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Low-rank tensor approximations have shown great potential for uncertainty quantification
in high dimensions, for example, to build surrogate models that can be used to speed up large-
scale inference problems (Eigel et al., Inverse Problems 34, 2018; Dolgov et al., Statistics &
Computing 30, 2020). The feasibility and efficiency of such approaches depends critically on
the rank that is necessary to represent or approximate the underlying distribution. In this
paper, a-priori rank bounds for approximations in the functional tensor-train representation
for the case of Gaussian models are developed. It is shown that under suitable conditions on
the precision matrix, the Gaussian density can be approximated to high accuracy without
suffering from an exponential growth of complexity as the dimension increases. These re-
sults provide a rigorous justification of the suitability and the limitations of low-rank tensor
methods in a simple but important model case. Numerical experiments confirm that the rank
bounds capture the qualitative behavior of the rank structure when varying the parameters of
the precision matrix and the accuracy of the approximation. Finally, the practical relevance
of the theoretical results is demonstrated in the context of a Bayesian filtering problem.

1 Introduction
Inference problems for high-dimensional random variables appear commonly in scientific computing.
In the field of uncertainty quantification, for example, the behavior of a system of interest can be
modeled by the pushforward of a random coefficient field by a physical model (often given by a partial
differential equation), see e.g. [36], or by the posterior distribution of the corresponding Bayesian inverse
problem of estimating parameters based on measured (noisy) data [47]. In typical applications, the
underlying stochastic parameter domain is infinite dimensional and has to be discretized (e.g. by a
truncated Karhunen-Loève expansion) with tens to thousands of stochastic parameters resulting in a
complicated high-dimensional random variable that needs to be investigated. A great deal of effort has
been spent on developing numerical methods for such problems.
One specific example of a Bayesian inverse problem is filtering [29], where one aims to assimilate noisy

time series data into a probabilistic dynamical state space model. Under the assumptions of linear dy-
namics and Gaussian noise, the resulting Gaussian filtering distribution can be computed exactly via
the Kalman filter. In the general nonlinear case, a Bayes-optimal filter requires the solution of a high-
dimensional Fokker-Planck equation to find the exact (non-Gaussian) filtering distribution, requiring
efficient general-purpose numerical approximation techniques in high dimensions. In moderate dimen-
sions, direct piecewise polynomial approximation methods, e.g., based on sparse grid approaches [5], can
be used to soften the exponential growth of the cost with respect to dimension. However, these methods
do not fundamentally escape the curse of dimensionality.
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Sampling based methods, in particular Monte Carlo or Markov chain Monte Carlo methods, are in
principle suitable for inference and uncertainty quantification (UQ) in very high dimensions [35, 36, 47].
However, the slow convergence rates and the potentially long decorrelation times of the Markov chains
for general, high-dimensional, nonlinear inverse problems can make these methods very expensive, in
particular when the forward model is complicated and costly to evaluate. In the linear Gaussian case,
direct samplers based on factorizations of the posterior covariance matrix are available [1, 3, 21, 44] and
polynomial-accelerated Markov chains can be used [22].
For non-Gaussian distributions, several promising, recently developed approaches to improve the per-

formance of UQ and inference techniques (either direct or sampling-based) for general nonlinear problems
in high dimensions are based on low-rank tensor surrogates. Originating from renormalization group pro-
cedures in computational chemistry [48], such surrogates can be used, e.g., to represent (or approximate)
the high dimensional distribution in a parametric format, with a complexity that grows only polynomi-
ally with dimension and thus allows to break the curse of dimensionality. The low-rank tensor format
can be seen as a generalization of the matrix singular value decomposition to higher dimensions. There
is no unique way to do this and there are a range of competing formats. Here, we focus on the commonly
used Tensor-Train decomposition [38,41]. For reviews on low-rank tensor formats see [26,27,31].
There are many ways to utilize low-rank parametrizations in UQ. For example, they can be used

directly to approximate the forward map [2,12,13,17,33] or the posterior distribution [16] in variational
approaches, or to speed up sampling from the exact distribution [8, 10]. Their efficiency hinges on the
size of the ranks that are necessary to represent or to approximate the underlying high dimensional
function sufficiently accurately. Low-rank tensor approaches appear to be working well in practice in
the applications considered in the papers above. However, little is known about theoretical guarantees
on the required ranks. Exact rank bounds have only been shown for some specific function classes in
other applications (not UQ-related) so far [11, 25, 30, 32]. In particular, so far there exists no theory for
probability density estimation via low-rank techniques.
In this paper, we present first results on a-priori bounds for the rank of tensor approximations in the

case of high dimensional Gaussian random variables. Due to their ubiquity in statistics as the limiting
distribution of (sufficiently regular) averages of random variables, this is a canonical starting point for
developing a theory of low-rank methods in UQ. Our considerations are based on locality of correlations
between different variables, e.g. bandedness of the covariance matrix, which was also used to reduce
the computational complexity of MCMC [37]. When the covariance matrix of the Gaussian is diagonal,
the corresponding density reduces to a product of one-dimensional functions which is clearly of rank 1.
We show that we can preserve low-rank approximability when we are sufficiently close to this setting.
We quantify this by looking at the singular spectrum of the subdiagonal blocks of the precision matrix
(inverse covariance matrix): we can approximate the densities with low rank if there are only few singular
values (Theorem 3.1) or the values are decaying fast (Theorem 3.2). In those cases, we can prove a poly-
logarithmic/polynomial growth rate of the ranks with respect to the inverse approximation accuracy
1/ ε and with respect to the dimension d. This result breaks down as the rank of the subdiagonal block
matrices increases or, correspondingly, as the decay rate of the singular values decreases.
While the range of direct applications of these theoretical results for Gaussian distributions is limited,

the technical difficulties are already substantial and provide a natural first stepping stone for further
analysis of the algorithms presented for example in [8,10,16]. Nevertheless, our theoretical results can be
used directly, for example to estimate ranks of TT approximations of the solution to the Fokker-Planck
equation in Bayesian filtering. We demonstrate this in Section 5 for a general nonlinear dynamical system.
At each observation time t`, in addition to solving the Fokker-Planck equation numerically, we also
compute the linearised posterior covariance C(t`) cheaply via the Kalman filter. Via our new theoretical
results, the singular values of the subdiagonal blocks of the precision matrix C(t`)

−1 will provide rigorous
bounds on the ranks necessary to approximate the corresponding Gaussian density function to a specified
accuracy. Provided the dynamics is weakly nonlinear or the frequency of observations is high, we can
expect that the TT ranks of the (non-Gaussian) Bayes-optimal filtering distribution of the original
nonlinear dynamical system will be very similar. This conjecture is motivated by holomorphy of many
commonly employed likelihood functions [28] and the fact that polynomial correction functions (e.g. via
a Taylor expansion) can be represented in the TT format with moderate TT ranks [32]. A detailed
analysis of all possible sub-Gaussian functions is however beyond the scope of this paper.
The paper is organized as follows: In Section 2 we introduce the Tensor-Train format and some

preliminary material. The main results are presented in Section 3. In Section 4, we provide numerical
examples that confirm qualitatively our theoretical results, and then illustrate in Section 5 how they can
be used within a nonlinear Bayesian filtering problem. Finally, we summarize our results in Section 6.
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2 Low-Rank Tensor Decompositions
In this section, we give a brief overview of the relevant tensor decomposition methods. From an abstract
point of view, the goal of these methods is to represent a high dimensional function

f : Rd → R

as well as its discrete evaluation T = f(Q̂) ∈ Rn1×···×nd on a tensor grid

Q̂ =
d

ą

i=1

{ξ(i)
1 , . . . , ξ(i)

ni }

with ni ∈ N grid points on each axis. First, we look at the discrete case of the tensor T . It is obvious that
computing and storing all elements of a tensor T = f(Q̂) directly is prohibitively expensive for anything
but very small dimensions. In order to be able to work with T , we need an efficient representation whose
complexity does not increase exponentially in its dimension. In two dimensions, a low-rank representation
and optimal approximations are easily computable using the singular value decomposition (SVD). There
is no clear way to generalize such a decomposition to higher dimensions and there are various formats
that manage to transfer some of the properties of the SVD to higher dimensions [26, 27]. In this paper,
we will use the Tensor-Train (TT) format [38,41] and the corresponding functional Tensor-Train (FTT)
format [4,23,39] as the low parametric representations. However, the results presented in this paper can
be easily generalized to other subspace based tensor formats, e.g. the hierarchical Tucker format [24].
In this section, we briefly define the format and state the properties needed for the following proofs.

For an introduction to the format and further details, see [38] and the references in this section.

Definition 2.1 (Discrete Tensor-Train Representation) Let r0, . . . , rd ∈ N, and T ∈ Rn1×···×nd

be a d-dimensional tensor. The tuple of 3-tensors

(G1, . . . , Gd) with Gj ∈ Rrj−1×nj×rj where r0 = rd = 1

is called a Tensor-Train (TT) representation of T if

T (i1, . . . , id) = G1(i1) · · ·Gd(id) where Gj(ij) := [Gj(l, ij , r)]
rj−1,rj
l,r=1 . (2.1)

The tensor T is represented or approximated by a sequence of three-dimensional tensors Gj called the
TT cores (see Figure 1). We call r = (r0, . . . , rd) the TT ranks of the decomposition. For n ∼ nj and
bounded ranks r ∼ rj , the complexity of a TT tensor grows of the orderO(dnr2). Each entry T (i1, . . . , id)
is computed by a product of d matrices which are given by the ij-th slice of the 3 dimensional TT core
Gj(ij), see Equation (2.1). Since r0 = 1, the first slice G1(i1) ∈ Rr1 is a one-dimensional vector and thus
the evaluation of an entry of T reduces to the computation of d matrix-vector products which can be
computed in O(dr2) operations. In physics literature, this format is also known as the Matrix Product
States (MPS) representations of the tensor T [45].

n3

r3

r2
· · ·

Figure 1: Visualization of the cores of a TT tensor.

