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Unravelling the Interconnections of
Cellular Regulation

Johann M. Rohwer

1 Introduction

Ever since I studied for my BScHons degree at
Stellenbosch University in 1990, when my then
supervisor and now colleague Jannie Hofmeyr
introduced me to the fields of metabolic control
analysis and modelling of cellular pathways,
the urge to formulate quantitative mathemat-
ical descriptions of biological processes has
been the major driver of my scientific research
activity. In a time when biologists all too of-
ten shied away from mathematics—and many
still do today, although things have changed
to some extent1—I took the unusual step of
combining mathematics with biochemistry and
chemistry as majors for my BSc degree. It is a
decision I have never regretted. On the con-
trary, over the last two decades I have become
convinced that mathematical formulations of
biological processes can yield much additional
information about how they work, and are in-
deed essential to their understanding.

This booklet will highlight some of these
analyses from my own research career, which
all fall into the field of what has been coined
‘systems biology’ during the last decade (al-
though many of the seminal papers in the
field are much older). Rather than following a
chronological path, the narrative will be organ-
ised according to the functional hierarchy of
living organisms, starting from the most funda-
mental unit of cellular activity, the enzyme, and
building up to the regulatory networks these
enzymes are involved in. Finally, possibilities

1A remarkable and welcome change has been the recent
introduction of an undergraduate BSc programme in
biomathematics at Stellenbosch University.

of extending this approach to higher organisa-
tional levels are outlined. But first, the field of
systems biology needs to be introduced briefly.

Systems biology The 20th century has
brought huge advances in the fields of bio-
chemistry and molecular biology; much of the
cellular map has been elucidated, the compo-
nents of life were separated, identified and their
properties characterised. As such, this era of
structure and function has resulted in a build-
up of a huge archive of knowledge about the
components of life. However, most of this in-
formation is hugely reductionist in nature. In
many cases, the challenge today has shifted
from component identification and characteri-
sation towards assembling this disparate infor-
mation into an integrated view at the molecu-
lar, cellular and organismal level. This has led
to the emergence and rapid growth of the field
of systems biology (e.g. Kitano, 2002), which
aims to integrate the information into a “sys-
tems” view through a combination of inter-
disciplinary approaches that include mathe-
matics and biophysics.

The sequencing of the first genome of an or-
ganism (the yeast Saccharomyces cerevisiae: Gof-
feau et al., 1996) led to a rapid explosion of the
field of bioinformatics, and today new genome
sequences are commonplace. However, ge-
nome sequences are static information, and it
is becoming widely appreciated that the com-
putational approach to studying the dynamic
aspects of cell processes is essential for under-
standing their function (Kitano, 2005). In addi-
tion to the computational systems biology en-
deavour, this requires additional experimenta-
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tion, as the analysis has to be extended to the
dynamic level, making time a central variable.
In fact, it has been suggested that the integra-
tion of genetics, molecular biology and cell bi-
ology into the interdisciplinary field of systems
biology will enable biology to advance to the
next level (Kitano, 2002; Westerhoff & Palsson,
2004).

2 The enzyme as the unit of
cellular networks

The observation by Eduard Buchner more than
a century ago, that extracts of yeast cells were
able to ferment glucose into ethanol (Buchner,
1897), can be viewed as having given birth to
the field of biochemistry. As has by now been
well established, the catalytic units responsi-
ble for this conversion are enzymes, a set of
proteins in all living cells that are capable of
each performing a chemical reaction with re-
markable specificity and efficiency. Soon af-
ter Buchner’s discovery, Leonor Michaelis and
Maud Menten pioneered the field of enzyme ki-
netics (Michaelis & Menten, 1913), which aims
to describe the dependence of the rate of an
enzyme-catalysed reaction on the concentra-
tion of its reactants and products. Enzyme ki-
netics forms one of the pillars of systems biol-
ogy, and as such is still highly relevant today.
A brief overview follows.

2.1 Properties of enzymes

One of the defining features of an enzyme-
catalysed reaction is that its rate does not
increase indefinitely with increasing reactant
concentration, in contrast to normal ‘mass-
action’ chemical reactions (Figure 1). Michaelis
and Menten explained this through the exis-
tence of an ‘enzyme-substrate-complex’ (the
reactant of an enzyme-catalysed reaction is
termed substrate); if the substrate molecules
outnumber those of the enzyme, all enzymes
will be occupied with substrate and any in-
crease in substrate concentration will not in-
crease the enzyme’s rate. This phenomenon is
called saturation.

re
ac

ti
on

ra
te

reactant concentration

Figure 1: Reactant concentration dependence
of the rate of a chemical (—), enzyme-
catalysed (– –) and cooperative en-
zyme-catalysed (· · ·) reaction.

