44 research outputs found

    Tracing regulatory routes in metabolism using generalised supply-demand analysis

    Get PDF
    CITATION: Christensen, C. D., Hofmeyr, J. H. S. & Rohwer, J. M. 2015. Tracing regulatory routes in metabolism using generalised supply-demand analysis. BMC Systems Biology, 9(1): 89, doi: 10.1186/s12918-015-0236-1.Publication of this article was funded by the Stellenbosch University Open Access Fund.The original publication is available at http://bmcmusculoskeletdisord.biomedcentral.comBackground: Generalised supply-demand analysis is a conceptual framework that views metabolism as a molecular economy. Metabolic pathways are partitioned into so-called supply and demand blocks that produce and consume a particular intermediate metabolite. By studying the response of these reaction blocks to perturbations in the concentration of the linking metabolite, different regulatory routes of interaction between the metabolite and its supply and demand blocks can be identified and their contribution quantified. These responses are mediated not only through direct substrate/product interactions, but also through allosteric effects. Here we subject previously published kinetic models of pyruvate metabolism in Lactococcus lactis and aspartate-derived amino acid synthesis in Arabidopsis thaliana to generalised supply-demand analysis. Results: Multiple routes of regulation are brought about by different mechanisms in each model, leading to behavioural and regulatory patterns that are generally difficult to predict from simple inspection of the reaction networks depicting the models. In the pyruvate model the moiety-conserved cycles of ATP/ADP and NADH/NAD+ allow otherwise independent metabolic branches to communicate. This causes the flux of one ATP-producing reaction block to increase in response to an increasing ATP/ADP ratio, while an NADH-consuming block flux decreases in response to an increasing NADH/NAD+ ratio for certain ratio value ranges. In the aspartate model, aspartate semialdehyde can inhibit its supply block directly or by increasing the concentration of two amino acids (Lys and Thr) that occur as intermediates in demand blocks and act as allosteric inhibitors of isoenzymes in the supply block. These different routes of interaction from aspartate semialdehyde are each seen to contribute differently to the regulation of the aspartate semialdehyde supply block. Conclusions: Indirect routes of regulation between a metabolic intermediate and a reaction block that either produces or consumes this intermediate can play a much larger regulatory role than routes mediated through direct interactions. These indirect routes of regulation can also result in counter-intuitive metabolic behaviour. Performing generalised supply-demand analysis on two previously published models demonstrated the utility of this method as an entry point in the analysis of metabolic behaviour and the potential for obtaining novel results from previously analysed models by using new approaches.http://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-015-0236-1Publisher's versio

    Understanding glucose transport by the bacterial phosphoenolpyruvate. Glycose phosphotransferase system on the basis of kinetic measurements in vitro.

    Get PDF
    The kinetic parameters in vitro of the components of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) in enteric bacteria were collected. To address the issue of whether the behavior in vivo of the PTS can be understood in terms of these enzyme kinetics, a detailed kinetic model was constructed. Each overall phosphotransfer reaction was separated into two elementary reactions, the first entailing association of the phosphoryl donor and acceptor into a complex and the second entailing dissociation of the complex into dephosphorylated donor and phosphorylated acceptor. Literature data on the K(m) values and association constants of PTS proteins for their substrates, as well as equilibrium and rate constants for the overall phosphotransfer reactions, were related to the rate constants of the elementary steps in a set of equations; the rate constants could be calculated by solving these equations simultaneously. No kinetic parameters were fitted. As calculated by the model, the kinetic parameter values in vitro could describe experimental results in vivo when varying each of the PTS protein concentrations individually while keeping the other protein concentrations constant. Using the same kinetic constants, but adjusting the protein concentrations in the model to those present in cell-free extracts, the model could reproduce experiments in vitro analyzing the dependence of the flux on the total PTS protein concentration. For modeling conditions in vivo it was crucial that the PTS protein concentrations be implemented at their high in vivo values. The model suggests a new interpretation of results hitherto not understood; in vivo, the major fraction of the PTS proteins may exist as complexes with other PTS proteins or boundary metabolites, whereas in vitro, the fraction of complexed proteins is much smaller

    STRENDA DB : enabling the validation and sharing of enzyme kinetics data

    Get PDF
    Standards for reporting enzymology data (STRENDA) DB is a validation and storage system for enzyme function data that incorporates the STRENDA Guidelines. It provides authors who are preparing a manuscript with a user‐friendly, web‐based service that checks automatically enzymology data sets entered in the submission form that they are complete and valid before they are submitted as part of a publication to a journal

    The logic of kinetic regulation in the thioredoxin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system.</p> <p>Results</p> <p>Analysis of a realistic computational model of the <it>Escherichia coli </it>thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models.</p> <p>Conclusions</p> <p>Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.</p

    BioSimulators: a central registry of simulation engines and services for recommending specific tools

    Get PDF
    Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations

    Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model

    Get PDF
    Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs

    SBML Level 3: an extensible format for the exchange and reuse of biological models

    Get PDF
    Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution

    An experimental system for control analysis of the regulation of serine biosynthesis in Escherichia coli

    No full text
    Thesis (M. Sc.) -- University of Stellenbosch, 1993.One copy microfiche.Full text to be digitised and attached to bibliographic record

    Unravelling the interconnections of cellular regulation

    Get PDF
    Johann Rohwer was born in Greytown on 25 May 1968 and grew up in the German settlement Hermannsburg in the KwaZulu-Natal Midlands. He received all his schooling at the Deutsche Schule Hermannsburg. After matriculating in 1985, a post-matric year (the German ‘Abitur’) at the Deutsche H¨ohere Privatschule inWindhoek followed. From 1987 to 1989 he studied for a BSc degree at Stellenbosch University, majoring in biochemistry, chemistry and mathematics. This was followed by a BScHons and an MSc in biochemistry (all cum laude), the latter under the supervision of Prof Jannie Hofmeyr, studying the regulation of serine biosynthesis in Escherichia coli. For his doctoral studies, Johann went to the Netherlands and investigated the regulation of bacterial sugar transport under the supervision of Prof HansWesterho and Dr Pieter Postma at the University of Amsterdam, graduating in April 1997. Upon his return to South Africa in 1997, Johann took up a position as Senior Lecturer in the Department of Biochemistry at Stellenbosch University and has been with the department ever since. He was promoted to Associate Professor in 2002 and to Full Professor in 2011. Under his supervision and co-supervision fourteen MSc students and seven PhD students obtained their degrees, and he has co-authored 45 peer-reviewed articles in international journals. Prof Rohwer was fortunate to spend two sabbaticals in overseas laboratories. During 2001, he visited Prof Philip Kuchel at the University of Sydney and learnt about applying the technique of NMR spectroscopy to study living cells in a non-invasive way. During 2008, he spent a year in Germany with his family as a research fellow of the Alexander von Humboldt Foundation, collaborating with Prof Mark Stitt at the Max Planck Institute of Molecular Plant Physiology on the modelling of central metabolism in plants. Johann’s research interests are computational and experimental systems biology, focusing on the analysis of the central metabolism of microbes and plants. He has received numerous awards, among others the Stellenbosch University Chancellor’s Medal (1993), the President’sAward fromthe South African National Research Foundation (2001), the Silver Medal of the South African Society of Biochemistry and Molecular Biology (2003), and the Vice Chancellor’s Award for Excellent Research from Stellenbosch University (2010). He serves on the international STRENDA Commission and on the editorial boards of BMC Systems Biology and Frontiers in Plant Systems Biology. Johann is married to Christa and they have three children–Nicola (9), Saskia (7) and Martin (19 months)
    corecore