The Tensor-Train rank structure of T is determined by the properties of the linear subspaces spanned
by the matricizations of the tensor.

Definition 2.2 (Matricization) Let T ∈ Rn1×···×nd and l ∈ {1, . . . , d − 1}. We call the matrix that
results from reshaping T to

T (l)(i1, . . . , il; il+1, . . . , id) ∈ Rn1···nl×nl+1...nd (2.2)

the l-matricization of T .
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The minimal TT ranks needed to exactly represent a tensor in the TT format are given by the matrix
ranks of these matricizations.

Theorem 2.3 Let T ∈ Rn1×···×nd . For any exact TT decomposition (G1, . . . , Gd) of T

T (i1, . . . , id) = G(i1) · · ·G(id), (2.3)

the l-th TT rank rl fulfills
rl ≥ rankT (l). (2.4)

Furthermore, there exists a TT decomposition of T with ranks rl = rankT (l).

Proof Let (G1, . . . , Gd) be a TT decomposition of T . We define

G≤l(i1, . . . , il) = G1(i1) · · ·Gl(il) ∈ R1×rl , G>l(il+1, . . . , id) = Gl+1(il+1) · · ·Gd(id) ∈ Rrl×1 .

Then T (i1, . . . , id) = G≤l(i1, . . . , il) · G>l(il+1, . . . , id) is a skeleton decomposition of T (l), implying
rl ≥ rankT (l). It is shown in [38, Theorem 2.1] that the TT-SVD algorithm explained below constructs
a TT decomposition where the rank bound (2.4) is achieved with equality. �

Given the full tensor T , we can compute a TT decomposition by successively computing singular value
decompositions. We sketch the procedure: we start with the first matricization

T (1) = U1Σ1V
ᵀ
1 . (2.5)

Reshaping the first matrix of the decomposition U1 ∈ Rn1×r1 to the 3-tensor G1 ∈ Rr0×n1×r1 (recall that
r0 = 1) gives us the first TT core of the decomposition. The remaining matrix (Σ1V

ᵀ
1 ) ∈ Rr1×n2···nd is

reshaped to ̂(Σ1V
ᵀ
1 ) ∈ Rr1n2×n3···nd . Again, we compute the SVD

̂(Σ1V
ᵀ
1 ) = U2Σ2V

ᵀ
2 (2.6)

and reshape U2 ∈ Rr1n1×r2 to G2 ∈ Rr1×n2×r2 to get the second TT core. This process continues with
(Σ2V

ᵀ
2 ) and so forth. As the final step, we set the last tensor core to be Gd = Σd−1V

ᵀ
d−1 ∈ Rrd−1×nd×rd .

The resulting cores (G1, . . . , Gd) form a TT decomposition of T with minimal ranks [38, Theorem 2.1].
Since this algorithm relies on subsequent singular value decompositions it is known as TT-SVD.
Since random matrices have full rank almost surely [18], it is an immediate consequence of Theorem

2.3 that the exact representations of almost all random tensors T in Rn1×···×nd have full rank in each
matricization and their complexity scales exponentially in d. In practice, we are interested in tensors that
arise from systems with structure that could lead to bounded ranks. Nevertheless, any noise in the entries
would make an exact representation impossible even in a case where the underlying tensor is of low rank.
It is therefore important to be able to compute approximations and quantify the occurring error. For the
Tensor-Train format (and other subspace based formats like the hierarchical Tucker format [24]), best
low-rank approximations are guaranteed to exist and the corresponding errors can be easily bounded by
again looking at properties of the induced linear subspaces.

Theorem 2.4 Let T ∈ Rn1×···×nd be a tensor and r = (r0, . . . , rd) with r0 = rd = 1 be a rank bound.
Then, there exists a best approximation T̃ of T in the Frobenius norm with TT ranks bounded by r whose
error is bounded by

‖T − T̃‖F = inf
rank(G)≤r

‖T −G‖F ≤
(
d−1∑
l=1

inf
rankA≤rl

‖T (l) −A‖2F

)1/2

. (2.7)

For a proof, see [38, Theorem 2.2, Corollary 2.4]. One of the key features of the TT format is the right-
hand side bound in Equation (2.7). This enables us to bound the tensor approximation error by only
looking at approximations of its matricizations which is a much simpler linear algebra problem. This
observation will be the key ingredient that we use to prove the rank bounds in Section 3.
In practice, computing exact best approximations is generally intractable, but by subsequently ap-

proximating the subspace of each matricization in the TT-SVD algorithm using a truncated singular
value decomposition, we can compute an approximation that achieves the bound (2.7) [38, Theorem 2.2].
Since the the overall approximation error in the TT format is always larger than the error of a single
matricization in the Frobenius norm, such an approximation is quasi-optimal with an additional factor of
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√
d− 1 [38, Corollary 2.4]. The truncated TT-SVD procedure can be implemented efficiently for tensors

already given in the TT format [38, Algorithm 1].
To extend this format to a functional setting, we will follow the same recipe as outlined above, however

applied on appropriate function spaces. In each step, we need to find an equivalent of the operation we
used in the discrete case. For details of this construction, see [4]. We start by defining the functional
Tensor-Train (FTT) decomposition of a function f ∈ L2(Rd).

Definition 2.5 Let f ∈ L2(Rd) and

γi : N×R×N→ R for i = 2, . . . , d− 1,

γ1 : {1} × R×N→ R, γd : N×R×{1} → R
be measurable functions. We call (γ1, . . . , γd) a functional Tensor-Train decomposition of f if

f(x1, . . . , xd) =

∞∑
α1,...,αd−1=1

γ1(α0, x1, α1) · · · γd(αd−1, xd, αd), α0 = αd = 1, (2.8)

in L2(Rd).

Instead of a tuple of 3-tensors, we have decomposed the d-dimensional function f into a tuple of 3-
dimensional functions (the FTT cores) with one real and two countable indices. The ranks for the
functional decomposition can be infinite. The rank ri is finite if γi(·, ·, αi) ≡ γi+1(αi, ·, ·) ≡ 0 for αi > ri
(i.e. we only need sum over index αi from 0 to ri in Equation (2.8)).
The properties of this format are again determined by the structure of the functional matricization

f (l)(x1, . . . , xl;xl+1, . . . , xd) : Rl×Rd−l → R . (2.9)

To analyze this, we need an analogue of the singular value decomposition on L2 function spaces. This is
given by the Schmidt decomposition [46, Theorem 4].

Theorem 2.6 (Schmidt decomposition) Let Q1 ⊂ Rl, Q2 ⊂ Rd−l be open sets and Q = Q1 × Q2.
Let µ = µQ1

⊗µQ2
be a σ-finite measure and f ∈ L2

µ(Q). Then, there exist complete orthogonal systems

{γi}∞i=1 ⊂ L2
µQ1

(Q1), {φi}∞i=1 ⊂ L2
µQ2

(Q2) (2.10)

and a non-decreasing sequence (λi)
∞
i=1 ⊂ R such that f can be expanded as the L2

µ(Q) converging series

f =

∞∑
i=1

√
λiγiφi. (2.11)

Furthermore, the partial sums
∑k
i=1

√
λiγiφi are the orthogonal projections of f and yield the best low-

rank approximations

‖f −
k∑
i=1

√
λiγiφi‖L2

µ(Q) =

√√√√ ∞∑
i=k+1

λi = inf
g∈L2

µ(Q1×Q2)

rank g=k

‖f − g‖L2
µ(Q). (2.12)

Starting with any function f ∈ L2(Rd), we can explicitly construct an FTT decomposition of f by
following the steps of the TT-SVD algorithm and iteratively applying the Schmidt decomposition to the
functional matricizations. The details of this FTT-SVD algorithm are given in [4, Section 4.1].
The remaining ingredient that we require for our results is the ability to bound the error of a finite-

rank FTT approximation to a given function f ∈ L2(Rd). As before, this is determined by the ability to
approximate the matricizations.

Theorem 2.7 Let f ∈ L2(Rd) and r = (r0, . . . , rd). Then, there exists an approximation f̃ of f with
FTT-rank r whose error is bounded by

‖f̃ − f‖L2(Rd) ≤

d−1∑
l=1

inf
g∈L2(Q1

l×Q
2
l )

rank g=rl

‖f − g‖2L2(Rd)


1/2

, (2.13)

where
Q1
l := Rl and Q2

l := Rd−l .
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This result can be shown by following the steps of [4, Proposition 9] and using Theorem 2.6. Similar
to the discrete case, we can construct an approximation that achieves this bound by truncating the
representations of the matricizations of f during the FTT-SVD algorithm to r.
Let f ∈ L2(Rd) ∩ C(Rd) be a function with FTT rank r = (r0, . . . , rd). If we compute the evaluation

f(Q̂) of f on the tensor grid Q̂, it can be written as

f(Q̂)(i1, . . . , id) =

r∑
α1,...,αd−1

γ1(1, ξ
(1)
i1
, α1)γ2(α1, ξ

(2)
i2
, α2) · · · γd(αd−1, ξ

(d)
id
, 1). (2.14)

Therefore, the discrete TT ranks of f(Q̂) are always bounded by the functional TT ranks of f independent
of the grid Q̂ it is evaluated on. Of course, the discrete rank might be lower in practice, especially for
coarse grids.