Note that enzyme kinetic profiles can have
different shapes; some enzymes exhibit cooper-
ative kinetics, leading to a sigmoidal, S-shaped
rate-vs-substrate concentration curve as in Fig-
ure 1. Such enzymes can be ‘switched on’ (i.e.
change from low to high rate) over a much nar-
rower band of substrate concentrations than or-
dinary Michaelis-Menten-type enzymes.

The field of enzyme kinetics aims to describe
the dependence of reaction rate on substrate
concentration with a mathematical rate law (see
Cornish-Bowden, 2012, for a good introduc-
tory text). The details will not be presented
here; suffice it to say that every enzyme has a
number of so-called kinetic parameters, which
quantitatively describe its dynamic function:
Km, the Michaelis constant, is an indication
of how strongly the enzyme binds to the sub-
strate; Vmax, the limiting rate, tell us ‘how fast
the enzyme can go’; and if an enzyme is inhib-
ited by a compound, the inhibition constant Ki
quantifies the strength of that inhibition.

Many enzyme mechanisms and their associ-
ated rate laws can be extremely complex: en-
zymes can have more than one substrate and
product, they can be inhibited or activated by
other compounds, and they can exhibit cooper-
ative kinetics (Figure 1). As a result, the corre-
sponding rate laws have a multitude of param-
eters, which can be difficult or laborious to de-
termine experimentally. To overcome this, our
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Figure 2: 31P-NMR time course of a phosphofructokinase reaction. Peaks are labelled to identify the
reactants. Successive NMR spectra are 130 s apart. a. Full NMR spectrum. b. Expansion
of the sugar-phosphate region. c. Expansion of the nucleoside phosphate region.

group has developed generic equations for sys-
tems biology (Rohwer et al., 2006, 2007), which
have fewer kinetic parameters than the detailed
mechanistic equations. These parameters are
moreover defined operationally, so that they
can be easily determined experimentally: the
equations use half-saturation constants (i.e. the
concentration of substrate or inhibitor giving
half-maximal reaction rate or inhibitory effect,
respectively) rather than intrinsic Km values.
Additionally, Rohwer & Hofmeyr (2010) have
shown how to cleanly split and calculate the
contributions of rate capacity, mass action and
enzyme binding to the overall reaction rate,
thus clearly delineating how enzyme cataly-
sis modifies reaction rate and substrate/product
dependence. This provides a method for quan-
titatively distinguishing enzyme-catalysed re-
actions from uncatalysed chemical ones.

2.2 Determining enzyme properties

Enzyme kinetic parameters are typically deter-
mined in an experiment where the concentra-
tion of one substrate or product is varied inde-
pendently of the others, and the initial rate of
the reaction measured (Cornish-Bowden, 2012)
in a procedure termed an enzyme assay. If one of
the substrates or products absorbs light at a par-
ticular wavelength, its concentration change
over time (and thus the reaction rate) can be de-
termined with a spectrophotometer. Alterna-
tively, if none of the reactants absorb light, the
reaction may be linked in one or more steps to a
reaction whose reactant does absorb light. In all
these cases, though, a large number of kinetic
assays needs to be performed to obtain a com-
plete picture of its function, especially in the
case of multiple substrates and products and
inhibition or activation by other compounds.

This limitation of classical enzyme assays
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could in principle be overcome if the tempo-
ral change in multiple substrates and products
could be measured simultaneously. We there-
fore developed a method (Eicher et al., unpub-
lished data) that captures information from the
whole progression of the enzymatic reaction,
rather than only the initial rate. NMR spec-
troscopy is used to quantify reaction substrates
and products, and the reaction rate is estimated
from the slopes of their time-course curves. Ki-
netic parameters are fitted by non-linear regres-
sion of these time courses, and can be obtained
in much fewer runs than with classical initial-
rate studies.

To illustrate the approach, Figure 2 shows
an NMR time course of the phosphofructoki-
nase reaction (G6P + ATP → FBP + ADP), an
enzyme from the glycolysis fermentation path-
way. Changes in peak area over time indi-
cate changing substrate and product concen-
trations; these peaks are integrated to quantify
the respective reactants, and from performing
a total of six such experiments, the following
rate law could be parametrised:

v =
V f f6phatph 1 + peph

1 + α4hpeph

 +

1 + α2hpeph

1 + α4hpeph

 (f6ph + atph
)

+f6phatph,

where f6p, atp and adp refer to the concentra-
tions of F6P, ATP and ADP scaled by their half-
saturation constants, V f is the maximal rate, h
is the Hill coefficient and α is the inhibition pa-
rameter for PEP. All these parameters could be
accurately identified from the data.

