2% after 1 Gy of
149.9 � 10.8 keV/mm carbon ions and only 2.4% � 0.2%
survival after 8 Gy. It was necessary to extrapolate the
photon survival curve to determine an RBE10 for isolated
mSGSCs. The calculated RBE10 values were 1.72 for
48.76 � 2.16 keV/mm and 2.90 for 149.9 � 10.8 keV/mm,
similar to HSG cells irradiated in 3D cultures. These data
suggest that, similar to cell lines, the radiosensitivity of
SGSCs increases with increasing LETs.

When we compared the response of HSG cells in 3D
cultures with that of mSGSCs (Fig. 5C-E), we found that
HSG cells and mSGSCs showed a similar pattern of
radiosensitivity to photons. These results suggest that HSG
cells might be more similar to a normal stem cell-
containing population than previously thought (23), in
particular, in response to irradiation. However, when we
compared the response of the same cells to carbon ion
irradiation, we found that the mSGSCs were less radio-
sensitive to both 48.76 � 2.16 keV/mm (PZ.0314 at 4 Gy,
and PZ.0415 at 8 Gy) and 149.9 � 10.8 keV/mm
(PZ.0149 at 4 Gy, and PZ.0057 at 8 Gy) than HSG cells.
This could suggest that the stem cells themselves might be
a key factor to a potential increased radioresistance to
higher LET irradiation.
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measured by clonogenic survival assays. Error bars
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Discussion

We developed a model derived from our previously estab-
lished mSGSC cultures (8) to assess the normal tissue
response after irradiation with modalities with differing
LETs. We showed a similar radiosensitivity to photon
irradiation of mSGSCs and 3D-cultured HSG cells. A
potential reduced sensitivity of mSGSCs to higher LET
carbon ions was observed. We believe this model might
represent a novel method to obtain knowledge on normal
tissue side effects.

Our mSGSC model is a 3D culture (8). Therefore, to
optimize our model for irradiation, we used the transformed
epithelial, non-neoplastic HSG cell line (23), which can be
cultured in both 2D and 3D spheres (24). As expected, in
2D cultures, a clear doseeresponse relationship was seen
with increasing doses of photon irradiation. After carbon
ion irradiation, this doseeresponse effect was even more
evident with increasing LETs. The RBE values were within
the range found for other cell lines after carbon ion irra-
diation (20, 22). Owing to the more complex nature of
DNA damage induced by particle therapy (32), this was not

30 minutes 24 hours γH2AX 24 hours post IR

Ph
ot

on
s

C-
ion

 48
.76

 ke
V/

um

C-
ion

 14
9.9

 ke
V/

um

C-
ion

 18
9 k

eV
/u

m
0

20

40

60

80

100
**

*

%
 r

em
ai

ni
ng

 in
du

ce
d

po
si

ti
ve

 c
el

ls

Hoechst H2AX Hoechst H2AX

A B

0 
Gy

1 
Gy

 P
ho

to
ns

1 
Gy

 C
ar

bo
n 

io
n

48
.7

6 
ke

V/
µm

1 
Gy

 C
ar

bo
n 

io
n

14
9.

9 
ke

V/
µm

1 
Gy

 C
ar

bo
n 

io
n

18
9 

ke
V/

µm

Fig. 3. Levels of double stranded DNA breaks studied at 30 minutes, 4 hours, and 24 hours after irradiation of
2-dimensional cultures by immunofluorescent microscopy for (A) gH2AX. (B) The levels of persistent damage 24 hours after
irradiation in 2-dimensional culture. Error bars represent standard error of mean; n�3. *p<0.05, **p<0.01.

Nagle et al. International Journal of Radiation Oncology � Biology � Physics108



unexpected, because this damage is slower to repair and
therefore more likely to remain unrepaired 24 hours after
irradiation. It has been shown that persistent damage at
24 hours after irradiation is critical in cell lethality (30).
The percentage of cells that remained positive for DNA
DSBs 24 hours after irradiation was higher after carbon
irradiation, which correlates with increased radiosensitivity
with increasing LETs. The 2D survival data and the DNA
residual damage showed that this is a strong model for
furthering our studies toward 3D studies.

Next, we determined the effects that culturing these cells
under 3D conditions would have after irradiation. We
showed similar radiosensitivity reduction under 3D culture
conditions for HSG cells compared with other cell lines
(19, 33). Furthermore, we found that the 3D cultured cells
showed a similar phenotypic response to differing LET
irradiation as in 2D conditions. Again, in line with previous
studies (30) and similar to our 2D findings, a significantly
greater level of gH2AX with increasing LETs correlated
with increased radiosensitivity. The levels of residual
damage were perhaps greater than expected compared with

the levels of survival at 1 Gy, which might suggest that
measuring at a later time point after irradiation might be
more insightful in terms of final clonogenic survival.

Finally, we irradiated mSGSCs that had been cultured in
our recently developed culture system for normal tissue (8).
Because this system consists of several cell types, including
stem cells, we believe it will be an ideal model for studying
normal tissue side effects after irradiation. We found that
our mSGSCs showed a similar radiosensitivity to HSG cells
in response to photons. This might indicate that HSG cells
are a strong model for studying the normal tissue response
to photons. In response to increasing LETs, the mSGSCs
showed an increased radiosensitivity compared with HSG
cells. This suggests that the stem cells might be more
radioresistant to increasing LETs than to photons.

This is the first in vitro study to irradiate mSGSCs also
using high LET carbon ions. Our model had some limita-
tions. First, in a true in vivo environment, ASCs reside in a
quiescent state and only divide in response to certain cues,
for example, to regenerate damaged tissue (34). However,
in our system, SGSCs are driven toward proliferation (8),
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thereby possibly altering the response to irradiation. It is
also important to note that environmental factors, such as
inflammatory processes, macrophages, and secreted cyto-
kines (eg, transforming growth factor-b [35]) in response to
radiation, are not present in our system; the addition of
these factors might alter the response.

Conclusions

However, our model still represents a breakthrough method
for studying normal tissue response in vitro, showing
important differences in the response of ASCs to high and
low LET radiation modalities. We believe that the use of
ASCs gives a better understanding of the normal tissue
response than other 3D models currently available. A recent
study has been performed to investigate the response of
adipose-derived stem cells irradiated under 3D conditions

(10), in which the investigators also observed an increased
resistance under 3D conditions and differences between
LET irradiation modalities. However, these are not
tissue-specific stem cells; therefore, we believe our model
might be an improved alternative to study normal
tissue damage after irradiation. In the future, the use of
patient-derived ASCs could determine differences in
individual patient-specific responses and contribute to
patient-specific treatment planning.
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