2.1 Computing FTT Approximations
For the numerical tests in Section 4, we need to be able to compute approximations of functions in the
FTT format. We restrict ourselves to smooth functions f : Q→ R on a bounded domain

Q := [−a, a]d. (2.15)

The reason for the restriction to a bounded domain is purely technical; it is a requirement for our
numerical approximation scheme of f . The influence of restricting a function f ∈ L2(Rd) to Q on the
FTT ranks of approximations can be made arbitrarily small by choosing a appropriately. Therefore,
being able to approximate functions on a bounded domain is sufficient for testing their rank structure.
For details, see the beginning of Section 4 where we investigate the dependence of the ranks of Gaussian
densities on the size of the domain.
We use multivariate polynomial interpolation to approximate f . For simplicity, we will assume the

same number of n nodes for each dimension. Let Q̂ := {ξ1, . . . , ξn}d ∈ [−a, a]n
d

be a discrete tensor
grid in Q and T := f(Q̂). We consider T as the sample points of a multivariate Lagrange interpolation
polynomial

pT (x) =

n∑
i1,...,id=1

T (i1, . . . , id)l
(1)
i1

(x1) · · · l(d)
id

(xd) (2.16)

with l(i)j the corresponding j-th one dimensional Lagrange basis functions for the node basis {ξ1, . . . , ξn}.
If

T (i1, . . . , id) = G1(i1) · · ·Gd(id) (2.17)

is a TT tensor of rank r := (r0, . . . rd), the FTT rank of the corresponding interpolation polynomial pT
is bounded by r since it can be written as

pT (x) =

r∑
(α1,...,αd−1)=1

(
n∑

i1=1

G1(i1, α1)l
(1)
i1

(x1)

)
· · ·
(

n∑
id=1

Gd(αd−1, id)l
(d)
id

(xd)

)
. (2.18)

To avoid the instability problems generally associated with polynomial interpolation, we choose the nodes
{ξ1, . . . , ξn} of the Gauss quadrature rule on [−a, a]. This choice has the additional benefit that it enables
us to approximate integrals of f , and in particular also its L2 norm, with high accuracy. Since we use
the unscaled Lebesgue product measure on Q, the nodes are given by the transformed roots of the n-th
Legendre polynomial. The resulting interpolation polynomial pT in (2.18) can be efficiently evaluated at
any point x ∈ Rd using [4, Procedure 3].
Assume that we are given the exact evaluation tensors Tn for growing node sizes n. Then, the inter-

polation polynomial pn := pTn converges fast to the target function f .

Theorem 2.8 For any ν ∈ N, there exists a constant C = C(ν) such that the Legendre interpolation
polynomial pn converges with rate ν against f

‖f − pn‖L2(Q) ≤ C(ν)n−ν |f |Q,ν , (2.19)

where | · |Q,ν denotes the Sobolev semi-norm of the ν-th derivative on Q.

6



For a proof of this theorem, see [4, Proposition 6]. To evaluate integrals of f , we apply the corresponding
Gaussian quadrature rule. Let w = (w1, . . . , wn) be the quadrature weights corresponding to the Gauss-
Legendre nodes {ξ1, . . . , ξn}. Then, we have

ˆ
Q

f(x) dx ≈
ˆ
Q

pT (x) dx =

n∑
i1,...,id=1

(T ◦W)(i1, . . . , id) with W :=

d⊗
i=1

w (2.20)

where ◦ denotes the Hadamard product of tensors. Using this, we can easily determine the L2 norm of
pT by computing the Frobenius norm of the suitably scaled evaluation tensor

‖pT ‖L2(Q) = ‖T ◦
√
W‖F . (2.21)

The Hadamard product and the Frobenius norm are easily computable for tensors in the TT format [38].
Using interpolation, the problem of computing a functional approximation is discretized to computing

the tensor T . Of course, the discrete tensor is still far too large to be evaluated directly and a structure-
adapted algorithm for its approximation has to be employed. Here, we use the TT-cross algorithm in [42],
namely its rank-adaptive version implemented in the rect_cross class of the ttpy Python package [40].
Using this, we can compute high-accuracy approximations of the discrete evaluation tensors of f .
There are two contributions to the error of pT : the interpolation error and the error of the TT-cross

approximation of the node tensor. For the exact evaluation f(Q̂), the error of the polynomial pf(Q̂) only

depends on the grid Q̂ and, using Theorem 2.8, we can make the relative interpolation error

δint := ‖f − pf(Q̂)‖L2(Q)/‖f‖L2(Q) (2.22)

arbitrary small. The approximation of T ≈ f(Q̂) introduces an additional error

δappr := ‖pf(Q̂) − pT ‖L2(Q)/‖f‖L2(Q) = ‖(f(Q̂)− T ) ◦
√
W‖F /‖f‖L2(Q). (2.23)

The overall error is bounded by

‖f − pT ‖L2(Q)/‖f‖L2(Q) ≤ δint + δappr =: δ. (2.24)

To test the FTT rank structure of f , we compute low-rank approximations by truncating the ranks of
the TT tensor T ◦

√
W to relative accuracy ε giving us an approximation T̃ of T . Consequently, we have

‖pT̃ − f‖L2(Q) ≤ ‖pT̃ − pT ‖L2(Q) + ‖pT − f‖L2(Q) (2.25)

≤ ‖(T − T̃ ) ◦
√
W‖F + ‖pT − f‖L2(Q) (2.26)

≤ (δ + ε)‖f‖L2(Q). (2.27)

For ε� δ, we can ignore the error contribution due to our approximation scheme δ and we thus obtain
a functional approximation with relative error ε and the FTT ranks of pT̃ .
For a given computed approximation, we need to judge its relative accuracy δ. The TT-cross procedure

generates an error estimate of the completed tensor. To check that we have chosen a sufficiently dense
grid, we draw random points on Q from the target density and compute an importance sampling estimate
of the relative interpolation error on Q. If this error agrees with the error estimate of the TT-cross
procedure, we accept the completed tensor and use it to investigate the rank structure up to an accuracy
ε of one order of magnitude less than δ, see Section 4.

3 Bounds on Low-Rank Approximability
In this section, we present our main results. We define two conditions on the precision matrix of a
Gaussian density under which we can bound the rank growth for approximations in the functional
Tensor-Train format as a function of the dimension and the relative accuracy. The setup is this: given a
symmetric positive definite precision matrix Γ ∈ Rd×d, we consider the density of the Gaussian random
variable X ∼ N (0,Γ−1)

fΓ : Rd → R, x 7→ e−
1
2x

ᵀΓx (3.1)

7



where we have dropped the normalization factor to simplify the notation (this does not influence the
ranks). If the precision matrix Γ = diag(γ1, . . . , γd) is diagonal, fΓ immediately factorizes to

fΓ(x1, . . . , xd) =

d∏
i=1

e−
1
2γix

2
i (3.2)

which is a rank 1 function. On the other hand, we do not typically see low ranks in approximations when
we choose the precision matrix randomly. A reasonable expectation would be that we can approximate
the density easily when the precision matrix is “close” to being diagonal. In this paper, we present one
possible notion of this for which we can prove explicit rank bounds and which is general enough to be
useful in applications, see Section 5.
We relate the approximability of fΓ to the structure of the subdiagonal blocks of the precision matrix

Γ. For k = 1, . . . , d− 1, we can split Γ into submatrices

Γ =

[
Γ1,k Aᵀk
Ak Γ2,k

]
, Ak ∈ R(d−k)×k . (3.3)

The subdiagonal block Ak describes the interaction between the two blocks of variables in the k-th
matricization of fΓ. If Γ is diagonal, we have Ak = 0 and the blocks do not interact, hence the density
factorizes. When Ak 6= 0, the density does not factorize exactly any more, but if the structure of Ak is
sufficiently simple for each k, we can derive bounds on the ranks necessary to approximate fΓ. We look
at two cases: In Theorem 3.1, we assume that each Ak is a low-rank matrix with uniformly bounded
singular values and in Theorem 3.2, we assume that the singular spectrum of Ak decays at an exponential
rate. The proofs of both theorems are collected in Section 3.1.
For the first case, we assume that there exists a (small) l ∈ N such that every subdiagonal block Ak

has rankAk ≤ l. We assume further that Ak has singular values σki , i = 1, . . . , l, that are uniformly
bounded and set

σ := max
k,i

σki . (3.4)

Theorem 3.1 Let Γ be a symmetric positive definite precision matrix with low-rank subdiagonal blocks
as described above. For every ε > 0 there exists an approximation f̂ to the Gaussian density fΓ with

‖fΓ − f̂‖L2(Rd) ≤ ε ‖fΓ‖L2(Rd) (3.5)

whose FTT-ranks rk, k = 1, . . . , d− 1, are bounded by

rk ≤
((

1 + 7
σ

λmin

)
log

(√
8d

ε

)
+ log

(
e3/2 l

2

))l
(3.6)

≤
((

1 + 7
σ

λmin

)
log

(
7l
d

ε

))l
(3.7)

where λmin is the smallest eigenvalue of Γ.