3 Networks of enzymes

While enzymes have almost exclusively been
studied in isolation using the methods de-
scribed above, during the development of bio-
chemistry over the last century, they almost
never act in isolation inside the living cells. En-
zymes are connected in networks and linked
by chemical species that are broadly referred
to as metabolites. Figure 3 shows an example
network with enzymes indicated by numbered
boxes and metabolites by subscripted letters.

X0 1 S1

3

4S2 S3

2 X7X8

X5

S4 5 X6

Branch

Moiety-
conserved

cycle

Figure 3: Example reaction scheme to illustrate
a metabolic network. Terminal re-
actants and products (sources and
sinks) are indicated by X, metabo-
lic intermediates by S. Adapted from
Hofmeyr (2001).

Although this is not a representation of a real
network, it illustrates well how the network is
hooked up.

Such networks are also termed metabolic path-
ways, and they are formed from the basic prin-
ciple that the product of a particular reaction
(say S4, product of reaction 4) is at the same
time the substrate of another reaction further
‘down-stream’ in the pathway (in this case re-
action 5). When this network is ‘running’ (i.e.
there is flow of matter through the pathway), S4
will therefore simultaneously be produced by
reaction 4 and consumed by reaction 5. Figure 3
also shows two other important features of me-
tabolic pathways: (i) a branch point, where a
particular metabolite (S1 in this case) can act
as substrate (or product) for two or more reac-
tions; and (ii) a moiety-conserved cycle (S2 + S3
here), where the sum of a set of metabolite con-
centrations always remains constant, because
when one of them is consumed, the other one
is always produced in the same step, and vice
versa.

So how are the pieces of the puzzle put to-
gether? The clue is in calculating, for each me-
tabolite, how fast it is produced and how fast it
is consumed. The net change in concentration
of the metabolite over time will then be given
by the difference between these two rates. So,
in Figure 3, S1 is produced by reaction 1 and
consumed in reactions 3 and 4, so that its net
rate of change will be given by the difference
between the rate of reaction 1 (v1 for short) and
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v3 + v4. Mathematically, we can write

ds1

dt
= v1 − (v3 + v4). (1)

Equation (1) is termed an ordinary differential
equation. Similar equations can be written for
each metabolite of the network, and together
this system of ordinary differential equations
constitutes the kinetic model of the pathway
(Hofmeyr, 2001; Palsson, 2006).

3.1 Computational analysis of the
metabolic network

It is important to realise that each of the vi terms
in Equation (1) actually refers to an enzyme-
catalysed reaction and can be described by
an enzyme kinetic rate law (see Section 2.1).
Together, this system of ordinary differential
equations can thus be integrated to obtain the
time-dependent evolution of the system from
an initial state. Due to the highly non-linear
nature of such rate laws, analytical solutions
are usually impossible, and the result is ob-
tained through numerical integration on the
computer, for which many well-tested algo-
rithms are available.

Metabolic systems, being open systems (i.e.
they exchange matter and energy with their
environment), frequently evolve to a so-called
steady state. This state is characterised by meta-
bolite concentrations that remain constant with
time, but at a finite flux of matter through the
system. This means that each metabolite is pro-
duced at exactly the same rate as at which it is
consumed. Think of the analogy of a basin with
a leaky plug. If I now adjust the flow of the tap
to exactly match the rate at which water is leak-
ing from the plug, then the level of water in the
basin will remain constant, i.e. at steady state.
Computationally, the steady state of a network
can be calculated by setting the ordinary dif-
ferential equations (see Equation (1)) equal to
zero.

Even higher levels of analysis exist for such
networks. One of these is the framework of
metabolic control analysis, which was devel-
oped independently almost forty years ago
by Kacser & Burns (1973) and Heinrich &
Rapoport (1974). Metabolic control analysis

is a kind of sensitivity analysis that aims to
identify which enzymes in the network have
the greatest control of the flux (i.e. the flow of
matter through the pathway) or on the steady-
state concentration of a metabolite. The de-
gree of control is quantified by so-called con-
trol coefficients, which can take on a particu-
lar numerical value (see the sugarcane exam-
ple in Section 3.2). While not fully appreciated
during the initial decade after its publication,
metabolic control analysis has made immense
contributions to the study of cellular networks
(Kacser & Burns (1973) has been cited 1249
times, Heinrich & Rapoport (1974) 900 times!).
To name just one example, it has dispelled the
dogma of a ‘rate-limiting step’, which has been
(and still is being) held by many biochemists,
and which states that a single enzyme step al-
ways determines the flux through a pathway
and acts as ‘pacemaker’. In contrast, metabo-
lic control analysis states that flux control can
be, and has been shown to be, shared between
a number of steps, with all the control coeffi-
cients for a particular flux adding up to one (see
Fell, 1996, for review).

