4,790 research outputs found

    Fluctuation diagnostics of the electron self-energy: Origin of the pseudogap physics

    Full text link
    We demonstrate how to identify which physical processes dominate the low-energy spectral functions of correlated electron systems. We obtain an unambiguous classification through an analysis of the equation of motion for the electron self-energy in its charge, spin and particle-particle representations. Our procedure is then employed to clarify the controversial physics responsible for the appearance of the pseudogap in correlated systems. We illustrate our method by examining the attractive and repulsive Hubbard model in two-dimensions. In the latter, spin fluctuations are identified as the origin of the pseudogap, and we also explain why d−d-wave pairing fluctuations play a marginal role in suppressing the low-energy spectral weight, independent of their actual strength.Comment: 6 pages, 2 figures + 4 pages supplementar

    High-temperature optical spectral weight and Fermi liquid renormalization in Bi-based cuprates

    Full text link
    The optical conductivity and the spectral weight W(T) of two superconducting cuprates at optimum doping, Bi2Sr2-xLaxCuO6 and Bi2Sr2CaCu2O8, have been first measured up to 500 K. Above 300 K, W(T) deviates from the usual T2 behavior in both compounds, even though the zero-frequency extrapolation of the optical conductivity remains larger than the Ioffe-Regel limit. The deviation is surprisingly well described by the T4 term of the Sommerfeld expansion, but its coefficients are enhanced by strong correlation. This renormalization is due to strong correlation, as shown by the good agreement with dynamical mean field calculations.Comment: 5 pages, 3 figures, Physical Review Letters in pres

    Fire Retardant Textiles

    Get PDF

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure
    • …
    corecore