In the situation described above, the FTT ranks only grow poly-logarithmically in dimension d and
accuracy 1/ ε. By working with a tensor approximation of the density fΓ, we can therefore avoid the
curse of dimensionality. There is however a critical exponential dependence on the number of singular
values l in the subdiagonal blocks.
In statistical applications, the structure of a Gaussian distribution is often more conveniently described

by its covariance matrix (i.e. by the inverse of the precision matrix). In this case, Theorem 3.1 is still
applicable since the rank of the subdiagonal blocks are the same for Γ−1 and Γ [19]. As an important
special case, we can apply Theorem 3.1 whenever the covariance or the precision matrix is sparsely
populated with entries near to the diagonal (e.g. a band matrix).
The strict low-rank requirement can be replaced by a strong decay rate for the singular values. We

assume that for all k-matricizations, the following exponential decay property for the singular values of
the corresponding subdiagonal block holds

σki ≤ αe−θi. (3.8)
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Theorem 3.2 Let Γ be a symmetric positive definite precision matrix with exponentially decaying sin-
gular values in each subdiagonal block as described above. For every ε > 0 there exists an approximation
f̂ to the Gaussian density fΓ with

‖fΓ − f̂‖L2(Rd) ≤ ε ‖fΓ‖L2(Rd)

whose FTT-ranks rk, k = 1, . . . , d− 1, are bounded by

rk ≤ exp

(
3α

λminθ

)(
3 log

(
C
d

ε

)) 2
θ log(C d

ε )
(3.9)

= exp

(
3α

λminθ

)(
C
d

ε

) 2
θ log(3 log(C d

ε ))
(3.10)

with

C := max

{√
8,

5

θ
,

eθ

1 + eθ
4α

λmin

}
where λmin is the smallest eigenvalue of Γ.

Compared to (3.6) from Theorem 3.1, the exponent in (3.9) now has a logarithmic dependence on the
dimension d and accuracy 1/ ε. The reformulation in (3.10) shows that this cannot be neglected: If we
ignore the log-log term in the exponent, the equation states a polynomial growth rate of the ranks in
the dimension d and the accuracy 1/ ε which is substantially worse than the poly-logarithmic rate in
Theorem 3.1. This is consistent with our interpretation of the complexity associated with a Gaussian
density. Given a certain target accuracy, we can ignore all interactions between the two variable blocks
of a matricization described by singular values below a certain threshold since their influence on the
density is negligible. As we increase the approximation accuracy, we need to refine our resolution of the
dependencies between the blocks of the matricizations, which, according to Theorem 3.1, results in a
logarithmic growth of the rank per singular value we look at. However, we also need to decrease the
threshold, thereby increasing the number of singular values we need to account for. We will see in Section
3.1 that the number of singular values we have to look at also grows logarithmically in 1/ ε. Combined,
this indicates a rate of roughly

log(1/ ε)log(1/ ε) = (1/ ε)log log(1/ ε)

(for ε � 1) which is similar to the bound in the theorem. Similarly to the dependence on the rank in
the previous theorem, this bound depends very sensitively on the decay rate parameters α, θ in (3.8).
In both theorems, we have described the FTT ranks by looking at various subdiagonal blocks which

describe the correlation between variables of the two dimensions of the matricized function. The structure
of these blocks, as well as the ranks necessary for the Tensor-Train approximation, therefore depend on
the ordering of the variables. Furthermore, our results can be easily extended to the more general
hierarchical Tucker (HT) format [24]. The low-rank manifold of HT tensors is, similar to the TT format,
described by the ranks of the linear subspaces induced by a generalized notion of matricizations. As with
the TT format (Theorem 2.4), approximability in the HT format can be established by approximating
the corresponding matricizations. By analyzing the generalized subdiagonal blocks that correspond to
the matricizations in the HT format, one can proof equivalent results to Theorem 3.1, 3.2.

3.1 Proofs of the Theorems
We have seen in (3.2) that for diagonal precision matrices, the density is of rank 1 since we can write it as
product of one dimensional functions. For a general precision matrix, such a multiplicative decomposition
would contain additional exponential factors of 2 variables. The general idea behind the proofs of our
theorems is to approximate these functions individually with low rank. However, a naive approximation
of each function would lead to a rank bound that grows exponentially in the number of off-diagonal terms
in Γ which generally grows at least linear in the dimension. In the following, we use the properties of
the TT format, in particular Theorem 2.7, as well as suitable coordinate transformations to reduce the
number of functions that we need to approximate.
For a general precision matrix, the multiplicative decomposition of the density reads

fΓ(x) =

d∏
i,j=1

e
1
2 Γi,jxixj . (3.11)
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Each of the factors is a two dimensional function of the form

(x, y) 7→ e−γxy for some γ.

Interpolating this exponential function with a one dimensional polynomial p(t) =
∑r
i=1 cit

i−1 ∈ Pr of
order r (and therefore of polynomial rank r − 1) yields an approximation

e−γxy ≈ p(x · y) =

r∑
i=1

cix
i−1 · yi−1

which is a sum of r separated functions and therefore has FTT ranks bounded by r. Before we can apply
polynomial interpolation, we need to restrict the function fΓ to a finite domain. This can be achieved
by multiplying with the restriction function

1Ω(x) =

{
1, if x ∈ Ω

0, otherwise
(3.12)

which has FTT rank 1 if we restrict to a rectangular domain Ω = I1 × · · · × Id. The overall error
is therefore determined by two terms, the error due to the cutoff and the error due to the inexact
interpolation, which need to be balanced. We could now apply a cutoff function and approximate each
factor of the Gaussian fΓ with bounded rank, however, the exponential growth in the number of terms
would make the resulting bound useless.
Using Theorem 2.7, we only need to prove that we can approximate the individual k-matricizations

fkΓ : Rk ×Rd−k → R . (3.13)

For now, we fix k ∈ {1, . . . , d − 1}. The k-matricization of any Gaussian density fΓ0
whose precision

matrix has the block structure

Γ0 :=

[
Γ1 0
0 Γ2

]
, Γ1 ∈ Rk×k, Γ2 ∈ R(d−k)×(d−k) (3.14)

has rank 1 as there is no correlation between the variable blocks (x1, . . . , xk) and (xk+1, . . . , xd). This
motivates splitting the precision matrix in the diagonal blocks Γ1,Γ2, and the remaining subdiagonal
block A

Γ =

[
Γ1 Aᵀ

A Γ2

]
, A ∈ R(d−k)×k . (3.15)

At this stage, we would need to approximate an exponential for every non-zero entry in A which are in
general substantially fewer factors then every non-zero off-diagonal entry of Γ.
However, we can reduce the number factors further by rotating the coordinate system for the first

k variables {x1, . . . , xk} and the last d − k variables {xk+1, . . . , xd} respectively. Let A = UΣV ᵀ be a
singular value decomposition of A and

Γ =

[
V

U

] [
Γ̃1 Σᵀ

Σ Γ̃2

] [
V ᵀ

Uᵀ

]
, (3.16)

where Γ̃1 = V ᵀΓ1V , Γ̃2 = UᵀΓ2U . We approximate the function fΓ from (3.1) on the transformed
coordinates

x̃i =

([
V

U

]ᵀ
x

)
i

=

{
(V ᵀ[x1 . . . xk]ᵀ)i for i ≤ k,
(Uᵀ[xk+1 . . . xd]

ᵀ)i otherwise.
(3.17)

That is, we define the transformed precision matrix

Γ̃ :=

[
Γ̃1 Σᵀ

Σ Γ̃2

]
(3.18)

and approximate the corresponding unnormalized density

fΓ̃(x̃) = e−
1
2 x̃

ᵀΓ̃x̃ = e−
1
2x

ᵀΓx = fΓ(x). (3.19)
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As before, we decompose Γ̃ into a matrix containing the diagonal blocks Γ̃0 and a matrix containing the
off-diagonal blocks (odb) Γ̃odb

Γ̃ =

[
Γ̃1 0

0 Γ̃2

]
+

[
0 Σᵀ

Σ 0

]
=: Γ̃0 + Γ̃odb (3.20)

and split the transformed density in its rank 1 factor f0 := fΓ̃0
and the product of the remaining factors

fodb = fΓ̃odb
. The latter factor yields the decomposition

fkodb(x̃1 . . . , x̃k; x̃k+1, . . . , x̃d) = e−
1
2 x̃

ᵀΓ̃odbx̃

= exp (−[x̃1 . . . x̃k]Σ[x̃k+1 . . . x̃d]
ᵀ)

=

rankA∏
i=1

exp (−σi · x̃i · x̃k+i)

=: f1 · f2 · · · frankA, (3.21)

where σi := Σi,i. Let

fi(x̃) ≈ h(x̃) =

r∑
i=1

h
(1)
j (x̃i)h

(2)
j (x̃k+i) (3.22)

be a rank r approximation of fi in the k-th matricization. Due to the block structure of the variable
transform in (3.17), h is also a low-rank approximation when retransformed to the original coordinate
system

fi(x) ≈ h(x) =

r∑
j=1

h
(1)
j ((V ᵀ[x1 . . . xk]ᵀ)i)h

(2)
j ((Uᵀ[xk+1 . . . xd]

ᵀ)i) . (3.23)

Furthermore, the change of coordinates preserves the L2 norm since the transformation matrix is orthog-
onal by construction. It is therefore equivalent to show low-rank approximability for each matricization
in the original and the transformed coordinate system.
To compute the low-rank approximation, we restrict to a finite domain in the transformed coordinate

system and subsequently approximate each factor fi by a polynomial. To achieve an overall relative error
of ε for the k-th matricization, we allow an error of ε /2 when restricting the domain and an error of
ε /2 for the subsequent low-rank approximation. As a simplification, we restrict fΓ̃ to a square domain
Ω = [−a, a]d which has to be chosen large enough such that∥∥fΓ̃ − fΓ̃

∣∣
Ω

∥∥
L2(Rd)

= ‖fΓ̃‖L2(Rd \Ω) ≤
ε

2
‖fΓ̃‖L2(Rd)

=
ε

2
‖fΓ‖L2(Rd) . (3.24)

This is equivalent to determining a square domain that covers 1 − (ε /2)2 of the volume of the random
variable

X ∼ N
(

0, (2Γ̃)−1
)
.

This can be ensured by choosing a such that every marginal density covers at least 1− (ε /2)2/d of the
weight. Given Γ, the minimal decay rate that can occur is bounded from below by the minimal eigenvalue

λmin(2Γ̃) = 2λmin(Γ).