I have recently reviewed in detail the kinetic
modelling of metabolic pathways with a par-
ticular emphasis on plant metabolism, and the
reader is referred to Rohwer (2012) for further
information.

Software Generically, any system of coupled
ordinary differential equations can of course be
solved with standard numerical tools such as
Mathematica or Matlab, or their open-source
alternatives Octave and SciPy. However, sim-
ulation of these networks always involves a
number of steps that have to be repeated: defin-
ing the network structure and kinetics, set-
ting the parameters and initial conditions, per-
forming an analysis (e.g. time-course simula-
tion, steady state or metabolic control analysis),
and visualising or storing the results. Conse-
quently, a number of dedicated software tools
have been developed, which simplify and auto-
mate many of these repetitive tasks. A standard
model description language, the Systems Biol-
ogy Markup Language or SBML (Hucka et al.,
2003), allows model interchange between tools
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that can understand it.
In the early 2000s, our research group regu-

larly made use of some of these existing soft-
ware tools. During the development of new
models, we were struck by the limitation that,
while freely available, these tools were not
open source and could thus not be modified
or extended when they were lacking an impor-
tant feature that we needed. This prompted
the development of our own open-source tool,
PySCeS, the Python Simulator for Cellular Sys-
tems (Olivier et al., 2005). This program is
still actively being developed and being used
widely, both in our own research group and by
others. (Box 1 highlights the importance of the
open-source framework for my work.)

3.2 Examples of metabolic models

Bacterial PTS To conclude this section, two
examples of kinetic models of metabolic path-
ways from my own work will be discussed
briefly. The first stems from my doctoral re-
search at the University of Amsterdam and
concerns the bacterial phosphoenolpyruvate-
dependent phosphotransferase system (PTS) in
the bacterium Escherichia coli. The PTS is a
complex of four enzymes, responsible for the
uptake of glucose by the bacterium from its en-
vironment. Inside the bacterium, the glucose is
then further fermented by the glycolysis path-
way. In addition to sugar transport, the PTS is
involved in the regulation of a number of other
cellular processes, including the update of al-
ternative carbon and energy sources. My focus
was on the PTS itself, though, and prompted
by the experimental observation (van der Vlag
et al., 1995) that the sum of the flux-control co-
efficients of the four PTS enzymes on glucose
uptake did not add up to one as expected, but
was in fact less, while theoretical analyses (van
Dam et al., 1993) had predicted that this sum
could be as high as two due to the nature of
the interconnections between the PTS enzymes.
The PTS is a group-transfer pathway and a
phosphate group is transferred from phospho-
enolpyruvate sequentially along the enzymes
to the glucose molecule as it is taken up by the
cell. To understand this process better, I devel-
oped a kinetic model of the pathway based on

Box 1: Open source, open access

The decision to open-source our simula-
tion tool PySCeS (Olivier et al., 2005) has
paid off numerous times. PySCeS is based
on the Python programming language and
its SciPy set of scientific libraries (Jones
et al., 2001–), themselves both open-source
projects. Compared to commercial closed-
source solutions, open-source alternatives
have the following advantages:

• They are free, as in ‘free beer’. They
cost no money. This lowers the barrier
to access and is particularly pertinent
for developing countries like South
Africa.

• They are free, as in ‘free speech’. This
empowers users and allows them to
modify the source code. We have in-
corporated a number of mathematical
algorithms into PySCeS, which were
previously not available in SciPy.

• They are based on a spirit of recipro-
cation and sharing. Open-source soft-
ware developers are generally keen
to test code and contribute improve-
ments; this fosters collaboration.

The decision by ever-increasing num-
bers of scholarly journals to follow an
open-access publication model should be
viewed in a similar favourable light.2

measured kinetic data for the constituent en-
zymes (Rohwer et al., 1998, 2000). The main
conclusions from this model are three-fold:

1. The model predicted the existence of com-
plexes between the PTS enzymes (these
complexes could not be detected by direct
experimental means).

2. The complexes drastically affect the be-
haviour of the PTS; when they are more

2The contributions of Stellenbosch University to open
access through its SUNScholar repository and by host-
ing the Berlin10 Open Access Conference in December
2012 are welcomed.
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prevalent, the sum of the PTS enzyme
flux-control coefficients decreases (Roh-
wer et al., 2000). Moreover, they are more
prevalent under in vivo conditions than
in the test tube, due to macromolecular
crowding in the intracellular environment
(Rohwer et al., 1998).

