860 research outputs found

    Children\u27s Perceptions of Parental Responses to Boys\u27 and Girls\u27 Aggressive Behavior

    Get PDF
    The purpose of this study was to investigate differences in children\u27s perceptions of mothers\u27 and fathers\u27 to aggressing girls and boys. A picture test of children aggressing was devised and administered to 52 fourth grade children from upper middle socioeconomic backgrounds attending school in an Idaho community. Sex of aggressor, type of aggression (verbal or physical), and sex of parent were investigated as factors possibly related to children\u27s perceptions. None of these variables were found to be significant in this sample. However, boys\u27 perceptions of how parents respond to children aggressing were significantly different from girls\u27 perceptions. Girls perceived parents verbally helping or redirecting children and boys perceived parents physically punishing children more often than any other type of response

    Evaluation of wind tunnel performance testings of an advanced 45 deg swept 8-bladed propeller at Mach numbers from 0.45 to 0.85

    Get PDF
    The increased emphasis of fuel conservation in the world and the rapid increase in the cost of jet fuel has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. The results of these studies indicate that a fuel saving of 15 to 30 percent may be realized by the use of an advanced high-speed turboprop (Prop-Fan) compared to aircraft equipped with high bypass turbofan engines of equivalent technology. The Prop-Fan propulsion system is being investigated as part of the NASA Aircraft Energy Efficient Program. This effort includes the wind tunnel testing of a series of 8 and 10-blade Prop-Fan models incorporate swept blades. Test results indicate efficiency levels near the goal of 80 percent at Mach 0.8 cruise and an altitude of 10.67 km (35,000 ft). Each successive swept model has shown improved efficiency relative to the straight blade model. The fourth model, with 45 deg swept blades reported herein, shows a net efficiency of 78.2 at the design point with a power loading of 301 kW/sq meter and a tip speed of 243.8 m/sec (800 ft/sec.)

    The importance of climatic factors and outliers in predicting regional monthly campylobacteriosis risk in Georgia, USA

    Get PDF
    Incidence of Campylobacter infection exhibits a strong seasonal component and regional variations in temperate climate zones. Forecasting the risk of infection regionally may provide clues to identify sources of transmission affected by temperature and precipitation. The objectives of this study were to (1) assess temporal patterns and differences in campylobacteriosis risk among nine climatic divisions of Georgia, USA, (2) compare univariate forecasting models that analyze campylobacteriosis risk over time with those that incorporate temperature and/or precipitation, and (3) investigate alternatives to supposedly random walk series and non-random occurrences that could be outliers. Temporal patterns of campylobacteriosis risk in Georgia were visually and statistically assessed. Univariate and multivariable forecasting models were used to predict the risk of campylobacteriosis and the coefficient of determination (R 2) was used for evaluating training (1999–2007) and holdout (2008) samples. Statistical control charting and rolling holdout periods were investigated to better understand the effect of outliers and improve forecasts. State and division level campylobacteriosis risk exhibited seasonal patterns with peaks occurring between June and August, and there were significant associations between campylobacteriosis risk, precipitation, and temperature. State and combined division forecasts were better than divisions alone, and models that included climate variables were comparable to univariate models. While rolling holdout techniques did not improve predictive ability, control charting identified high-risk time periods that require further investigation. These findings are important in (1) determining how climatic factors affect environmental sources and reservoirs of Campylobacter spp. and (2) identifying regional spikes in the risk of human Campylobacter infection and their underlying causes

    Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format

    Get PDF
    Low-rank tensor approximations have shown great potential for uncertainty quantification in high dimensions, for example, to build surrogate models that can be used to speed up large-scale inference problems [M. Eigel, M. Marschall, and R. Schneider, Inverse Problems, 34 (2018), 035010; S. Dolgov et al., Stat. Comput., 30 (2020), pp. 603–625]. The feasibility and efficiency of such approaches depends critically on the rank that is necessary to represent or approximate the underlying distribution. In this paper, a priori rank bounds for approximations in the functional Tensor-Train representation for the case of Gaussian models are developed. It is shown that under suitable conditions on the precision matrix, the Gaussian density can be approximated to high accuracy without suffering from an exponential growth of complexity as the dimension increases. These results provide a rigorous justification of the suitability and the limitations of low-rank tensor methods in a simple but important model case. Numerical experiments confirm that the rank bounds capture the qualitative behavior of the rank structure when varying the parameters of the precision matrix and the accuracy of the approximation. Finally, the practical relevance of the theoretical results is demonstrated in the context of a Bayesian filtering problem

    Correction of coarse-graining errors by a two-level method: Application to the Asakura-Oosawa model.

    Get PDF
    We present a method that exploits self-consistent simulation of coarse-grained and fine-grained models in order to analyze properties of physical systems. The method uses the coarse-grained model to obtain a first estimate of the quantity of interest, before computing a correction by analyzing properties of the fine system. We illustrate the method by applying it to the Asakura-Oosawa model of colloid-polymer mixtures. We show that the liquid-vapor critical point in that system is affected by three-body interactions which are neglected in the corresponding coarse-grained model. We analyze the size of this effect and the nature of the three-body interactions. We also analyze the accuracy of the method as a function of the associated computational effort.Leverhulme Trus

    An optically actuated surface scanning probe

    Get PDF
    We demonstrate the use of an extended, optically trapped probe that is capable of imaging surface topography with nanometre precision, whilst applying ultra-low, femto-Newton sized forces. This degree of precision and sensitivity is acquired through three distinct strategies. First, the probe itself is shaped in such a way as to soften the trap along the sensing axis and stiffen it in transverse directions. Next, these characteristics are enhanced by selectively position clamping independent motions of the probe. Finally, force clamping is used to refine the surface contact response. Detailed analyses are presented for each of these mechanisms. To test our sensor, we scan it laterally over a calibration sample consisting of a series of graduated steps, and demonstrate a height resolution of ∼ 11 nm. Using equipartition theory, we estimate that an average force of only ∼ 140 fN is exerted on the sample during the scan, making this technique ideal for the investigation of delicate biological samples
    • …
    corecore