Therefore, it is sufficient to choose a larger than the quantile function of the normal distribution for
σ2 = 1

2λmin(Γ) , i.e.

a ≥ 1√
λmin

erfc−1

(
1

d

(ε
2

)2
)
.

For simplicity, we bound the inverse complementary error function as in [7] which yields

1√
λmin

erfc−1

(
1

d

(ε
2

)2
)
≤

√√√√ 2

λmin
log

(√
2d

ε

)
=: a. (3.25)

Now, each function fi, treated as a univariate function x 7→ e−σix, needs to be approximated by a
polynomial on the domain

Ω̃ = [−a2, a2].
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In general, the subblock matrices A could have full rank and, assuming order O(1) interpolations of
the factors, the rank of the approximation still increases exponentially in the dimension d. This means
that without structural assumptions on the precision matrix, we cannot expect our approach to show
good FTT approximability. The decomposition (3.21) of fodb leads to two natural conditions that result
in approximable densities, namely restricting the overall rank (Theorem 3.1) or ensuring a fast enough
decay of the singular values (Theorem 3.2).
Let l := rankA be the rank of the subdiagonal block A in (3.15) for the k-th matricization. We

approximate each function fi in (3.21) by a polynomial pi. To bound the overall error made by doing
this, we single out each error pair

f1 · · · fl − p1 · · · pl =

l∑
i=1

p1 · · · pi−1(fi − pi)fi+1 · · · fl

to get

E := ‖f0[f1 · · · fl − p1 · · · pl]‖L2(Ω) (3.26)

≤
l∑
i=1

‖fi − pi‖L∞(Ω)‖f0p1 · · · pi−1fi+1 · · · fl‖L2(Ω). (3.27)

The L∞ norm of the polynomial approximation is independent of the dimensionality of the underly-
ing space Ω and only depends on the approximation quality of the exponential function on the one
dimensional domain Ω̃. For simplicity of notation, we identity fi with its corresponding one dimensional
exponential function

fi : Ω̃→ R, x 7→ e−σix. (3.28)

To derive bounds for the error, we apply classical polynomial interpolation theory.

Lemma 3.3 Let x1, . . . , xr be the roots of the (r−1)-th Chebyshev polynomial transformed to the interval
Ω̃. The error of the order r interpolation polynomial pi of fi with nodes x1, . . . , xr is bounded by

max
Ω̃
|fi − pi| ≤

1

r! · 2r−1

(
σia

2
)r
eσia

2

(3.29)

≤
(
σiea

2

2r

)r
eσia

2

. (3.30)

Proof The error of a order r polynomial interpolation on the Chebyshev nodes x1, . . . , xr is bounded
by

|fi(x)− pi(x)| ≤ 1

r! · 2r−1
a2r max

x∈Ω̃

∣∣∣∣ ∂r∂xr e−σix
∣∣∣∣

≤ 1

r! · 2r−1

(
σia

2
)r
eσia

2

(see e.g. [6, Corollary 8.11]). For the second part, we use the Sterling approximation

√
2πr

(r
e

)r
≤ r!

to estimate the factorial term

1

r! · 2r−1
≤ 1√

2πr
(
r
e

)r
2r−1

≤ 2√
2π
r−r

(e
2

)r
≤ r−r

(e
2

)r
.

�

To get from (3.27) to an estimate of the relative error, we need to relate the L2 norm of the partial
approximation

‖f0 · p1 · · · pi−1 · fi+1 · · · fl‖L2(Q) (3.31)

to the L2 norm of the density. As a preliminary consideration, we quantify the influence of one factor fi
on the norm of the product.
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Lemma 3.4 Let
f∗ ∈ L2(Ω)

and i ∈ {1, . . . , l}. Then, it holds for any fi as defined in (3.21) that

‖f∗‖L2(Ω) ≤ ‖f∗fi‖L2(Ω) exp
(
σia

2
)
. (3.32)

Proof By the definition of fi, we get

fi(x) = exp (−σixixi+k) ≥ exp
(
−σia2

)
> 0.

Using this, we have

‖f∗‖L2(Ω) = ‖f∗ fi
fi
‖L2(Ω) ≤ ‖f∗fi‖L2(Ω) exp

(
σia

2
)
. (3.33)

�

While this is a crude estimate, the additional exponential term in (3.33) already comes up as part of the
corresponding polynomial approximation in Lemma 3.3.

Lemma 3.5 Let
ε

(ri)
j :=

1

rj ! · 2rj−1

(
σja

2
)rj

e2σja
2

, j = 1, . . . , l, (3.34)

be the product of the rj-th order polynomial interpolation error bound for fj on Ω̃ from Lemma 3.3 and
the correction factor from Lemma 3.4. The partial approximation term (3.31) can be estimated by

‖f0 · p1 · · · pi−1 · fi+1 · · · fl‖L2(Ω) ≤
i−1∏
j=1

(
1 + ε

(rj)
j

)
eσia

2‖f0 · f1 · · · fl‖L2(Ω). (3.35)

Proof Let f∗ ∈ L2(Ω) and % ∈ {1, . . . , i− 1}. Then
‖f∗p%‖L2(Ω) ≤ ‖f∗f%‖L2(Ω) + ‖f% − p%‖L∞(Ω̃)‖f∗‖L2(Ω)

≤
(

1 + eσ%a
2‖f% − p%‖L∞(Ω̃)

)
‖f∗f%‖L2(Ω)

≤
(

1 + ε(r%)
%

)
‖f∗f%‖L2(Ω).

Note that the multiplicative factor does not depend on f∗. Therefore, we can simply extend this induc-
tively to more than one factor

‖f∗p1 · · · pk‖L2(Ω) ≤ ‖f∗p1 · · · pk−1fk‖L2(Ω) + ‖fk − pk‖L∞(Ω)‖f∗p1 · · · pk−1‖L2(Ω)

≤
k−1∏
j=1

(
1 + ε

(rj)
j

)
·
(
‖f∗f1 · · · fk−1fk‖L2(Ω) + ‖fk − pk‖L∞(Ω)‖f∗f1 · · · fk−1‖L2(Ω)

)
≤

k∏
j=1

(
1 + ε

(rj)
j

)
‖f∗f1 · · · fk‖L2(Ω).

Setting f∗ = f0fi+1 · · · fl, k = i − 1, and using Lemma 3.4 to add the missing factor fi completes the
proof. �

The following lemma will be useful later to estimate the required order of the interpolation polynomial.

Lemma 3.6 Let c > 0. Then it holds that(
c

c+ r

)c+r
≤ e−r. (3.36)

Proof We look at the difference of the logarithms of both sides

f(r) := log

((
c

c+ r

)c+r)
− log

(
e−r
)

= (c+ r)(log(c)− log(c+ r)) + r.

Note that f(0) = 0. The derivative of f satisfies

d
dr
f(r) = log(c)− log(c+ r) ≤ 0 for r ≥ 0.

Therefore, f(r) ≤ 0 for r ≥ 0 and the result follows from the monotonicity of the logarithm. �

13



3.1.1 Proof of Theorem 3.1

At this stage, we need to start making use of the structure of the precision matrix. We start with
the low-rank case as described in Theorem 3.1. For this, we assume that for every k-matricization the
subdiagonal blocks Ak have rankAk ≤ l where the singular values σki , i = 1, . . . , l, are uniformly bounded
and set

σ := max
k,i

σki . (3.37)

Proof (of Theorem 3.1) Again, we fix a matricization k ∈ {1, . . . , d − 1} and look at the function
fΓ̃(x̃) on the transformed domain as in (3.17). As a first step, we bound the rank necessary to construct
a low-rank approximation with a relative error bounded by εM < 1 for this matricization. We fix a finite
subdomain Ω = [−a, a]d with a as in (3.25) such that the relative L2 error due to the cutoff is bounded
by εM /2. Additionally, we need to choose a polynomial order ri such that the contribution due to the
approximation on Ω is bounded by εM /2. We choose a uniform interpolation order ri = r for all fi,
i = 1, . . . , l. Let

ε(r) :=
1

r! · 2r−1

(
σa2

)r
e2σa2 .

Using Lemma 3.3 and Lemma 3.5, we can bound the error E when using an order r polynomial interpo-
lation by

E ≤
l∑
i=1

‖fi − pi‖L∞(Ω)‖f0 · f1 · · · fi−1 · pi+1 · · · pl‖L2(Ω)

≤
(

1 + ε(r)
)l−1

l ε(r) ‖f0 · f1 · · · fl‖L2(Ω).

Therefore, we need to choose r large enough such that(
1 + ε(r)

)l−1

l ε(r) ≤ εM
2
. (3.38)

For any r that satisfies (3.38), we have ε(r) ≤ εM
2l . We can utilize this to simplify the left-hand side in

(3.38) by using
(1 + ε(r))l−1 ≤ exp

(
l log

(
1 +

εM
2l

))
≤ eεM /2 ≤ e1/2.