3. The model explains why we sometimes
observed a quadratic dependence of the
PTS flux on the total enzyme concentration
(Rohwer et al., 1998), in contrast to a linear
dependence that is common for metabolic
pathways. The origin of the discrepancy
lies in the way the PTS enzymes react with
each other: being a group-transfer path-
way, the phosphate transfer reactions are
bimolecular, and if no significant complex
formation occurs, this can lead to a greater-
than-linear flux response.

Sugarcane The second example deals with
the modelling of sucrose (cane sugar) accumu-
lation in sugarcane (Figure 4). Sugarcane is re-
markable for its ability to accumulate sucrose
to concentrations higher than those in most
other plants, which makes it the major agri-
cultural crop for producing table sugar. How-
ever, this accumulation ability differs between
varieties of sugarcane, and understanding the
factors that control the extent to which sucrose
is accumulated may aid in developing strate-
gies for optimising agricultural yields. Sucrose
metabolism in the sugarcane stalk is charac-
terised by concurrent sucrose breakdown and
re-synthesis (Komor, 1994; Zhu et al., 1997), a
process which has been termed ‘futile cycling’.
This process is considered to be energetically
wasteful (due to the expenditure of cellular
energy during the re-synthesis reactions) and
it was reasoned that decreased futile cycling
should lead to an increase in sucrose accumu-
lation. To investigate this problem further, we
constructed a detailed kinetic model of the cen-
tral sucrose metabolism, its futile cycling, and
its accumulation in the stalk (Rohwer & Botha,
2001) .

Based on metabolic control analysis, the con-
trol coefficient of each reaction on the futile cy-
cling of sucrose (defined as the ratio between

Figure 4: Cut sugarcane. By Rufino Uribe (caña
de azúcar) [CC-BY-SA-2.0], via Wiki-
media Commons.

sucrose breakdown and sucrose accumulation)
was calculated (Figure 5). The five reactions
with the numerically largest control coefficients
were the uptake of fructose and glucose into the
cells (−0.86 and −0.90 respectively), the trans-
port of sucrose into the storage compartment
(−0.51), phosphorylation of glucose (1.09) and
breakdown of sucrose (0.71). The model calcu-
lations showed that a decrease in futile cycling
should translate into increased sucrose accu-
mulation (Rohwer & Botha, 2001). On the ba-
sis of these results and the negative values of
the control coefficients, we predicted that an
increase in the transport proteins for glucose
and fructose across the cell membrane, as well
as of the protein responsible for transporting
sucrose into the storage compartment, should
favour sucrose accumulation. Conversely, de-
creasing the enzymes that break down sucrose
and phosphorylate glucose should reduce fu-
tile cycling (their control coefficients are posi-
tive, Figure 5). The model thus identified these
steps as the most promising biotechnological
targets for reducing futile cycling of sucrose
and increasing sucrose accumulation.

By way of experimental validation, Rossouw
et al. (2007) demonstrated an increase in su-
crose accumulation in sugarcane suspension
cells by experimentally decreasing neutral in-
vertase activity (the enzyme that breaks down
sucrose), albeit at the expense of reduced res-
piration and growth. Thus, while the in-
crease in sucrose accumulation was correctly
predicted by the model, its scope did not ex-
tend far enough to predict the effect of changes
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Figure 5: Sucrose futile cycling control coefficients as calculated by the sugarcane kinetic model
(Rohwer & Botha, 2001). Metabolites are indicated by a labelled black dot, enzymes
by a box containing the numerical value of the control coefficient. The steps with the
numerically largest control coefficients are highlighted in grey.

in neutral invertase activity on respiration and
growth. More recently, these results were re-
peated in whole transgenic sugarcane plants,
with Rossouw et al. (2010) demonstrating in-
creased sucrose and decreased hexose levels,
as well as reduced futile cycling in the stalk tis-
sues of plants with reduced neutral invertase
activity.

The sugarcane stalk is divided into nodes
and internodes (Figure 4), with the younger
internodes at the top. Sucrose is accumulated
preferentially in the older mature internodes at
the bottom of the stalk. The original model de-
scribed above was built to simulate medium-
mature tissue. To gain a better understand-
ing of the metabolic changes that occur during
the maturation of the stalk tissue, this model
was extended to ‘model a stalk in segments’ by
substituting experimentally determined data
on how the levels of all the pathway enzymes
change in the various internodes (Uys et al.,
2007). This provided a more comprehensive

view of the maturation process but still had
significant shortcomings, as discussed below.

