8,856 research outputs found

    On the abundance discrepancy problem in HII regions

    Get PDF
    The origin of the abundance discrepancy is one of the key problems in the physics of photoionized nebula. In this work, we analize and discuss data for a sample of Galactic and extragalactic HII regions where this abundance discrepancy has been determined. We find that the abundance discrepancy factor (ADF) is fairly constant and of the order of 2 in all the available sample of HII regions. This is a rather different behaviour than that observed in planetary nebulae, where the ADF shows a much wider range of values. We do not find correlations between the ADF and the O/H, O++/H+ ratios, the ionization degree, Te(High), Te(Low)/ Te(High), FWHM, and the effective temperature of the main ionizing stars within the observational uncertainties. These results indicate that whatever mechanism is producing the abundance discrepancy in HII regions it does not substantially depend on those nebular parameters. On the contrary, the ADF seems to be slightly dependent on the excitation energy, a fact that is consistent with the predictions of the classical temperature fluctuations paradigm. Finally, we obtain that Te values obtained from OII recombination lines in HII regions are in agreement with those obtained from collisionally excited line ratios, a behaviour that is again different from that observed in planetary nebulae. These similar temperature determinations are in contradiction with the predictions of the model based on the presence of chemically inhomogeneous clumps but are consistent with the temperature fluctuations paradigm. We conclude that all the indications suggest that the physical mechanism responsible of the abundance discrepancy in HII regions and planetary nebulae are different.Comment: 14 pages, 8 figures, 9 tables. Accepted for publication in the Ap

    A detailed investigation of the effectiveness of whole test suite generation

    Get PDF
    © 2016 The Author(s)A common application of search-based software testing is to generate test cases for all goals defined by a coverage criterion (e.g., lines, branches, mutants). Rather than generating one test case at a time for each of these goals individually, whole test suite generation optimizes entire test suites towards satisfying all goals at the same time. There is evidence that the overall coverage achieved with this approach is superior to that of targeting individual coverage goals. Nevertheless, there remains some uncertainty on (a) whether the results generalize beyond branch coverage, (b) whether the whole test suite approach might be inferior to a more focused search for some particular coverage goals, and (c) whether generating whole test suites could be optimized by only targeting coverage goals not already covered. In this paper, we perform an in-depth analysis to study these questions. An empirical study on 100 Java classes using three different coverage criteria reveals that indeed there are some testing goals that are only covered by the traditional approach, although their number is only very small in comparison with those which are exclusively covered by the whole test suite approach. We find that keeping an archive of already covered goals along with the tests covering them and focusing the search on uncovered goals overcomes this small drawback on larger classes, leading to an improved overall effectiveness of whole test suite generation

    Hamiltonian Frenet-Serret dynamics

    Get PDF
    The Hamiltonian formulation of the dynamics of a relativistic particle described by a higher-derivative action that depends both on the first and the second Frenet-Serret curvatures is considered from a geometrical perspective. We demonstrate how reparametrization covariant dynamical variables and their projections onto the Frenet-Serret frame can be exploited to provide not only a significant simplification of but also novel insights into the canonical analysis. The constraint algebra and the Hamiltonian equations of motion are written down and a geometrical interpretation is provided for the canonical variables.Comment: Latex file, 14 pages, no figures. Revised version to appear in Class. Quant. Gra

    Generalized Berreman's model of the elastic surface free energy of a nematic liquid crystal on a sawtoothed substrate

    Get PDF
    In this paper we present a generalization of Berreman's model for the elastic contribution to the surface free-energy density of a nematic liquid crystal in presence of a sawtooth substrate which favours homeotropic anchoring, as a function of the wavenumber of the surface structure qq, the tilt angle α\alpha and the surface anchoring strength ww. In addition to the previously reported non-analytic contribution proportional to qlnqq\ln q, due to the nucleation of disclination lines at the wedge bottoms and apexes of the substrate, the next-to-leading contribution is proportional to qq for a given substrate roughness, in agreement with Berreman's predictions. We characterise this term, finding that it has two contributions: the deviations of the nematic director field with respect to the corresponding to the isolated disclination lines, and their associated core free energies. Comparison with the results obtained from the Landau-de Gennes model shows that our model is quite accurate in the limit wL>1wL>1, when strong anchoring conditions are effectively achieved.Comment: 13 pages, 9 figures; revised version submitted to Phys. Rev.