Using Lemma 3.3, it is sufficient to choose r large enough such that we can assure(
σea2

2r

)r
e2σa2 ≤ εM

2le1/2

which is equivalent to (
σea2

2r

)r
≤ εM

2le1/2
e−2σa2 . (3.39)

We compute the necessary interpolation order in two steps: First, we set r1 := e
2σa

2 which pushes the
left-hand side in (3.39) to 1. Then, we can use Lemma 3.6 to bound the remaining part(

r1

r1 + r2

)r1+r2

≤ e−r2

and as a result compute the second part r2 as

log

(
2le1/2

εM
e2σa2

)
≤ 2σa2 + log

(
le1/2 2

εM

)
(3.40)

=: r2. (3.41)

Then, choosing r = r1 +r2 is sufficient to guarantee (3.38). Since we cannot interpolate with non-integer
order, we need to choose the next larger integer value. To account for this, we simply add 1 to our bound
on r. Overall, this gives us

r ≤
(e

2
+ 2
)
σa2 + log

(
le1/2 2

εM

)
+ 1 (3.42)

=
(e

2
+ 2
)
σa2 + log

(
le3/2 2

εM

)
. (3.43)
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Choosing a as in (3.25) such that additional error that comes from restricting to the finite domain Ω is
bounded by εM /2 yields

r ≤
(e

2
+ 2
) 2σ

λmin
log

(
2
√

2d

εM

)
+ log

(
le3/2 2

εM

)
(3.44)

≤
(

1 + 7
σ

λmin

)
log

(√
8d

εM

)
+ log

(
e3/2 l

2

)
(3.45)

≤
(

1 + 7
σ

λmin

)
log

(
7l

√
d

εM

)
(3.46)

where we used in the second step that d ≥ 2. We have shown that if we restrict fΓ̃ to the domain Ω
and choose the order of our interpolation larger than (3.45) or (3.46), the overall error of an rank R = rl

approximation on Rd is bounded by

‖fΓ̃ − 1Ωf0p1 · · · pl‖L2(Rd) ≤ ‖fΓ̃ − fΓ̃

∣∣
Ω
‖L2(Rd) + ‖fΓ̃ − f0p1 · · · pl‖L2(Ω)

≤ εM ‖f‖L2(Rd).

Since we have seen that proving a low-rank bound for fΓ(x̃) on the transformed coordinate system is
equivalent to proving a low-rank bound for fΓ(x), this holds for the rank necessary to approximate the
k-th matricization to a specified accuracy. This rank bound does not depend on k ∈ {1, . . . , d− 1} and
we can apply Theorem 2.7 to bound the error of the FTT approximation f̂ of the density by

‖fΓ − f̂‖L2(Rd) ≤
√
d− 1 εM ‖fΓ‖L2(Rd). (3.47)

Setting εM := ε√
d
completes the proof. �

3.1.2 Proof of Theorem 3.2

The key of proving low-rank approximability is having few, well behaved factors fi that we can interpolate
using polynomials. For Theorem 3.1, we enforced this by assuming a low rank which might be limiting
in practice. As an alternative, we look at the case of a rapidly decaying singular spectrum. In Theorem
3.2, we assume that for all k-matricizations, it holds

σki ≤ αe−θi. (3.48)

The idea of the proof is to neglect all singular values that are small enough to not perturb the density
too much (effectively approximating the corresponding exponential function by 1). First, we need to
determine the number of singular values that we have to look at.

Lemma 3.7 Let k ∈ {1, . . . , d− 1} and 0 < ε < 1. Under the assumptions made above, the error made
by neglecting all terms larger than

l ≥ 1

θ
log

(
eθ

1 + eθ
3αa2

2 ε

)
(3.49)

in the decomposition (3.21) of the k-th matricization of fΓ is bounded by

‖fΓ̃ − f0f1 . . . fblc‖L2(Ω) ≤ ε ‖fΓ̃‖. (3.50)

Proof Using our decomposition of fΓ, we have

‖fΓ̃ − f0f1 . . . fblc‖L2(Ω) = ‖fΓ̃(1− (fbl+1c · · · frankA)−1)‖L2(Ω)

≤ ‖1− (fbl+1c · · · frankA)−1‖L∞(Ω)‖fΓ̃‖L2(Ω).

We need to choose l large enough such that∥∥1− (fbl+1c · · · frankA)−1
∥∥
L∞(Ω)

=
∥∥1− e

∑rankA
j=bl+1c αe

−θj x̃j x̃k+j
∥∥
L∞(Ω)

= e
∑rankA
j=bl+1c αe

−θja2 − 1 ≤ ε .

Since
ex − 1 ≤ 1

log(2)
x ≤ 3

2
x for 0 < x < log(2)
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and ε < 1 it is sufficient to choose l large enough such that

3

2

rankA∑
j=bl+1c

αe−θja2 ≤ 3

2
αa2

∞∑
j=bl+1c

e−θj ≤ eθ

1 + eθ
3αa2

2
e−θl ≤ ε .

Solving for l completes the proof. �

In particular, the number of factors that we need to deal with explicitly grows logarithmically in the
target accuracy in each matricization. We proceed similarly as for the low-rank case to approximate
these terms.

Proof (of Theorem 3.2) We fix a matricization k ∈ {1, . . . , d− 1} and construct a low-rank approx-
imation of fΓ̃ with relative error εM. We choose the domain Ω = [−a, a]d with cutoff error εM /2 as in
(3.25). Let

l :=
1

θ
log

(
eθ

1 + eθ
6αa2

εM

)
. (3.51)

We ignore all singular values σki for i > l. This introduces an error which is controlled using Lemma 3.7

‖fΓ̃ − f0f1 · · · fblc‖L2(Ω) ≤
εM
4
‖fΓ̃‖L2(Ω).

It remains to choose ranks for the polynomial interpolation of the blc remaining terms. Let

ε
(ri)
i :=

1

ri! · 2ri−1

(
αe−θia2

)ri
e2αe−θia2 (3.52)

be the product of the interpolation error and one-term norm correction. Similar to before, we can bound
the overall error E using Lemma 3.5 and thus need to choose the ranks such that

E ≤
blc∑
i=1

i−1∏
j=1

(
1 + ε

(rj)
j

)
eσia

2‖fi − pi‖L∞(Ω)‖fΓ̃‖L2(Ω)

≤
blc∏
i=1

(
1 + ε

(ri)
i

) blc∑
i=1

ε
(ri)
i ‖fΓ̃‖L2(Ω)

≤ exp

 blc∑
i=1

ε
(ri)
i

 blc∑
i=1

ε
(ri)
i ‖fΓ̃‖L2(Ω) ≤

εM
4
‖fΓ̃‖L2(Ω). (3.53)

We can immediately see that for any sequence of
(
ε

(ri)
i

)
i
that satisfies (3.53), it holds

blc∑
i=1

ε
(ri)
i ≤ 1

4
and 4e

1
4 ≤ 6.

Therefore, it is sufficient to choose (ri)i large enough such that

blc∑
i=1

ε
(ri)
i ≤ εM

6
.

In the following, we assume that l > 1, otherwise, the bound in Theorem 3.2 holds trivially. For simplicity,
we assume equidistributed errors

ε
(ri)
i ≤ εM

6l
for all 1 ≤ i ≤ blc. (3.54)

We use the bound on ε(r)
i from Lemma 3.3. For each i, we have to choose the order ri big enough such

that (
αe−θiea2

2r

)r
e2αe−iθa2 ≤ εM

6l
.
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As before, we compute the order in two parts ri = r
(1)
i + r

(2)
i . First, we set

r
(1)
i :=

e

2
αe−θia2.

Again, we use Lemma 3.6 to compute r(2)
i by ensuring that

e−r
(2)
i ≤ εM

6l
e−2αe−θia2

which gives us

r
(2)
i := 2αe−θia2 + log

(
6l

εM

)
.

Together, we get an upper bound for the necessary integer order on level i by

ri ≤
(

2 +
e

2

)
αe−θia2 + log

(
6l

εM

)
+ 1

≤ 7α

λmin
e−θi log

(√
8d

εM

)
+ log

(
6

εM θ
log

(
eθ

1 + eθ
6αa2

εM

))
+ 1︸ ︷︷ ︸

=:A

.

Using the identity log(x) ≤ x− 1, we simplify the second term A further

A ≤ log

(
6

εM θ

)
+ log

(
eθ

1 + eθ
6αa2

εM

)
(3.55)

≤ log

(
6

εM θ

)
+ log

(
eθ

1 + eθ
12α

εM λmin

)
+ log log

(√
8d

εM

)
(3.56)

≤ log

(
6

εM θ

)
+ log

(
eθ

1 + eθ
12α

e εM λmin

)
+ log

(√
8d

εM

)
. (3.57)

Thus

ri ≤
7α

λmin
e−θi log

(√
8d

εM

)
+ log

(
6

εM θ

)
+ log

(
eθ

1 + eθ
12α

e εM λmin

)
+ log

(√
8d

εM

)

≤ 7α

λmin
e−θi log

(
C

√
d

εM

)
+ 3 log

(
C

√
d

εM

)

≤
(

1 +
3α

λmin
e−θi

)
3 log

(
C

√
d

εM

)
with C := max

{√
8,

5

θ
,

eθ

1 + eθ
4α

λmin

}
independent of dimension d and accuracy ε (where we used that d ≥ 2). Comparing the definition of l
in (3.51) with (3.55), we can see that this computation additionally yields

l ≤ 2

θ
log

(
C

√
d

εM

)
.

