87 research outputs found

    Contour extracting networks in early extrastriate cortex

    Get PDF
    Neurons in the visual cortex process a local region of visual space, but in order to adequately analyze natural images, neurons need to interact. The notion of an ?association field? proposes that neurons interact to extract extended contours. Here, we identify the site and properties of contour integration mechanisms. We used functional magnetic resonance imaging (fMRI) and population receptive field (pRF) analyses. We devised pRF mapping stimuli consisting of contours. We isolated the contribution of contour integration mechanisms to the pRF by manipulating the contour content. This stimulus manipulation led to systematic changes in pRF size. Whereas a bank of Gabor filters quantitatively explains pRF size changes in V1, only V2/V3 pRF sizes match the predictions of the association field. pRF size changes in later visual field maps, hV4, LO-1, and LO-2 do not follow either prediction and are probably driven by distinct classical receptive field properties or other extraclassical integration mechanisms. These pRF changes do not follow conventional fMRI signal strength measures. Therefore, analyses of pRF changes provide a novel computational neuroimaging approach to investigating neural interactions. We interpreted these results as evidence for neural interactions along co-oriented, cocircular receptive fields in the early extrastriate visual cortex (V2/V3), consistent with the notion of a contour association field

    A Model for Transient Oxygen Delivery in Cerebral Cortex

    Get PDF
    Popular hemodynamic brain imaging methods, such as blood oxygen-level dependent functional magnetic resonance imaging (BOLD fMRI), would benefit from a detailed understanding of the mechanisms by which oxygen is delivered to the cortex in response to brief periods of neural activity. Tissue oxygen responses in visual cortex following brief visual stimulation exhibit rich dynamics, including an early decrease in oxygen concentration, a subsequent large increase in concentration, and substantial late-time oscillations (“ringing”). We introduce a model that explains the full time-course of these observations made by Thompson et al. (2003). The model treats oxygen transport with a set of differential equations that include a combination of flow and diffusion in a three-compartment (intravascular, extravascular, and intracellular) system. Blood flow in this system is modeled using the impulse response of a lumped linear system that includes an inertive element; this provides a simple biophysical mechanism for the ringing. The model system is solved numerically to produce excellent fits to measurements of tissue oxygen. The results give insight into the dynamics of cerebral oxygen transfer, and can serve as the starting point to understand BOLD fMRI measurements

    Strong percepts of motion through depth without strong percepts of position in depth

    Get PDF
    Encoding the motion of objects through three spatial dimensions is a fundamental challenge for the visual system. Two binocular cues could contribute to the perception of motion through depth: changes in horizontal disparity (CD) and interocular velocity differences (IOVD). Although conceptually distinct, both cues are typically present when real objects move. Direct experimental isolation of the putative IOVD cue has remained elusive, and it is therefore unclear to what extent the visual system relies on it. We have found that binocularly anticorrelated stimuli impair position in depth judgments, but motion through depth judgments for the same stimuli are relatively unaffected. This dissociation of direction of motion from position in depth provides strong evidence that percepts of motion through depth are not based exclusively on estimating changes in disparity. Horizontal IOVDs appear to complement the CD cue. Vertical IOVDs fail to yield comparable performance, further implicating a comparison of horizontal interocular velocity and also ruling out explanations of our results based on monocular cues. These results suggest that (1) IOVDs are a robust cue to motion through depth; (2) IOVDs and retinal disparities exhibit similar horizontal/vertical anisotropies, consistent with the geometry of binocular viewing; and (3) binocular anticorrelation provides means to titrate the relative contributions of CD and IOVD cues

    Relative contributions to vergence eye movements of two binocular cues for motion-in-depth

    Get PDF
    When we track an object moving in depth, our eyes rotate in opposite directions. This type of "disjunctive" eye movement is called horizontal vergence. The sensory control signals for vergence arise from multiple visual cues, two of which, changing binocular disparity (CD) and inter-ocular velocity differences (IOVD), are specifically binocular. While it is well known that the CD cue triggers horizontal vergence eye movements, the role of the IOVD cue has only recently been explored. To better understand the relative contribution of CD and IOVD cues in driving horizontal vergence, we recorded vergence eye movements from ten observers in response to four types of stimuli that isolated or combined the two cues to motion-in-depth, using stimulus conditions and CD/IOVD stimuli typical of behavioural motion-in-depth experiments. An analysis of the slopes of the vergence traces and the consistency of the directions of vergence and stimulus movements showed that under our conditions IOVD cues provided very little input to vergence mechanisms. The eye movements that did occur coinciding with the presentation of IOVD stimuli were likely not a response to stimulus motion, but a phoria initiated by the absence of a disparity signal

    On the Inverse Problem of Binocular 3D Motion Perception

    Get PDF
    It is shown that existing processing schemes of 3D motion perception such as interocular velocity difference, changing disparity over time, as well as joint encoding of motion and disparity, do not offer a general solution to the inverse optics problem of local binocular 3D motion. Instead we suggest that local velocity constraints in combination with binocular disparity and other depth cues provide a more flexible framework for the solution of the inverse problem. In the context of the aperture problem we derive predictions from two plausible default strategies: (1) the vector normal prefers slow motion in 3D whereas (2) the cyclopean average is based on slow motion in 2D. Predicting perceived motion directions for ambiguous line motion provides an opportunity to distinguish between these strategies of 3D motion processing. Our theoretical results suggest that velocity constraints and disparity from feature tracking are needed to solve the inverse problem of 3D motion perception. It seems plausible that motion and disparity input is processed in parallel and integrated late in the visual processing hierarchy

    Sensory Uncertainty Leads To Systematic Misperception Of The Direction Of Motion In Depth

    No full text
    Although we have made major advances in understanding motion perception based on the processing of lateral (2D) motion signals on computer displays, the majority of motion in the real (3D) world occurs outside of the plane of fixation, and motion directly toward or away from observers has particular behavioral relevance. Previous work has reported a systematic lateral bias in the perception of 3D motion, such that an object on a collision course with an observer’s head is frequently judged to miss it, with obvious negative consequences. To better understand this bias, we systematically investigated the accuracy of 3D motion perception while manipulating sensory noise by varying the contrast of a moving target and its position in depth relative to fixation. Inconsistent with previous work, we found little bias under low sensory noise conditions. With increased sensory noise, however, we revealed a novel perceptual phenomenon: observers demonstrated a surprising tendency to confuse the direction of motion-in-depth, such that approaching objects were reported to be receding and vice versa. Subsequent analysis revealed that the lateral and motion-in-depth components of observers’ reports are similarly affected, but that the effects on the motion-in-depth component (i.e., the motion-in-depth confusions) are much more apparent than those on the lateral component. In addition to revealing this novel visual phenomenon, these results shed new light on errors that can occur in motion perception and provide a basis for continued development of motion perception models. Finally, our findings suggest methods to evaluate the effectiveness of 3D visualization environments, such as 3D movies and virtual reality devices
    corecore