4 Towards the organism scale:
networks of networks

The model of Uys et al. (2007) described above
distinguished between internodes purely by
substituting enzyme activity data for each in-
ternode. This is a simplification, as in real-
ity the internodes are linked by the phloem
(i.e. the plant connective tissue that trans-
ports carbohydrates—mainly sucrose—from
the leaves, where they are synthesised dur-
ing photosynthesis, via the stalk to the roots).
The internodes are thus not independent, but
linked by mass flow. Moreover, the phloem is
a separate compartment from the cytosol (the
main intracellular compartment) and the vac-
uole (the main storage compartment in plant
cells). Solute transport between these compart-
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ments therefore also needs to be accounted for.
To overcome these shortcomings, we devel-

oped a method for incorporating phloem flow
into the sugarcane model. The movement of so-
lutes through the phloem has been extensively
studied by Thompson and co-workers, who
have also developed a mathematical model of
the process (reviewed in Thompson, 2006). The
basis of this formulation is the establishment of
an osmotic potential due to an unequal dis-
tribution of solute in the phloem tubes. This
causes an osmotic pressure gradient (termed
turgor) that can push fluids up or down.

The challenge was now to combine this
mathematical formulation of phloem flow with
our existing kinetic model of metabolic reac-
tions. This was achieved by

• considering the phloem, apoplast (extra-
cellular space), symplast (linked cytosols
of adjacent cells) and vacuole as separate
compartments;

• considering the stalk as a one-dimensional
object, discretising its length into a fixed
number of finite volumes and defining the
above compartments on each of these vol-

umes;

• adding the metabolic reactions from our
previous kinetic model; and

• including steps that transport metabolites
between compartments.

The distribution of sucrose throughout the stalk
was then modelled with the following mathe-
matical formalism (Uys et al., in preparation;
Uys, 2009):

∂s
∂t

+
∂
∂z

(
~u s

)
+
∂
∂z

(
Ds
∂s
∂z

)
= vrx + vtr (2)

which is illustrated here for only one metabo-
lite S (with concentration s). Similar equations
were constructed for all metabolites in all com-
partments. Time is indicated by t, z is the dis-
tance along the length of the stalk, ~u is a vector
of velocity of fluid flow for the particular com-
partment, Ds is the diffusion coefficient of S, vrx
is the sum of all metabolic reactions in which
S participates, and vtr is the sum of all inter-
compartmental transport processes involving
S. Equation (2) is called a partial differential
equation, and simply stated, from left to right

Figure 6: Time-evolution of sucrose concentrations in the phloem and vacuole (storage compartment)
in an advection-diffusion-reaction model of a sugarcane stalk (Uys, 2009). The x-axis shows
time. The y-axis shows the length of the stalk from 0 (young tissue) to 1 (older tissue).
Leaves are attached at the internodes at positions 0, 0.2, 0.4, 0.6 and 0.8 on the stalk. Sucrose
concentrations are indicated by a grey-scale value according to the corresponding bar on
the right-hand side of each figure.
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the terms mean that the concentrations change
with time, that metabolites may undergo trans-
port by a fluid—in this case the phloem sap—
due to the fluid’s bulk motion in a particular
direction (the technical term is advection), that
species may diffuse, and lastly that they en-
gage in metabolic reactions or are transported
between compartments. The set of equations is
termed an advection-diffusion-reaction system.

The advection-diffusion-reaction framework
was implemented in a model comprising five
node-internode pairs. The system was simu-
lated with another Python-based open-source
software, FiPy (Guyer et al., 2009). The path-
way used made a number of simplifying as-
sumptions, as the model aimed to capture the
essential features of the system but was not
based in detail on experimentally determined
data. Such ‘core’ or ‘toy’ models can often
yield biologically relevant results, in spite of
the simplified structure and default parame-
ters used. In our case (Figure 6), the concen-
tration of sucrose in the phloem was highest
at the nodes due to phloem ‘loading’ (import
of sugar from the attached leaves), but then
spread out in both directions to create ‘saw-
tooth’ profiles. Importantly, sucrose could also
be transported back up the stalk from the leaf
attachment point, due to the advective flow in
the phloem. Also, the ‘filling-up’ behaviour
of the stalk could be observed; sucrose in the
storage compartment (vacuole) was accumu-
lated at first preferentially in the more mature
internodes, but gradually the younger inter-
nodes also progressively accumulated sucrose
(Uys, 2009).

Parameter sensitivities: FAST For any ma-
thematical model, a crucial question is how
sensitive the model outputs are to changes in
the values of its parameters. For kinetic mod-
els based on ordinary differential equations at
steady state, this can be achieved with me-
tabolic control analysis (Section 3.1). How-
ever, the advection-diffusion-reaction frame-
work cannot be analysed with metabolic con-
trol analysis as it is not at steady state and
moreover requires the use of partial differen-
tial equations. The model can be analysed,

however, with a method widely applied in the
engineering sciences, called the Fourier Ampli-
tude Sensitivity Test (FAST, Cukier et al., 1978).
This is a global sensitivity analysis method that
calculates the concomitant effect of changes in
all model parameters on its output by allow-
ing these parameters to oscillate at uniquely
assigned frequencies, resulting in oscillating
model output. Since the parameter frequency
is known, its contribution to the model varia-
tion can be isolated using some properties of
a Fourier transform, which converts the time
domain back to the frequency domain.