    QED vacuum fluctuations and induced electric dipole moment of the neutron

    Full text link
    Quantum fluctuations in the QED vacuum generate non-linear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of non-linearity in QED.Comment: A misprint has been corrected, and three new references have been adde

    Influence of the photon - neutrino processes on magnetar cooling

    Full text link
    The photon-neutrino processes γe±e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu, γννˉ\gamma \to \nu \bar \nu and γγννˉ\gamma \gamma \to \nu \bar \nu are investigated in the presence of a strongly magnetized and dense electron-positron plasma. The amplitudes of the reactions γe±e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu and γγννˉ\gamma \gamma \to \nu \bar \nu are obtained. In the case of a cold degenerate plasma contributions of the considering processes to neutrino emissivity are calculated. It is shown that contribution of the process γγννˉ\gamma \gamma \to \nu \bar \nu to neutrino emissivity is supressed in comparision with the contributions of the processes γe±e±ννˉ\gamma e^{\pm} \to e^{\pm} \nu \bar \nu and γννˉ\gamma \to \nu \bar \nu. The constraint on the magnetic field strength in the magnetar outer crust is obtained.Comment: 8 pages, LaTeX, 2 PS figures, based on the talk presented by D.A. Rumyantsev at the XV International Seminar Quarks'2008, Sergiev Posad, Moscow Region, May 23-29, 2008, to appear in the Proceeding

    Optical photometry and spectroscopy of the 1987A-like supernova 2009mw

    Get PDF
    We present optical photometric and spectroscopic observations of the 1987A-like supernova (SN) 2009mw. Our BVRIBVRI and grizg'r'i'z' photometry covers 167 days of evolution, including the rise to the light curve maximum, and ends just after the beginning of the linear tail phase. We compare the observational properties of SN 2009mw with those of other SNe belonging to the same subgroup, and find that it shows similarities to several objects. The physical parameters of the progenitor and the SN are estimated via hydrodynamical modelling, yielding an explosion energy of 11 foe, a pre-SN mass of 19M19\,{\rm M_{\odot}}, a progenitor radius as 30R30\,{\rm R_{\odot}} and a 56^{56}Ni mass as 0.062M0.062\,{\rm M_{\odot}}. These values indicate that the progenitor of SN 2009mw was a blue supergiant star, similar to the progenitor of SN 1987A. We examine the host environment of SN 2009mw and find that it emerged from a population with slightly sub-solar metallicty.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    The Orbit of the New Milky Way Globular Cluster FSR1716 =VVV-GC05

    Get PDF
    Indexación: Scopus.We use deep, multi-epoch near-IR images of the VISTA Variables in the Via Lictea (VVV) Survey to measure proper motions (PMs) of stars in the Milky Way globular cluster (GC) FSR1716 = VVV-GC05. The colormagnitude diagram of this object, made by using PM-selected members, shows an extended horizontal branch, nine confirmed RR Lyrae (RRL) members in the instability strip, and possibly several hotter stars extending to the blue. Based on the fundamental-mode (ab-type) RRL stars that move coherently with the cluster, we confirmed that FSR1716 is an Oosterhoff I GC with a mean period aPabn = 0.574 days. Intriguingly, we detect tidal extensions to both sides of this cluster in the spatial distribution of PM-selected member stars. Also, one of the confirmed RRabs is located -11 arcmin in projection from the cluster center, suggesting that FSR1716 may be losing stars due to the gravitational interaction with the Galaxy. We also measure radial velocities (RVs) for five cluster red giants selected using the PMs. The combination of RVs and PMs allow us to compute for the first time the orbit of this GC, using an updated Galactic potential. The orbit results to be confined within|Zmax| < 2.0 kpc, and has eccentricity 0.4 < e < 0.6, with perigalactic distance 1.5 < Rperi (kpc) < 2.3, and apogalactic distance 5.3 < Rapo (kpc) < 6.4. We conclude that, in agreement with its relatively low metallicity ([Fe/H] =-1.4 dex), this is an inner-halo GC plunging into the disk of the Galaxy. As such, this is a unique object with which to test the dynamical processes that contribute to the disruption of Galactic GCs. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aacd0
    corecore