The overall rank is therefore bounded by

R ≤
blc∏
i=1

ri ≤
blc∏
i=1

((
1 +

3α

λmin
e−θi

)
3 log

(
C

√
d

εM

))

≤
( ∞∏
i=1

(
1 +

3α

λmin
e−θi

))(
3 log

(
C

√
d

εM

))l

≤ exp

(
3α

λminθ

)(
3 log

(
C

√
d

εM

)) 2
θ log

(
C
√
d

εM

)

= exp

(
3α

λminθ

)(
C

√
d

εM

) 2
θ log

(
3 log

(
C
√
d

εM

))
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where we have used

∞∏
i=1

(
1 +

3α

λmin
e−θi

)
≤ exp

( ∞∑
i=1

3α

λmin
e−θi

)
= exp

(
3α

λmin(eθ − 1)

)
≤ exp

(
3α

λminθ

)
in the last inequality. The rest of the proof follows the same steps as the proof of Theorem 3.1. �

4 Numerical Tests of the Rank Bounds
In this section, we present numerical tests of the FTT rank bounds from Theorem 3.1 and Theorem 3.2.
For a choice of precision matrix, we compute a high accuracy representation of the multivariate Gaussian
density as described in Section 2.1 and, subsequently, check the FTT ranks that occur after compressing
this representation to various accuracies. Our aim here is to test if we can reproduce the qualitative
statements made by our theorems. We focus on the dependence of the FTT ranks on the dimension, the
approximation accuracy and rank/the decay rate of the singular values in the subdiagonal blocks.
To create a fair test, we avoid any structure in the precision matrices other than that required in

the respective theorems, randomizing the precision matrices while fixing the singular spectrum of the
subdiagonal blocks to a prescribed sequence. These matrices are generated as follows: starting with
M ∈ Rd×d, with elements randomly chosen between −1 and 1, we symmetrize by taking M̃ := MMᵀ

and then modify the subdiagonal blocks in M̃ by replacing the singular values in the block with the
predefined sequence. We alternate between the different subdiagonal blocks until the singular spectrum
has converged. To fix a uniform minimal eigenvalue, we add a suitably scaled identity matrix.
Since we can only approximate the function fΓ on the finite domain Q = [−a, a]d, we need to choose an

appropriate value for a. Ideally, Q should be big enough such that the L2-error introduced by the cutoff
is below the approximation accuracy that we are interested in. For accuracies up to ε = 10−13, we would
need to choose a large value for a and thus a very high numbers of interpolation nodes n. On large parts
of this domain, the density is effectively zero which makes the tensor completion challenging. However,
in practice the ranks do not appear to depend strongly on the domain size a even at high accuracy, see
Figure 2 for an example. We therefore choose a fixed value of a = 7 for all following tests which results
in a typical cutoff error between 3× 10−5 and 1× 10−6, depending on the specific example.
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Figure 2: FTT ranks of the approximations of two exemplary Gaussian densities for varying domain sizes
Q = [−a, a]d. Both precision matrices are constructed randomly, as described in Section 4.2
(left) and in Section 4.3 (right). On the left, we have set the subdiagonal rank to l = 2 and
and d = 15. In addition, we have plotted a slope line of the predicted quadratic growth rate in
log(1/ ε) (dotted line). On the right, we have set the decay rate to θ = 2 and d = 30.

4.1 Dimension
First, we fix a set of parameters for both theorems and vary the number of dimensions d of the Gaussian
density. For the low-rank case, we set σ ≡ 1 and the rank of the subdiagonal blocks to 2. We set the
decay parameters of the exponentially decaying singular values to θ = 1, α = 1. In both cases, we set
the minimal singular value of the precision matrix to λmin = 0.5. We vary the number of dimensions
between d = 5 and d = 40 and, for each choice, compute 10 realization with a randomized precision
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Figure 3: FTT ranks of approximations of a Gaussian density with randomized precision matrix at fixed
relative accuracy ε = 10−4 for varying number of dimensions d. The ranks of the individual
completions (translucent) as well as their averages (opaque) are shown. On the left, the preci-
sion matrices have subdiagonal blocks of rank 2 with singular values σ ≡ 1. On the right, the
singular spectrum decays with rate e−j . In both cases, λmin = 0.5.

matrix as described above. Each Gaussian density is approximated with a relative accuracy of ε = 10−4.
The resulting FTT ranks can be seen in Figure 3.
In both Theorem 3.1 and Theorem 3.2, we predict an increase of the rank as the dimension grows. We

cannot reproduce this behavior in our tests. Instead, it appears that the rank stays at a similar level or
reduces slightly as d grows. The dimension d appears in two places of the derivation of our results in
Section 3.1: when choosing the cutoff domain Ω and when applying Theorem 2.4. The choice of Ω as
a square domain is clearly suboptimal, however, the application of Theorem 2.4 is fundamental to our
approach. This shows that any estimate that is based on approximating matricizations is not suitable
to produce a dimension-independent estimate.
For the precision matrices with exponentially decaying singular values in the subdiagonal blocks, a

sharp increase of the rank between d = 5 and d = 15 occurs which does not follow the general trend
outlined above. This could potentially be explained by the small row/column length of the subdiagonal
blocks in low dimensions. For small d this length could be substantially smaller than l in Lemma 3.7,
leading to an initial increase of the number of relevant singular values in the subdiagonal blocks as the
dimension increases.

4.2 Low-Rank Subdiagonal Blocks
Now, we fix the dimension and look at the FTT ranks when varying the structure of the subdiagonal
blocks and the target accuracy. We start with the case of a fixed rank l in each subdiagonal block of the
precision matrix. We fix all singular values to be uniformly σ ≡ 1, set the dimension to d = 15, and the
minimal eigenvalue of the precision matrix to λmin = 0.5. We compute the approximation of 10 different
realizations of precision matrices for the subdiagonal ranks l ∈ {1, 2, 3, 4}. Due to memory constraints,
the target accuracy of the TT-cross algorithm is varied depending on the subdiagonal rank. The number
of interpolation points n varies between 140 and 270, depending on the target accuracy. In all cases,
we make sure that the sampled relative error on Q is below the target accuracy. From Theorem 3.1, we
expect a polynomial growth rate in the logarithm of the inverse accuracy. To explore this, we look at a
log-log plot of the FTT ranks r and the accuracy log(1/ ε) (meaning we have a log-log scaled x-axis).
In Figure 4, we present the results of this test. To emphasize the growth behavior for the different

parameters, we plot the average of the maximal FTT ranks of the approximations (with individual
realizations as translucent lines). We can see that at least for our random set of examples, the averaged
curve seems to capture the overall behavior well. While there is variation between different realizations
of precision matrices, for large values of log(1/ ε), the FTT rank trajectory in log-log space seems to only
differ by a constant. This indicates that the growth behavior of the FTT ranks is primarily dictated by
the ranks in the subdiagonal blocks.
After an initial phase, the FTT rank plot appears to be linear in the log-log plane which indicates

that the predicted poly-logarithmic growth rate is qualitatively correct. However, the rates in which the
rank growths appears to be less than the rate log(1/ ε)l suggested by Theorem 3.1. Nevertheless, when
we compare the FTT ranks for for a fixed accuracy approximation of ε = 10−4 and vary the rank of the

19



101

log(1/ε)

101

102

M
ax

im
al

F
T

T
ra

n
k

x

x²
Approximation rank for varying ε

l = 1

l = 2

l = 3

l = 4

1 2 3 4

Rank in subdiagonal blocks

101

102

M
ax

im
al

F
T

T
ra

n
k

Approximation rank for fixed ε = 10−4

Figure 4: Ranks of the FTT approximations of a 15 dimensional Gaussian density with low-rank subdi-
agonal blocks. On the left, we show a log-log plot of the maximal FTT ranks versus 1/ ε, for
different subdiagonal block ranks l. The dotted lines indicate the slope of linear and quadratic
growth in log(1/ ε). On the right, we show the growth of the FTT ranks for a fixed relative
accuracy ε = 10−4 when increasing the ranks in the subdiagonal blocks.
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Figure 5: Ranks of the FTT approximation of a 30 dimensional Gaussian density with exponentially
decaying singular values in the subdiagonal blocks. On the left, we show a log-log plot of the
maximal FTT ranks given the accuracy 1/ ε for different choices of the decay rate θ of the
singular values in the subdiagonal blocks. On the right, we show the growth of the FTT ranks
for a fixed relative accuracy ε = 10−6 when decreasing the decay rate θ.

subdiagonal block, we can clearly see that on average, the necessary FTT rank increases exponentially in
the number of non-zero singular values. Therefore, our predicted exponential dependence on the number
of singular values does not appear to be overly pessimistic.

4.3 Exponentially Decaying Singular Values
As a second test, we follow the setup of Section 4.2 but fix the singular spectrum of each subdiagonal
block to follow the sequence

σi = e−θi

for the i-th singular value in each matricization k and vary θ ∈ {2.5, 2, 1.5, 1}. We increase the dimension
to d = 30 to make sure that we have sufficiently large subdiagonal blocks to not cut off relevant values
of the singular spectrum. The number of interpolation nodes n varies between 230 and 310.
The result can be seen in Figure 5. Note that compared to Figure 4, the x-axis now shows 1/ ε instead

of log(1/ ε). Again, the FTT rank trajectories are to a high degree determined by the prescribed singular
spectrum. For 1/ ε sufficiently big, the rank growth appears to be polynomial in 1/ ε. This confirms the
polynomial growth rate of FTT ranks predicted in Theorem 3.2. In particular, the ranks grow faster in
the accuracy than for precision matrices with low-rank subdiagonal blocks. Overall, as in the previous
case, the numerical tests agree qualitatively with the predictions made by Theorem 3.2.
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5 Application to Bayesian Filtering
In this section, we present an example of how our theoretical results from Section 3 can be used to predict
the TT ranks of numerical approximations of the filtering distribution in Bayesian data assimilation of
high-dimensional dynamical systems. The state of a dynamical system x(t) ∈ Rd is assumed to evolve
according to a stochastic differential equation

dx = f(x)dt+ dξt ,

where f(x) ∈ Rd is a known force field, and ξt is a random noise process, such as a Wiener process [34],
with a distribution possessing a density πξ(ξ) that is independent of time. The system is observed at
discrete times t` , providing noisy measurements

z` = h(x(t`)) + η` , ` = 1, 2, . . . ,

of the state, where h(x) is a known observation function and η` is the observational noise. The distribution
of the observed values z` given the state x(t`) with density ρ(z`|x(t`)) (also called the likelihood) is fully
described by the distribution of the noise vector η`, assumed to be given. All measurements up to a
time t are collected into a set Z(t) = {z` : t` ≤ t}. We will also use Zk = Z(tk) as shorthand notation.
Sequential Bayesian inference aims to find a time-dependent sequence of filtering densities ρ(x(t)|Z(t)).