By way of example, we used the Fourier Am-
plitude Sensitivity Test to isolate the steps with
the largest contribution to the difference be-
tween the rate of appearance and rate of disap-
pearance of sucrose in the cytosolic compart-
ment (i.e. ‘futile cycling’ of sucrose). Only four
steps had any significant effect on this quan-
tity: the uptake of sucrose into the cytosol from
the phloem, the synthesis of sucrose by the en-
zyme sucrose synthase, and the breakdown of
sucrose by two enzymes, i.e. neutral invertase
in the cytosol and acid soluble invertase in the
vacuole (Uys, 2009). Note that this is only one
example, and the Fourier Amplitude Sensitiv-
ity Test may of course be used to calculate the
parameter sensitivity of any model output that
the experimenter may be interested in.

5 Unravelling the
interconnections

The number of published kinetic models of cel-
lular pathways increases weekly, as any inspec-
tion of online model databases such as JWS
Online (Olivier & Snoep, 2004) or BioMod-
els (le Novère et al., 2006) will reveal. More-
over, these models are increasing in size and
complexity. Most recently, Karr et al. (2012)
published a whole-cell computational model
of the human pathogen Mycoplasma genital-
ium, accounting for the function of every an-
notated gene and aiming to describe its life
cycle from the level of interactions of individ-
ual molecules. One problem with increasing
model size is that the level of complexity of the
models approaches that of the organisms they
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aim to describe. While such models provide
powerful tools that are often more accessible
to query and interrogation than experimental
systems, without proper frameworks of anal-
ysis they remain little more than collections of
data, albeit big and comprehensive.

In the framework of supply-demand analy-
sis, Hofmeyr & Cornish-Bowden (2000) have
posited that the metaphor of an economy of
supply and demand may prove useful to un-
derstand the regulation of cellular pathways.
One of its tenets is that flux control of a path-
way may lie beyond the boundaries of what
has traditionally been considered the pathway,
i.e. in the demand for its end-product. One
of the problems with supply-demand analysis,
however, is that the complexity of large models
may preclude us from finding a ‘natural’ sub-
division of the system into supply and demand
blocks, and that it is therefore difficult to apply
the analysis in an unbiased way (Hofmeyr &
Rohwer, 2011).

To overcome this limitation, Rohwer &
Hofmeyr (2008) have generalised supply-
demand analysis so that it can be applied to
models of arbitrary size and complexity in a
systematic, computer-driven way. In essence,
the approach works by ‘clamping’ or fixing
each of the model’s variable metabolites in
turn, thus changing it into a parameter of the
system. Its value is then altered in a range
above and below the reference. Concomitantly,
the dependences of all the rates that produce
the metabolite (the supply reactions) and all the
rates that consume it (the demand reactions) on
the concentration of the metabolite are then
graphed in what is called a combined rate char-
acteristic. Because this is done for every meta-
bolite of the system, the approach is unbiased.

Generalised supply-demand analysis now
compares, for each of the supply and demand
fluxes, how sensitively the individual enzyme
that interacts directly with the clamped meta-
bolite responds to changes in its level. This is
compared to how the whole supply (or, respec-
tively, demand) flux responds to the metabolite.
This comparison yields important information
about how the pathway is regulated, and can
identify:

Figure 7: Aspartate metabolism in Arabidopsis
thaliana. Enzymes are in numbered
boxes. The pathway products threo-
nine and lysine exert negative feed-
backs on enzymes in their synthesis
pathways (dashed lines). Bold lines
indicate major routes of interaction
(see main text). Adapted from Curien
et al. (2009).

• potential sites of regulation;

• regulatory metabolites;

• the quantitative relative contribution of
different routes of interaction from a me-
tabolite to a supply or demand block; and

• sites of functional differentiation where
one of the supply or demand blocks pre-
dominantly controls the flux, and the other
determines to what extent the linking me-
tabolite is buffered against changes in its
concentration.
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We have developed a module for the PySCeS
software that can automatically perform gen-
eralised supply-demand analysis on a model
by doing the computations and graphing the
results.

By way of example, consider the pathway
in Figure 7, which shows the metabolism of
aspartate (an amino acid) to threonine and ly-
sine (two other amino acids) in the thale cress
(Arabidopsis thaliana), which is the model plant
for botanists and plant physiologists. The path-
way has a number of interesting features. First,
a number of reactions are catalysed by more
than one enzyme (for the first reaction, there
are actually four enzymes!). These multiple
enzymes are called isozymes and have different
properties. Second, numerous feed-back loops
exist from the end-products lysine and threo-
nine to enzymes in their synthesis pathways,
both to the very first enzymes and to the first
enzymes in their dedicated branch.