This process can be split into two steps [29]:

1. Prediction: Since Z(t) = Z` is constant for t ∈ [t`, t`+1), the continuous-time evolution of the
filtering density from t` to t`+1 satisfies the Chapman-Kolmogorov equation

ρ(x(t`+1)|Z`) =

ˆ
πξ (x(t`+1)−X(y; ∆t`+1)) ρ(y|Z`) dy,

where X(y; τ) denotes the deterministic solution of x′ = f(x) at time τ starting from the initial
state x(0) = y and where ∆t`+1 = t`+1− t`. In particular, if ξ ∼ N (0, εI) (a vector of independent
Brownian motions), the prediction density ρ(x(t)|Z`), for t ∈ [t`, t`+1], can be computed as the
solution of the Fokker-Planck equation (FPE)

∂ρ̃(x, τ)

∂τ
= ∇x · (fρ̃) + ε∇2

xρ̃, (5.1)

starting from the initial state ρ̃(x, 0) = ρ(x(t`)|Z`) and integrating (5.1) from τ = 0 to ∆t`+1.

2. Update: At time t`+1, a new measurement z`+1 can be assimilated using Bayes’ rule to compute
the new filtering distribution

ρ(x(t`+1)|Z`+1) =
ρ(z`+1|x(t`+1))ρ(x(t`+1)|Z`)

ρ(z`+1|Z`)
, (5.2)

where ρ(x(t`+1)|Z`) = ρ̃(x(t`+1),∆t`+1), i.e. the solution of (5.1) at time τ = ∆t`+1.

Low-rank tensor formats, such as the TT or the FTT format, have been used extensively to design
efficient algorithms for the Fokker-Planck equation (5.1) (cf. [9, 11,15,20]), as well as for approximating
pointwise products and integrals of multivariate functions as in (5.2) (cf. [43]). However, results on the
theoretical convergence analysis of the FTT format applied to filtering densities are still lacking.
In the case of linear dynamics f(x) = Fx, a linear observation function h(x) = Hx and normally

distributed ξ ∼ N (0, εI) and η` ∼ N (0, R), the filtering distribution is also Gaussian with mean x̄(t)
and covariance matrix C(t) defined by the Kalman filter (which also consists of two steps):

1. Prediction: Solve the system of ODEs

dȳ
dτ

= f(ȳ) and
dP
dτ

= FP + PF> + εI, (5.3)

starting from ȳ(0) = x̄(t`) and P (0) = C(t`) and integrating from τ = 0 to ∆t`+1.

2. (Kalman) Update: The system (5.3) can be solved explicitly, leading to

x̄(t`+1) = ȳ(∆t`+1) +K
(
z`+1 −Hȳ(∆t`+1)

)
,

C(t`+1) =
(
I −KH

)
P (∆t`+1) (5.4)

where K = P (∆t`+1)H>
(
HP (∆t`+1)H> +R

)−1 is the so-called Kalman gain.
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For nonlinear dynamical systems, the Kalman filter can be applied to the linearised system at time t`.
This is the so-called Extended Kalman filter (EKF), which is the de facto standard in nonlinear state
estimation due to its computational efficiency, especially when compared to solving the Fokker-Planck
equation (5.1). However, in a general nonlinear system the EKF filter can rapidly diverge. Nevertheless,
since it is relatively cheap to compute, the EKF covariance matrix C(t`+1) can be used to estimate the
TT ranks of the corresponding Gaussian density function via Theorem 3.1 or 3.2. For systems that
are weakly nonlinear, relative to the frequency of observations, the solution to (5.1)–(5.2) will exhibit
comparable TT ranks. One can then use the cheap information provided by the EKF to initialise the
ranks in an efficient TT or FTT algorithm for the full Bayesian filtering problem (5.1)–(5.2) and analyze
its performance rigorously. However, this goes beyond the scope of this paper and will be the focus of a
separate paper.

5.1 Numerical example: coupled pendulums
We illustrate the approach on a system of N perturbed, weakly coupled pendulums. The kth pendulum
is described by its displacement from the equilibrium θk and its velocity ωk. The displacement follows the
usual inertial law dθk/dt = ωk, and the acceleration is composed of the retracting gravity force, and the
coupling forces between adjacent pendulums. Overall, N weakly coupled pendulums can be described
by the d = 2N -dimensional kinematic evolution x′ = f(x) with

x =



θ1

ω1

θ2

ω2

...
θN
ωN


and f(x) =



ω1

− sin θ1 + κ [θ2 − θ1]
ω2

− sin θ2 + κ [(θ3 − θ2)− (θ2 − θ1)]
...
ωN

− sin θN + κ [−(θN − θN−1)]


. (5.5)

Here κ is a coupling coefficient that we set to 0.2 in this experiment. Note that the coupling force is
similar to the discrete one-dimensional Laplacian acting on the displacement variables. The filtering
is performed assuming that (5.5) is perturbed by a vector ξt of independent Brownian motions with
variance 10−3, modelling for example outside influences on the pendulums or computational bias due to
numerical treatment. However, an important aspect is also that the perturbation stabilizes the filter.
The initial density ρ(x|Z0) is chosen to be zero-mean Gaussian with covariance C(0) = 0.09I.
We synthesize observational data by an accurate noise-free integration of the ’true’ dynamics with a

relative tolerance of 10−6, starting from θk = 0.25 and ωk = 0 at t = 0. The measurements are then
produced as the positions of the first pendulum, perturbed by Gaussian noise with variance 0.04 for
t` = 0.4 · `, ` = 0, . . . , 250. This gives the final time T = t250 = 100.
The exact (Bayes-optimal) filtering densities ρ(x(t)|Z(t)) for 0 < t ≤ T , are now approximated using

TT methods. In each filtering step from t` to t`+1, we solve the Fokker-Planck equation (5.1) using
tAMEn [14] with the TT-SVD approximation threshold δappr = 10−2 (as introduced in Section 2.1). The
same threshold is used for approximating the pointwise product of TT decompositions in the update
step (5.2). At the same time, as outlined above, we compute the Kalman update C(t`+1) at t`+1 for the
linearised dynamics from (5.4), i.e., using the linearised version of (5.5) at t` where all sin functions are
replaced by their arguments.
In Figure 6 (left), we track the singular values of the off-diagonal blocks Cj(T/2) := Cj+1:d, 1:j(T/2) of

the covariance matrix of the extended Kalman filter (using MATLAB notation to denote the subblocks)
for N = 20 and ` = 125, i.e. at time t` = T/2. In the beginning of the filtering, the density function
is close to the initial product density, while near the final time T the distribution follows the state of
the deterministic system with a small and isotropic uncertainty around it. At intermediate times the
highest correlations between the variables are observed, and consequently the ranks of Cj and of the TT
approximation of the solution to the Fokker-Planck equation are largest.
We vary the number of pendulumsN (and consequently the dimension d = 2N), and plot the maximum

numerical ranks of Cj(T/2) over all possible off-diagonal blocks, truncated at 10−2 (middle figure), as
well as the TT ranks of the approximate nonlinear filtering density ρ(x(T/2)|Z(T/2)) (right figure).
The singular values exhibit an exponential decay, which is probably due to the local coupling of the
components of the system. Moreover, both the ranks of the off-diagonal blocks of the covariance matrix,
and the TT ranks of the Bayes-optimal filtering solution grow linearly with the number of pendulums.
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Figure 6: Results of the filtering example. In the left figure, we plot the singular values of the off-diagonal
blocks Cj(T/2) of the covariance matrix C(T/2) computed by the EKF at time T/2. The
maximum numerical ranks of Cj(T/2), truncated at 10−2, and the TT ranks of the approximate
solutions ρ(x(T/2)|ZT/2) of the exact Bayes filtering problem (5.1)–(5.2) at time T/2 are plotted
as functions of N in the middle and right panels, respectively.

This is in line with the results of Theorem 3.2 where we predicted an algebraic scaling of the TT ranks
with the dimension. A more detailed analysis of this application, in particular comparing with alternative
approaches and highlighting its efficiency and its excellent scaling with dimension, are left for a separate
publication.

6 Conclusions
The present paper introduces rigorous a-priori bounds on the necessary ranks to represent Gaussian
densities to a specified accuracy in the functional Tensor-Train (FTT) format. We showed that the FTT
ranks can be related to the singular spectrum of the subdiagonal blocks of the precision matrix of the
Gaussian distribution. In particular, under certain assumptions on the correlation structure, the Tensor-
Train format was shown to provide an efficient surrogate for high dimensional Gaussian distributions that
is not affected by the curse of dimensionality. As motivated carefully in the introduction, we see this as
a stepping stone for a rigorous analysis of low-rank tensor approximation of more general distributions.
The rank bounds that we proved are not sharp, but as the numerical results in Section 4 show, we
managed to qualitatively capture the decay rate and the dependence on the required accuracy ε. The
dependence on the number of dimensions appears to be overly pessimistic, but this dependence is in part
due to fundamental properties of the Tensor-Train format and it is not clear how this can be avoided.
By utilizing properties of the (functional) Tensor-Train format, the results can immediately be gener-

alized, e.g. to sums and (elementwise) products of Gaussian densities. Therefore, our theory also covers
cases like Gaussian mixture models, where each element of the mixture fulfills one of our precision matrix
conditions individually. Nevertheless, it would be of great interest to establish rank bounds also for more
general classes of probability distributions (e.g. distributions of the exponential family).
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