To better understand the function of these
isozymes and feed-back loops, Curien et al.
(2009) constructed a detailed model of the path-
way in Figure 7 (their model has a number of
additional reactions, which have been omitted
from Figure 7 for clarity). Two of the main con-
clusions of their work are that, first, some of
the feed-back loops serve to maintain indepen-
dence between fluxes in competing pathways
(such as the branches to threonine and lysine),
and second, that isozymes are not redundant,
because they contribute unequally to the regu-
lation of the flux through the pathway.

We performed a generalised supply-demand
analysis on this model to obtain additional in-
formation on the function of the pathway and
its regulation. Only one result is presented
here. Consider the analysis around aspartate-
semialdehyde, and specifically its interaction
with the supply enzyme 5 (its biochemical
name is aspartate-semialdehyde dehydroge-
nase). Both are shaded grey in Figure 7. The
analysis has shown that the major route of com-
munication of aspartate-semialdehyde with its
supply enzyme is not the direct interaction;
rather all the major routes run via the de-
mand enzymes and feedback loops (indicated
in bold), and for lysine, only one of the feed-
back loops (to enzyme 4) plays a significant

role. This was an unexpected result, as the reg-
ulatory routes follow a ‘detour’. It also shows
the use of generalised supply-demand analy-
sis in quantifying the relative contribution of
routes of interaction (third bullet point above).
Note that the importance of every route can
be quantified with a number, thus ranking the
various routes of interaction (not shown in Fig-
ure 7).

As pointed out by Hofmeyr & Cornish-
Bowden (2000), the mere existence of a feed-
back loop does not mean that it is always active,
and the regulation can sometimes follow an-
other route. Generalised supply-demand anal-
ysis thus identify active regulatory routes for
a particular set of conditions, which depend on
the particular state of the model and cannot
be inferred from model structure alone. The
strength of the approach lies in that it provides
a tool for the systematic functional analysis of
large models, yielding an entry point for fur-
ther refined analyses, where the modeller can
zoom in to those parts that show interesting
regulatory behaviour.

6 Conclusion

In this essay I have outlined some of the exper-
imental and computational tools that can be
used to unravel the complex networks of cellu-
lar regulation. The field of systems biology has
drawn attention to the fact that these networks
cannot be understood on the basis of structure
alone, but that dynamic aspects and the inter-
actions between the components play a crucial
role.

The enzyme as the central unit of catalysis
was introduced in Section 2, and techniques to
study its properties were outlined. The inter-
action of enzymes in metabolic networks, the
analysis of such networks with computational
models, and the additional levels of complex-
ity that come with it were discussed in Sec-
tion 3. Two examples from my own research
were discussed in greater detail. A framework
to extend the network analysis to the organ-
ism scale in plants was introduced in Section 4,
by including the physico-chemical properties
of solute transport along the plant stalk. Fi-
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nally, Section 5 introduced generalised supply-
demand analysis as a computational method
for unravelling regulatory interconnections in
large models of cellular pathways.

The analysis has thus followed a bottom-up
approach, from small to big, to arrive at an
overall picture of how such a system functions
dynamically. Importantly, though, every step
in this process is necessary, and we cannot sim-
ply forget about the properties of individual
enzymes, for example, if we are to understand
the regulatory function of the whole network.

As summarised in Rohwer (2012), I believe
the future challenges to lie in the integration of
different levels of the cellular hierarchy (such as
gene transcription, protein synthesis and sig-
nalling) with the metabolic level. Also, new
methods have to be developed to extract in-
formation from the huge datasets generated
by current ‘omics’ techniques, that can mea-
sure RNA, protein, enzyme activity or metabo-
lite levels on a system-wide scale. Following
through to the supra-cellular level, approaches
are needed for integrating metabolic and cellu-
lar regulation with organismal regulation, and
providing links to (plant and animal) physiol-
ogy as well as ecology.

In conclusion, returning to the importance of
mathematical analysis, the tenet of my work
has been and will continue to be that a thor-
ough understanding of the molecular phys-
iology of cellular systems requires a multi-
disciplinary approach comprising quantitative
experimental analysis and numerical simula-
tion, all within a rigorous theoretical frame-
work. This can result in the formulation of
predictive models that will enhance our ability
to understand organisms and manipulate them
in a directed, targeted way (e.g. in biotechnol-
ogy or medicine), and holds a great future for
biology and physiology.
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